
 
 
 

 
 

 
 

Csound 
 
 
 
 
 
 

A Manual for the Audio Processing System 
 

and  
 

Supporting Programs 
 

with 
 

Tutorials 
 
 
 
 
 
 
 
 
 
 
 

Barry Vercoe 
Media Lab 

M.I.T. 
 
 
 
 
 
 
 
 
 

Copyright 1986, 1992 by the Massachusetts Institute of 
Technology.  All rights reserved. 

 
Developed by Barry L. Vercoe at the Experimental Music Studio, 

Media Laboratory, M.I.T., Cambridge, Massachusetts, 
with partial support from the System Development Foundation 
and from National Science Foundation Grant # IRI-8704665. 

 
-------------------------------------------------------------------- 

 
Permission to use, copy, or modify these programs and their 

documentation for educational and research purposes only and 
without fee is hereby granted, provided that this copyright and 

permission notice appear on all copies and supporting 
documentation.  For any other uses of this software, in original 
or  modified form, including but not limited to distribution in 

whole or in part, specific prior permission from M.I.T. must be 
obtained.  M.I.T. makes no representations about the suitability 
of this software for any purpose.  It is provided “as is” without 

express or implied warranty. 
 
 
 
 

 
 
 

 
  



 

 

2 

CONTENTS  
  
0.PREFACE............................................................................... 3 
  
1. A BEGINNING TUTORIAL...............................................  3 
     Introduction............................................................................  3 
     The Orchestra File................................................................. 3 
     The Score File....................................................................... 4 
     The csound Command...........................................................  5 
     More about the Orchestra...................................................... 5 
  
2. SYNTAX OF  THE ORCHESTRA..................................... 5 
ORCHESTRASTATEMENT TYPES........................................  6 
CONSTANTS AND VARIABLES............................................ 6 
VALUE CONVERTERS:  int, frac, abs, ftlen, i,  
          exp, log, sqrt, sin, cos, dbamp, ampdb............................. 6 
PITCH CONVERTERS:  octpch, pchoct,  
          cpspch, octcps, cpsoct.......................................................  6 
ARITHMETIC OPERATIONS.................................................. 7 
CONDITIONAL VALUES........................................................ 7 
EXPRESSIONS......................…..............................................  7 
DIRECTORIES and FILES..................................................... 7 
NOMENCLATURE..............................................................  7 
ASSIGNMENT STATEMENTS:  =, init, tival, divz ............. 8 
ORCHESTRA HEADER:  sr, kr, ksmps, nchnls.................... 8 
INSTRUMENT BLOCKS: instr, endin................................... 8 
     PROGRAM CONTROL:  
          Goto, tigoto, if ... goto, timout                        
          reinit, rigoto, rireturn ........................................................ 8 
     DURATIONAL CONTROL STATEMENTS:  
          ihold, turnoff .................................................................... 9 
     MIDI CONVERTERS:  notnum, veloc, cpsmidi(b),                  
           octmidi(b), pchmidi(b), ampmidi, ftouch, chpress, 

pchbend, midictrl...................................………………. 

 
 
9 

    SIGNAL GENERATORS:  
          line, expon, linseg, expseg................................................ 10 
          phasor................................................................................ 10 
          Table, tablei, oscil1, oscil1i ............................................. 10 
          Oscil, oscili, foscil, oscili.................................................. 11 
          loscil.................................................................................. 11 
          Buzz, gbuzz ...................................................................... 11 
          adsyn, pvoc....................................................................... 12 
          fof......................................................................................  12 
          pluck.................................................................................. 13 
          rand, randh, randi.............................................................. 13 
     SIGNAL MODIFIERS:  
        linen, linenr, envlpx........................................................... 13 
        port, tone, atone, reson, areson..........................................  14 
        lpread, lpreson, lpfreson.................................................... 14 
        rms, gain, balance.............................................................. 15 
        downsamp, upsamp, interp, integ, diff, samphold.............. 15 
        delayr, delayw, delay, delay1............................................ 15 
        deltap, deltapi.................................................................... 16 
        comb, alpass, reverb.......................................................... 16 
     OPERATIONS WITH SPECTRAL DATA TYPES:  
        octdown, noctdft, specscal, specaddm,  
        specdiff, specaccm, specfilt, specdisp, specsum............... 17 
     SENSING & CONTROL:  
        tempest............................................................................... 18 
        xyin, tempo........................................................................ 18 
    SOUNDFILE INPUT & OUTPUT:  
        in, ins, insq, soundin, out, outs, outq.................................. 19 
        pan..................................................................................... 19 
    SIGNAL DISPLAY:  print, display, dispfft..........................  20 
  
3. STANDARD NUMERIC SCORE..................................….     20 
   Preprocessing of Standard Scores......................................….. 20 
   Next-P and Previous-P Symbols.............................................. 20 
   Ramping.................................................................................. 20 
   Function Table Statement........................................................ 21 
   Instrument Note Statements.....................................................  21 
   Advance Statement.................................................................. 22 
   Tempo Statement..................................................................... 22 
   Sections of Score..................................................................... 22 
   End of Score............................................................................ 22 
4. GEN ROUTINES..................................................................      23 
 GEN01…................................................................................... 23 

 GEN02...…................................................................................ 23 
 GEN03....…............................................................................... 23 
 GEN04......…............................................................................. 23 
 GEN05, GEN..07...................................................................... 24 
 GEN06..........…......................................................................... 24 
 GEN08.............…...................................................................... 25 
 GEN09, GEN10, GEN19…....................................................... 25 
 GEN11...............................….................................................... 25 
 GEN12..................................…................................................. 25 
 GEN13, GEN14......................…............................................... 26 
 GEN15.......................................…............................................ 26 
 GEN17..........................................…......................................... 26 
  
5.  SCOT:  A Score Translator................................................     27 
    Orchestra Declaration............................................................. 27 
    Score Encoding....................................................................... 27 
    Pitch and Rhythm.................................................................... 27 
    Groupettes.............................................................................. 28 
    Slurs and Ties......................................................................... 28 
    Macros.................................................................................... 29 
    Divisi...................................................................................... 29 
    Additional Features................................................................ 30 
  
6. The Unix CSOUND Command.......................................... 31 
   The Extract Feature................................................................. 32 
   Independent Preprocessing.....................................................  32 
  
  
Appendix 1. The Soundfile Utility Programs......................... 33 
               intro - directories, paths, and soundfile formats  
               sndinfo - get basic information about a soundfile  
               hetro - hetrodyne filter analysis for adsyn              
               lpanal - lpc analysis for the lp generators                
               pvanal - fourier analysis for pvoc (Dan Ellis)            
Appendix 2. CSCORE: A C-language Score Generator...... 35 
Appendix 3. An Instrument Design Tutorial (R. Boulanger). 37 
Appendix 4. An FOF Synthesis Tutorial (J.M. Clarke).......... 44 
Appendix 5. Csound for the Macintosh (W. Gardner)........... 46 
Appendix 6. Adding your own Cmodules to Csound............ 47 
Appendix 7. A CSOUND QUICK REFERENCE.................. 48 
Log of changes from version 3.15.10..................……….…… 50 
 
 
 
 
 
 
 

 
 

Editing by 
 

LUCA PAVAN 
 

pavan@panservice.it 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

3 

0. PREFACE 
 
 
Realizing music by digital computer involves synthesizing audio 
signals with discrete points or samples that are representative of 
continuous waveforms.  There are several ways of doing this, each 
affording a different manner of control.  Direct synthesis generates 
waveforms by sampling a stored function representing a single cycle;  
additive synthesis loudness envelope;  subtractive synthesis begins 
with a complex tone and filters it.  Non-linear synthesis uses 
frequency modulation and waveshaping to give simple signals 
complex characteristics, while sampling and storage of natural sound 
allows it to be used at will. 
 
Since comprehensive moment-by-moment specification of sound can 
be tedious, control is gained in two ways:  1) from the instruments in 
an  orchestra, and  2) from the events within a score.  An orchestra  is 
really a computer program that can produce sound, while a score is a 
body of data which that program can react to.  Whether a rise-time 
characteristic is a fixed constant in an instrument, or a variable of 
each note in the score, depends on how the user wants to control it. 
 
The instruments in a Csound orchestra are defined in a simple syntax 
that invokes complex audio  processing routines.  A score passed to 
this orchestra contains numerically coded pitch and control 
information, in standard numeric score format.  Although  many 
users are content with this format, higher level score processing 
languages are often convenient.   
 
The programs making up the Csound system have a long history of 
development, beginning with the Music 4 program written at Bell 
Telephone Laboratories in the early 1960’s by Max Mathews.  That 
initiated the stored table concept and much of the terminology that 
has since enabled computer music researchers to communicate.  
Valuable additions were made at Princeton by the late Godfrey 
Winham in Music 4B;  my own Music 360 (1968) was very indebted 
to his work.  With Music 11 (1973) I took a different tack: the two 
distinct networks of control and audio signal processing stemmed 
from my intensive involvement in the preceding years in hardware 
synthesizer concepts and design.  This division has been retained 
in Csound.   
 
Because it is written entirely in C, Csound is easily installed on any 
machine running Unix or  C.  At MIT it runs on VAX/DECstations 
under Ultrix 4.2, on SUNs under OS 4.1, SGIs under 4.1, and on the 
Macintosh under ThinkC 4.0.  With this single language for audio 
signal processing, users move easily from machine to machine. 
 
The 1991 version included many new features.  I am indebted to 
others for the contribution of the phase vocoder and FOF synthesis 
modules.  That release also charted a new direction with the addition 
of a spectral data type, holding much promise for future 
development.  The 1992 release is even more significant for its 
addition of MIDI converter and control units, enabling Csound to be 
run from MIDI score-files and from external MIDI keyboards.  Since 
the newest RISC processors bring to computer music an order of 
magnitude more speed than did those on which it was born, 
researchers and composers now have access to workstations on 
which realtime software synthesis with sensing and control is now a 
reality.  This is perhaps the single most important development for 
people working in the field.  This new Csound is designed to take 
maximum advantage of realtime audio processing, and to encourage 
interactive experiments in this exciting new domain. 
 
                                                             B.V.  
 
 
1.  A BEGINNING TUTORIAL 
 
Introduction 
 
The purpose of this section is to expose the reader to the 
fundamentals of designing and using computer music instruments in 
Csound.  Only a small portion of the language will be covered here, 
sufficient to implement some simple instrument examples.  

The sections in this primary text are arranged as a Reference manual 
(not a tutorial), since that is the form the user will eventually find 
most helpful when inventing instruments.  Once the basic concepts 
are grasped from this beginning tutorial, the reader might let himself 
into the remainder of the text by locating the information presented 
here in the Reference entries that follow.  More comprehensive 
tutorials are supplied as Appendices. 
 
The Orchestra File 
 
Csound runs from two basic files:  an orchestra file and a score file.  
The orchestra file is a set of instruments that tell the computer how to 
synthesize sound;  the score file tells the computer when.  An 
instrument is a collection of modular statements which either 
generate or modify a signal;  signals are represented by symbols, 
which can be “patched” from one module to another.  For example, 
the following two statements will generate a 440 Hz sine tone and 
send it to an output channel: 
 
     asig oscil     10000, 440, 1 
 
          out  asig 
 
The first line sets up an oscillator whose controlling inputs are an 
amplitude of 10000, a frequency of 440 Hz, and a waveform number, 
and whose output is the audio signal asig.  The second line takes the 
signal asig and sends it to an (implicit) output channel.  The two may 
be encased in another pair of statements that identify the  instrument 
as a whole: 
 
          instr     1 
          asig oscil   10000, 440, 1 
          out  asig 
          endin 
 
In general, an orchestra statement in Csound consists of an action 
symbol followed by a set of input variables and preceded by a result 
symbol.  Its action is to process the inputs and deposit the result 
where told.  The meaning of the input variables depends on the 
action requested.  The 10000 above is interpreted as an amplitude 
value because it occupies the first input slot of an oscil unit;  440 
signifies a frequency in Hertz because that is how an oscil unit 
interprets its second input argument; the waveform number is taken 
to point indirectly to a stored function table, and before we invoke 
this instrument in a score we must fill function table #1 with some 
waveform. 
 
The output of Csound computation is not a real audio signal, but a 
stream of numbers which describe such a signal.  When written onto 
a sound file these can later be converted to sound by an independent 
program; for now, we will think of variables such as asig as tangible 
audio signals.   
 
Let us now add some extra features to this instrument.  First, we will 
allow the pitch of the tone to be defined as a parameter in the score.  
Score parameters can be represented by orchestra variables which 
take on their different values on successive notes.  These variables 
are named sequentially: p1, p2, p3, ...  
The first three have a fixed meaning (see the Score File), while the 
remainder are assignable by the user.  Those of significance here are:  
 
p3-duration of the current note (always in seconds).  
p5-pitch of the current note (in units agreed upon by score and                    
orchestra). 
 
Thus in 
 
     asig oscil     10000, p5, 1 
 
the oscillator will take its pitch (presumably in cps) from score 
parameter 5. 
 
If the score had forwarded pitch values in units other than cycles-per-
second (Hertz), then these must first be converted.  
One convenient score encoding, for instance, combines pitch class 
representation (00 for C, 01 for C#, 02 for D, ... 11 for B) with octave 



 

 

4 

representation (8. for middle C,  9. for the C above, etc.) to give pitch 
values such as 8.00, 9.03, 7.11.  The expression 
 
     cpspch(8.09) 
 
will convert the pitch A (above middle C) to its cps equivalent (440 
Hz).  Likewise, the expression 
 
     cpspch(p5) 
 
will first read a value from p5, then convert it from octave.pitch-class 
units to cps.  This expression could be imbedded in our orchestra 
statement as 
 
     asig oscil     10000, cpspch(p5), 1 
 
to give the score-controlled frequency we sought. 
 
Next, suppose we want to shape the amplitude of our tone with a 
linear rise from 0 to 10000.  This can be done with a new orchestra 
statement 
 
     amp  line 0, p3, 10000 
 
Here, amp will take on values that move from 0 to 10000 over time 
p3 (the duration of the note in seconds).  The instrument will then 
become 
 
          instr   1 
          amp line 0, p3, 10000 
          asig oscil  amp, cpspch(p5), 1 
             out  asig 
               endin 
 
The signal amp is not something we would expect to listen to 
directly.  It is really a variable whose purpose is to control the 
amplitude of the audio oscillator.  Although audio output requires 
fine resolution in time for good fidelity, a controlling signal often 
does not need that much resolution.  We could use another kind of 
signal for this amplitude control 
 
     kamp line 0, p3, 10000 
 
in which the result is a new kind of signal.  Signal names up to this 
point have always begun with the letter  a  (signifying an audio 
signal);  this one begins with  k  (for control).  Control signals are 
identical to audio signals, differing only in their resolution in time.  A 
control signal changes its value less often than an audio signal, and is 
thus faster to generate.  
Using one of these, our instrument would then become  
 
          instr     1 
          kamp line  0, p3, 10000 
          asig oscil  kamp, cpspch(p5), 1 
          out  asig 
          endin 
 
This would likely be indistinguishable in sound from the first 
version, but would run a little faster.  In general, instruments take 
constants and parameter values, and use calculations and signal 
processing to move first towards the generation of control signals, 
then finally audio signals.  Remembering this flow will help you 
write efficient instruments with faster execution times. 
 
We are now ready to create our first orchestra file.  Type in the 
following orchestra using the system editor, and name it “intro.orc”. 
 
     sr = 20000       ; audio sampling rate is 20 kHz 
     kr = 500           ; control rate is 500 Hz 
     ksmps = 40      ; number of samples in a control period (sr/kr) 
     nchnls = 1        ; number of channels of audio output 
 
     instr     1 
     kctrl  line 0, p3, 10000                   ; amplitude envelope 
     asig   oscil  kctrl, cpspch(p5), 1     ; audio oscillator 
       out  asig                                        ; send signal to channel 1 
          endin 

It is seen that comments may follow a semi-colon, and extend to the 
end of a line.  There can also be blank lines, or lines with just a 
comment.  Once you have saved your orchestra file on disk, we can 
next consider the score file that will drive it. 
 
The Score File 
 
The purpose of the score is to tell the instruments when to play and 
with what parameter values.  The score has a different syntax from 
that of the orchestra, but similarly permits one statement per line and 
comments after a semicolon.  The first character of a score statement 
is an opcode, determining an action request; the remaining data 
consists of numeric parameter fields (pfields) to be used by that 
action. 
 
Suppose we want a sine-tone generator to play a pentatonic scale 
starting at C-sharp above middle-C, with notes of 1/2 second 
duration.  We would create the following score: 
 
     ;  a sine wave function table 
     f1 0 256 10 1 
     ;  a pentatonic scale 
     i1    0    .5   0. 8.01 
     i1   .5    .    .    8.03 
     i1 1.0    .    .    8.06 
     i1 1.5    .    .    8.08 
     i1 2.0    .    .    8.10 
     e 
 
The first statement creates a stored sine table.  The protocol for 
generating wave tables is simple but powerful.  Lines with opcode f 
interpret their parameter fields as follows:  
 
     p1 - function table number being created 
     p2 - creation time, or time at which the table becomes readable 
     p3 - table size (number of points), which must be a power of 
             two or one greater 
     p4 - generating subroutine, chosen from a prescribed list. 
 
Here the value 10 in p4 indicates a request for subroutine GEN10 to 
fill the table.  GEN10 mixes harmonic sinusoids in phase, with 
relative strengths of consecutive partials given by the succeeding 
parameter fields.  Our score requests just a single sinusoid.  An 
alternative statement: 
 
     f1 0 256 10 1 0 3 
 
would produce one cycle of a waveform with a third harmonic three 
times as strong as the first. 
 
The i statements, or note statements, will invoke the p1 instrument at 
time p2, then turn it off after p3 seconds; it will pass all of its p-fields 
to that instrument.  Individual score parameters are separated by any 
number of spaces or tabs; neat formatting of parameters in columns 
is nice but unnecessary.  The dots in p-fields 3 and 4 of the last four 
notes invoke a carry feature, in which values are simply copied from 
the immediately preceding note of the same instrument.  A score 
normally ends with an e statement. 
 
The unit of time in a Csound score is the beat.  In the absence of a 
Tempo statement, one beat takes one second.  To double the speed of 
the pentatonic scale in the above score, we could either modify p2 
and p3 for all the notes in the score, or simply insert the line 
 
     t 0 12 
 
to specify a tempo of 120 beats per minute from beat 0. 
 
Two more points should be noted.  First, neither the f-statements nor 
the i-statements need be typed in time order; Csound will sort the 
score automatically before use.  Second, it is permissible to play 
more than one note at a time with a single instrument.  To play the 
same notes as a three-second pentatonic chord we would create the 
following: 
 
     ; a sine wave function 
     f1 0 256 10 1 



 

 

5 

     ; five notes at once 
     i1   0    3   0   8.01 
     i1   0    .    .    8.03 
     i1   0    .    .    8.06 
     i1   0    .    .    8.08 
     i1   0    .    .    8.10 
     e 
 
Now go into the editor once more and create your own score file.  
Name it “intro.sco”.  Tne next section will describe how to invoke a 
Csound orchestra to perform a Csound score. 
 
 
The CSOUND Command 
 
To request your orchestra to perform your score, type the command 
 
     csound  intro.orc  intro.sco 
 
The resulting performance will take place in three phases: 
 
1)  sort the score file into chronological order.  If score syntax errors 
are encountered they will be reported on your console. 
 
2)  translate and load your orchestra.  The console will signal the start 
of translating each instr block, and will report any errors.  If the error 
messages are not immediately meaningful, translate again with the 
verbose flag turned on: 
 
     csound  -v  intro.orc  intro.sco 
 
3)  fill the wave tables and perform the score.  Information about this 
performance will be displayed throughout in messages resembling 
 
     B  4.000 .. 6.000   T 3.000  TT  3.000  M    7929.    7929. 
 
A message of this form will appear for every event in your score. An 
event is defined as any change of state (as when a new note begins or 
an old one ends).  The first two numbers refer to beats in your 
original score, and they delimit the current segment of sound 
synthesis between successive events (e.g.  from beat 4 to beat 6).  
The second beat value is next restated in real seconds of time, and 
reflects the tempo of the score.  That is followed by the Total Time 
elapsed for all sections of the score so far.  
The last values on the line show the maximum amplitude of the audio 
signal, measured over just this segment of time, and reported 
separately for each channel. 
 
Console messages are printed to assist you in following the 
orchestra’s handling of your score.  You should aim at becoming an 
intelligent reader of your console reports.  When you begin working 
with longer scores and your instruments no longer cause surprises, 
the above detail may be excessive.  You can elect to receive 
abbreviated messages using the -m option of the Csound command. 
 
When your performance goes to completion, it will have created a 
sound file named test in your soundfile directory.  You can now 
listen to your sound file by typing 
 
     play test 
 
If your machine is fast enough, and your Csound module includes 
user access to the audio output device, you can hear your sound as it 
is being synthesized by using a command like 
 
     csound  -o  devaudio  intro.orc  intro.sco 
 
More about the Orchestra 
 
Suppose we next wished to introduce a small vibrato, whose rate is 
1/50 the frequency of the note (i.e.  A440 is to have a vibrato rate of 
8.8 Hz.).  To do this we will generate a control signal using a second 
oscillator, then add this signal to the basic frequency derived from 
p5.  This might result in the instrument 
 
 
           

          instr     1 
          kamp line   0, p3, 10000 
          kvib   oscil  2.75, cpspch(p5)/50, 1 
          a1      oscil  kamp, cpspch(p5)+kvib, 1 
             out   a1 
               endin 
 
Here there are two control signals, one controlling the amplitude and 
the other modifying the basic pitch of the audio oscillator.  
For small vibratos, this instrument is quite practical;  however it does 
contain a misconception worth noting.  This scheme has added a sine 
wave deviation to the cps value of an audio oscillator.  The value 
2.75 determines the width of vibrato in cps, and will cause an A440 
to be modified about one-tenth of one semitone in each direction 
(1/160 of the frequency in cps).  In reality, a cps deviation produces a 
different musical interval above than it does below.  To see this, 
consider an exaggerated deviation of 220 cps, which would extend a 
perfect 5th above A440 but a whole octave below.  To be more 
correct, we should first convert p5 into a true decimal octave (not 
cps), so that an interval deviation above is equivalent to that below.  
In general, pitch modification is best done in true octave units rather 
than pitch-class or cps units, and there exists a group of pitch 
converters to make this task easier.  The modified instrument would 
be 
 
     instr     1 
     ioct =         octpch(p5) 
     kamp line   0, p3, 10000 
     kvib oscil   1/120, cpspch(p5)/50, 1 
     asig oscil    kamp, cpsoct(ioct+kvib), 1 
          out    asig 
            endin 
 
This instrument is seen to use a third type of orchestra variable, an i-
variable.  The variable ioct receives its value at an initialization pass 
through the instrument, and does not change during the lifespan of 
this note.  There may be many such init time calculations in an 
instrument.  As each note in a score is encountered, the event space is 
allocated and the instrument is initialized by a special pre-
performance pass.  i-variables receive their values at this time, and 
any other expressions involving just constants and i-variables are 
evaluated.  At this time also, modules such as line will set up their 
target values (such as beginning and end points of the line), and units 
such as oscil will do phase setup and other bookkeeping in 
preparation for performance.  A full description of init-time and 
performance-time activities, however, must be deferred to a general 
consideration of the orchestra syntax. 
 
 

2.  SYNTAX OF THE ORCHESTRA 
 
 
An orchestra statement in Csound has the format: 
 
     label:   result    opcode    argument1, argument2, ... ; comments 
 
The label is optional and identifies the basic statement that follows as 
the potential target of a go-to operation (see Program Control 
Statements).  A label has no effect on the statement per se. 
 
Comments are optional and are for the purpose of letting the user 
document his orchestra code.  Comments always begin with a 
semicolon (;) and extend to the end of the line.  
 
The remainder (result, opcode, and arguments) form the basic 
statement.  This also is optional, i.e.  a line may have only a label or 
comment or be entirely blank.  If present, the basic statement must be 
complete on one line.  The opcode determines the operation to be 
performed;  it usually takes some number of input values 
(arguments); and it usually has a result field variable to which it 
sends output values at some fixed rate.  
There are four possible rates: 
 
1)  once only, at orchestra setup time (effectively a permanent 

assignment); 
2)  once at the beginning of each note (at initialization (init) time:  

I-rate); 



 

 

6 

3)  once every performance-time control loop (perf time control 
rate, or  K-rate); 

4)  once each sound sample of every control loop (perf time audio 
rate, or  A-rate). 

 
ORCHESTRA STATEMENT TYPES 
 
An orchestra program in Csound is comprised of orchestra header 
statements which set various global parameters, followed by a 
number of instrument blocks representing different instrument types.  
An instrument block, in turn, is comprised of ordinary statements that 
set values, control the logical flow, or invoke the various signal 
processing subroutines that lead to audio output. 
 
An orchestra header statement operates once only, at orchestra setup 
time.  It is most commonly an assignment of some value to a global 
reserved symbol, e.g.  sr = 20000.  All orchestra header statements 
belong to a pseudo instrument 0, an init pass of which is run prior to 
all other instruments at score time 0.  Any ordinary statement can 
serve as an orchestra header statement, eg.  gifreq = cpspch(8.09), 
provided it is an init-time only operation. 
 
An ordinary statement runs at either init time or performance time or 
both.  Operations which produce a result formally run at the rate of 
that result (that is, at init time for I-rate results; at performance time 
for K- and A-rate results), with the sole exception of the init opcode 
(q.v.).  Most generators and modifiers, however, produce signals that 
depend not only on the instantaneous value of their arguments but 
also on some preserved internal state.  These performance-time units 
therefore have an implicit init-time component to set up that state.  
The run time of an operation which produces no result is apparent in 
the 
opcode. 
 
Arguments are values that are sent to an operation.  Most arguments 
will accept arithmetic expressions composed of constants, variables, 
reserved globals, value converters, arithmetic operations and 
conditional values; these are described below. 
 
CONSTANTS AND VARIABLES 
 
constants are floating point numbers, such as 1, 3.14159, or -73.45.  
They are available continuously and do not change in value. 
 
variables are named cells containing numbers.  They are available 
continuously and may be updated at one of the four update rates 
(setup only, I-rate, K-rate, or A-rate).  I- and K-rate variables are 
scalars (i.e.  they take on only one value at any given time) and are 
primarily used to store and recall controlling data, that is, data that 
changes at the note rate (for I-variables) or at the control rate (for K-
variables).  I- and K-variables are therefore useful for storing note 
parameter values, pitches, durations, slow-moving frequencies, 
vibratos, etc.  A-variables, on the other hand, are arrays or vectors of 
information.  Though renewed on the same perf-time control pass as 
K-variables, these array cells represent a finer resolution of time by 
dividing the 
control period into sample periods (see ksmps below).  
A-variables are used to store and recall data changing at the audio 
sampling rate (e.g.  output signals of oscillators, filters, etc.). 
 
A further distinction is that between local and global variables.  
local variables are private to a particular instrument, and cannot be 
read from or written into by any other instrument. Their values are 
preserved, and they may carry information from pass to pass (e.g.  
from initialization time to performance time) within a single 
instrument.  Local variable names begin with the letter p, i, k, or a.  
The same local variable name may appear in two or more different 
instrument blocks without conflict. 
 
global variables are cells that are accessible by all instruments.  The 
names are either like local names preceded by the letter g, or are 
special reserved symbols.  Global variables are used for broadcasting 
general values, for communicating between instruments 
(semaphores), or for sending sound from one instrument to another 
(e.g. mixing prior to reverberation).   
 

Given these distinctions, there are eight forms of local and global 
variables: 
 
 
 
     type 
  
reserved symbols 
score parameter fields 
init variables 
control signals 
audio signals 
 

when renewable 
 
permanent       
I-time 
I-time 
P-time, K-rate 
P-time, A-rate 

 Local 
  
   -- 
pnumber   
iname 
kname 
aname 

Global 
 
rsymbol 
    -- 
giname 
gkname 
ganame 
 

where rsymbol is a special reserved symbol (e.g.  sr, kr), number is a 
positive integer referring to a score statement pfield, and name is a 
string of letters and/or digits with local or global meaning.  As might 
be inferred, score parameters are local I-variables whose values are 
copied from the invoking score statement just prior to the Init pass 
through an instrument. 
 
VALUE CONVERTERS 
 
           

ftlen(x)   
int(x) 
frac(x) 
dbamp(x) 
i(x) 
abs(x) 
exp(x) 
log(x) 
sqrt(x) 
sin(x) 
cos(x) 
ampdb(x)     

(init rate args only) 
(init- or control-rate args only) 
(init- or control-rate args only) 
(init- or control-rate args only) 
(control-rate args only) 
(no rate restriction) 
(no rate restriction) 
(no rate restriction) 
(no rate restriction) 
(no rate restriction) 
(no rate restriction) 
(no rate restriction) 
 

 
where the argument within the parentheses may be an expression. 
 
Value converters perform arithmetic translation from units of one 
kind to units of another.  The result can then be a term in a further 
expression. 
 
ftlen(x)  
int(x) 
frac(x) 
dbamp(x) 
i(x) 
 
 
abs(x) 
exp(x) 
log(x) 
sqrt(x) 
sin(x) 
cos(x) 
  

returns the size (no.  of points) of stored function table no.  x. 
returns the integer part of x. 
returns the fractional part of x. 
returns the decibel equivalent of the raw amplitude x. 
returns an Init-type equivalent of the argument, thus 
permitting a K-time value to be accessed in at init-time or 
reinit-time, whenever valid. 
returns the absolute value of x. 
returns e  raised to the xth power. 
returns the natural log of x (x positive only). 
returns the square root of x  (x non-negative). 
returns the sine of x (x in radians). 
returns the cosine of x (x in radians). 
 

ampdb(x)  returns the amplitude equivalent of the decibel value x. 
Thus 60 db gives 1000, 66 db gives 2000, 72 db gives 4000, 78 db 
gives 8000, 84 db gives 16000 and 90 db gives 32000.  
 
Note that for log, sqrt, and ftlen the argument value is restricted.  
Note also that ftlen will always return a power-of-2 value, i.e. the 
function table guard point (see F statement) is not included. 
 
PITCH CONVERTERS  
 

octpch(pch)  
pchoct(oct) 
cpspch(pch) 
octcps(cps) 
cpsoct(oct) 
        

(init or control rate args only) 
(init- or control-rate args only) 
(init- or control-rate args only) 
(init- or control-rate args only) 
(no rate restriction) 

where the argument within the parentheses may be a further 
expression.   
 



 

 

7 

These are really value converters with a special function of 
manipulating pitch data.   
 
Data concerning pitch and frequency can exist in any of the 
following forms:  
 

name  
 
octave point pitch-class (8ve.pc) 
octave point decimal 
cycles per second 
 

abbreviation 
 
pch 
oct 
cps 

The first two forms consist of a whole number, representing octave 
registration, followed by a specially interpreted fractional part.  For 
pch, the fraction is read as two decimal digits representing the 12 
equal-tempered pitch classes from .00 for C to.11 for B.  For oct, the 
fraction is interpreted as a true decimal fractional part of an octave.  
The two fractional forms are thus related by the factor 100/12.  In 
both forms, the fraction is preceded by a whole number octave index 
such that 8.00 represents Middle C,9.00 the C above, etc.  Thus A440 
can be represented alternatively by 440 (cps),8.09 (pch), 8.75 (oct), 
or 7.21 (pch), etc.  Microtonal divisions of the pch semitone can be 
encoded by using more than two decimal places.   
 
The mnemonics of the pitch conversion units are derived from 
morphemes of the forms involved, the second morpheme describing 
the source and the first morpheme the object (result).  Thus  
 
               cpspch(8.09)  
 
will convert the pitch argument 8.09 to its cps (or Hertz) equivalent, 
giving the value of 440.  Since the argument is constant over the 
duration of the note, this conversion will take place at I-time, before 
any samples for the current note are produced.  By contrast, the 
conversion  
 
               cpsoct(8.75 + K1)  
 
which gives the value of A440 transposed by the octave interval K1 
will repeat the calculation every, K-period since that is the rate at 
which K1 varies.   
 
N.B. The conversion from pch or oct into cps is not a linear operation 
but involves an exponential process that could be time-consuming 
when executed repeatedly.  Csound now uses a built-in table lookup 
to do this efficiently, even at audio rates.  
 
ARITHMETIC OPERATIONS:  
 
                    -  a 
                    + a  
                    a  &&  b        (logical AND;  not audio-rate)  
                    a   ||  b            (logical OR;   not audio-rate)  
                    a  +  b 
                    a  -   b 
                    a  *  b  
                    a  /   b 
 
where the arguments a and b may be further expressions.   
 
Arithmetic operators perform operations of change-sign (negate), 
don’t-change-sign, logical AND logical OR, add, subtract, multiply 
and divide.  Note that a value or an expression may fall between two 
of these operators, either of which could take it as its left or right 
argument, as in  
 
                    a + b * c.   
 
In such cases three rules apply:  
 
1) * and / bind to their neighbors more strongly than + and -.   
     Thus the above expression is taken as  
                    a + (b * c),  
     with * taking b and c and then + taking a and b * c.   
2) + and - bind more strongly than &&, which in turn is stronger than 
||: 
     a && b - c || d is taken as (a && (b-c)) || d  

3) When both operators bind equally strongly,  
     the operations are done left to right:  
               a - b - c is taken as (a - b) - c.   
 
Parentheses may be used as above to force particular groupings.   
 
 
CONDITIONAL VALUES:  
 
                    (a > b   ?  v1 : v2)  
                    (a < b   ?  v1 : v2)  
                    (a  > = b   ?  v1 : v2)  
                    (a  < = b   ?  v1 : v2)  
                    (a  = = b   ?  v1 : v2)  
                    (a  ! = b    ?  v1 : v2)  
 
where a, b, v1 and v2 may be expressions, but a, b not audio-rate. 
 
In the above conditionals, a and b are first compared.  If the indicated 
relation is true (a  greater than b, a less than b, a greater than or equal 
to b, a less than or equal to b, a equal to b, a not equal to b), then the 
conditional expression has the value of v1; if the relation is false, the 
expression has the value of v2.  (For convenience, a sole `=` will 
function as `= =`.) NB.: If v1 or v2 are expressions, these will be 
evaluated before the conditional is determined. 
 
In terms of binding strength, all conditional operators (i.  e., the 
relational operators (>,<, etc.), and ?, and : ) are weaker than the 
arithmetic and logical operators (+, -, *, /, && and ||). 
 
Example:  
 
               (k1 < p5/2 + p6 ? k1 : p7)  
 
binds the terms p5/2 and p6.  It will return the value k1 below this 
threshold, else the value p7. 
 
EXPRESSIONS:  
 
Expressions may be composed to any depth from the components 
shown above.  Each part of an expression is evaluated at its own 
proper rate.  For instance, if the terms within a sub-expression all 
change at the control rate or slower, the sub-expression will be 
evaluated only at the control rate; that result might then be used in an 
audio-rate evaluation.  For example, in 
 
               k1 + abs(int(p5) + frac(p5) * 100/12 +  sqrt(k1))  
 
the 100/12 would be evaluated at orch init, the p5 expressions 
evaluated at note I-time, and the remainder of the expression 
evaluated every k-period.  The whole might occur in a unit generator 
argument position, or be part of an assignment statement . 
 
DIRECTORIES and FILES: 
 
Many generators and the csound command itself specify filenames to 
be read from or written to.  These are optionally full pathnames, 
whose target directory is fully specified.  When not fullpath, 
filenames are sought in several directories in order, depending on 
their type and on the setting of certain environment variables.  The 
latter are optional, but they can serve to partition and organize the 
directories so that source files can be shared rather than duplicated in 
several user directories.  
The environment variables can define directories for soundfiles 
(SFDIR), sound samples (SSDIR), and sound analysis (SADIR).  The 
search order is:   
 
Soundfiles being written are placed in SFDIR (if it exists), else the 
current directory. 
Soundfiles for reading are sought in the current directory, then 
SSDIR, then SFDIR. 
Analysis control files for reading are sought in the current directory, 
then SADIR. 
 
 
 
 



 

 

8 

NOMENCLATURE:  
 
In Csound there are nine statement types, each of which provides a 
heading for the descriptive sections that follow in this chapter:  
 
     assignment statements                 signal generator statements  
     orchestra header statements        signal modifier statements  
     instrument block statements        ignal display statements  
     program control statements         soundfile access statements  
     duration control statements              
      
Throughout this document, opcodes are indicated in boldface and 
their argument and result mnemonics, when mentioned in the text, 
are given in italics.  Argument names are generally mnemonic (amp, 
phs), and the result is denoted the letter r.  Both are preceded by a 
type qualifier i, k, a or x (e.g.  kamp, iphs, ar).  
The prefix i denotes scalar values valid at note Init time; prefixes k or 
a denote control (scalar) and audio (vector) values, modified and 
referenced continuously throughout performance (i.e.  at every 
control period while the instrument is active).  Arguments are used at 
the prefix-listed times; results are created at their listed times, then 
remain available for use as inputs elsewhere.  The validity of inputs 
is  defined by the following:  
 
     arguments with prefix i must be valid at Init time;  
     arguments with prefix k can be either control or Init values (which          
     remain valid);  
     arguments with prefix a must be vector inputs;  
     arguments with prefix x may be either vector or scalar (the    
     compiler will distinguish). 
 
All arguments, unless otherwise stated, can be expressions whose 
results conform to the above.  Most opcodes (such as linen and oscil) 
can be used in more than one mode, which one being determined by 
the prefix of the result symbol. 
 
ASSIGNMENT STATEMENTS  
 
     ir   =     iarg 
     kr   =    karg 
     ar   =    xarg 
     kr   init iarg 
     ar   init iarg 
 
     ir   tival 
 
     ir    divz ia, ib, isubst   (these not yet implemented) 
     kr   divz ka, kb, ksubst 
     ar   divz xa, xb, ksubst 
 
= (simple assignment) - Put the value of the expression iarg (karg, 
xarg) into the named result.  This provides a means of saving an 
evaluated result for later use.   
 
init - Put the value of the I-time expression iarg into a K- or A-
variable, i.e., initialize the result.  Note that init provides the only 
case of an Init-time statement being permitted to write into a 
Perftime (K- or A-rate) result cell; the statement has no effect at Perf-
time.   
 
tival - Put the value of the instrument’s internal “tie-in” flag into the 
named I-variable.  Assigns 1 if this note has been ‘tied’ onto a 
previously held note (see I Statement); assigns 0 if no tie actually 
took place.  (See also tigoto.)  
 
divz  - Whenever b is not zero, set the result to the value a / b; when 
b is zero, set it to the value of subst instead.   
 
 
Example:  
 
     kcps   =  i2/3 + cpsoct(k2 + octpch(p5))  
 
ORCHESTRA HEADER STATEMENTS  
 
          sr = n1 
          kr = n2 

          ksmps = n3  
          nchnls = n4  
 
These statements are global value assignments, made at the 
beginning of an orchestra, before any instrument block is defined.  
Their function is to set certain reserved symbol variables that are 
required for performance.  Once set, these reserved symbols can be 
used in expressions anywhere in the orchestra.   
 
sr = (optional) - set sampling rate to n1 samples per second per 
channel.  The default value is 10000.   
 
kr = (optional) - set control rate to n2 samples per second.  The 
default value is 1000.   
 
ksmps = (optional) - set the number of samples in a Control Period 
to n3.  This value must equal sr/kr.  The default value is 10.   
 
nchnls = (optional) - set number of channels of audio output to n4.  
(1 = mono, 2 = stereo, 4 = quadraphonic.) The default value is 1 
(mono).   
 
In addition, any global variable can be initialized by an init-time 
assignment anywhere before the first instr statement.   
 
 
All of the above assignments are run as instrument 0 (i - pass only) at 
the start of real performance.   
 
 
Example of header assignments:  
 
     sr = 10000  
     kr = 500  
     ksmps = 20  
 
     gi1  =    sr/2. 
     ga   init 0 
     gitranspose =  octpch(.0l)  
 
 
INSTRUMENT BLOCK STATEMENTS  
 
          instr         i, j, ... 
          . 
          .    < body  
          .       of  
          .       instrument > 
          . 
          endin  
 
These statements delimit an instrument block.  They must always 
occur in pairs.   
 
 
instr - begin an instrument block defining instruments i, j, ...   
 
i, j, ...  must be numbers, not expressions.  Any positive integer is 
legal, and in any order, but excessively high numbers are best 
avoided.   
 
 
endin - end the current instrument block.   
 
 
Note:  
 
There may be any number of instrument blocks in an orchestra.   
 
Instruments can be defined in any order (but they will always be both 
initialized and performed in ascending instrument number order).   
 
Instrument blocks cannot be nested (i.e. one block cannot contain 
another).   
 
 
 



 

 

9 

PROGRAM CONTROL STATEMENTS  
 
          igoto     label  
          tigoto    label  
          kgoto    label  
          goto      label  
          if           ia R ib igoto label  
          if           ka R kb kgoto label  
          if           ia R ib goto label  
          timout   istrt, idur, label  
 
where label is in the same instrument block and is not an expression, 
and where R is one of the Relational operators (>, <, >=, <=, ==, !=) 
(and = for convenience, see also under Conditional values).   
 
These statements are used to control the order in which statements in 
an instrument block are to be executed.  I-time and P-time passes can 
be controlled separately as follows:  
 
 
igoto - During the I-time pass only, unconditionally transfer control 
to the statement labeled by label. 
 
tigoto - similar to igoto, but effective only during an I-time pass at 
which a new note is being ‘tied’ onto a previously held note (see I 
Statement); no-op when a tie has not taken place.  
Allows an instrument to skip initialization of units according to 
whether a proposed tie was in fact successful (see also tival, delay).   
 
kgoto - During the P-time passes only, unconditionally transfer 
control to the statement labeled by label. 
 
goto - (combination of igoto and kgoto) Transfer control to label on 
every pass.   
 
if...igoto - conditional branch at I-time, depending on the truth value 
of the logical expression “ia R ib”.  The branch is taken only if the 
result is true.   
 
if...kgoto - conditional branch during P-time, depending on the truth 
value of the logical expression “ka R kb”.  The branch is taken only 
if the result is true.   
 
if...goto - combination of the above.  Condition tested on every 
pass.   
 
timout - conditional branch during P-time, depending on elapsed 
note time.  istrt and idur specify time in seconds.  The branch to label 
will become effective at time istrt, and will remain so for just idur 
seconds.  Note that timout can be reinitialized for multiple activation 
within a single note (see example next page).  
 
 
Example:  
 
     if k3 > p5 + 10 kgoto next  
 
          reinit     label  
          rigoto    label  
          rireturn 
 
These statements permit an instrument to reinitialize itself during 
performance.   
 
 
reinit - whenever this statement is encountered during a P-time pass, 
performance is temporarily suspended while a special Initialization 
pass, beginning at label and continuing to rireturn or endin, is 
executed.  Performance will then be resumed from where it left off.   
 
rigoto - similar to igoto, but effective only during a reinit pass (i.e., 
No-op at standard I-time).  This statement is useful for bypassing 
units that are not to be reinitialized.   
 
rireturn - terminates a reinit pass (i.e., No-op at standard I-time).  
This statement, or an endin, will cause normal performance to be 
resumed.   

Example:  
 
The following statements will generate an exponential control signal 
whose value moves from 440 to 880 exactly ten times over the 
duration p3.   
 
  reset:    timout    0, p3 /10, contin    ;after p3/10 seconds, 
               reinit     reset                      ; reinit both timout 
  contin:  expon    440, p3/10,880      ; and expon 
               riretum                                ; then resume perf 
DURATION CONTROL STATEMENTS  
 
          ihold 
          turnoff  
 
These statements permit the current note to modify its own duration.   
 
 
ihold - this I-time statement causes a finite-duration note to become a 
`held’ note.  It thus has the same effect as a negative p3 (see Score I-
statement), except that p3 here remains positive and the instrument 
reclassifies itself to being held indefinitely.  The note can be turned 
off explicitly with turnoff, or its space taken over by another note of 
the same instrument number (i.e. it is tied into that note).  Effective at 
I-time only; no-op during a reinit pass.   
 
turnoff - this P-time statement enables an instrument to turn itself 
off.  Whether of finite duration or ‘held’, the note currently being 
performed by this instrument is immediately removed from the active 
note list.  No other notes are affected.   
 
 
Example:  
 
The following statements will cause a note to terminate when a 
control signal passes a certain threshold (here the Nyquist 
frequency).   
 
k1 expon    440, p3/10,880     ; begin gliss and continue 
if   k1 < sr/2 kgoto contin        ; until Nyquist detected 
     turnoff                                ; then quit  
     contin:  a1  oscil  a1, k1, 1 
 
MIDI CONVERTERS  
 
     

ival       notnum  
ival       veloc  
icps       cpsmidi  
icps       cpsmidib  
kcps      cpsmidib  
ioct       octmidi  
ioct       octmidib  
koct      octmidib  
ipch      pchmidi  
ipch      pchmidib  
kpch     pchmidib  
iamp ampmidi iscal[, ifn] 
kaft  aftouch iscal 
kchpr  chpress iscal 
kbend  pchbend iscal 
ival  midictrl inum 
kval  midictrl inum 

 
Get a value from the MIDI event that activated this instrument, or 
from a continuous MIDI controller, and convert it to a locally useful 
format. 
 
INITIALIZATION 
 
iscal - I-time scaling factor. 
 
ifn  (optional) - function table number of a normalized translation 
table, by which the incoming value is first interpreted.  The default 
value is 0, denoting no translation. 
 
inum - MIDI controller number. 



 

 

10 

PERFORMANCE  
 
notnum, veloc - get the MIDI byte value (0 - 127) denoting the note 
number or velocity  of the current event. 
 
cpsmidi, octmidi, pchmidi - get the note number of the current 
MIDI event, expressed in cps, oct, or pch units for local processing. 
 
cpsmidib, octmidib, pchmidib - get the note number of the current 
MIDI event, modify it by the current pitch-bend value, and express 
the result in cps, oct, or pch units.  Available as an I-time value or as 
a continuous ksig value. 
 
ampmidi - get the velocity of the current MIDI event, optionally 
pass it through a normalized translation table, and return an 
amplitude value in the range 0 - iscal. 
 
aftouch, chpress, pchbend - get the current after-touch, channel 
pressure, or pitch-bend value for this channel, rescaled to the range 0 
- iscal.  Note that this access to pitch-bend data is independent of the 
MIDI pitch, enabling the value here to be used for any arbitrary 
purpose. 
 
midictrl - get the current value (0 - 127) of a specified MIDI 
controller. 
 
SIGNAL GENERATORS  
 

kr  line ia, idur1, ib 
ar  line ia, idur1, ib 
kr  expon ia, idur1, ib 
ar  expon ia, idur1, ib 
kr  linseg ia, idur1, ib[, idur2, ic[...]] 
ar  linseg ia, idur1, ib[, idur2, icI...]] 
kr  expseg ia, idur1, ib[, idur2, ic[...]] 
ar  expseg ia, idur1, ib[, idur2, ic[...]] 

 
Output values kr or ar trace a straight line (exponential curve) or a 
series of line segments (exponential segments) between specified 
points.   
 
INITIALIZATION 
 
ia - starting value.  Zero is illegal for exponentials.   
 
ib, ic, etc.  - value after dur1 seconds, etc.  For exponentials, must be 
non-zero and must agree in sign with ia. 
 
idur1 - duration in seconds of first segment.  A zero or negative value 
will cause all initialization to be skipped. 
 
idur2, idur3, etc.  - duration in seconds of subsequent segments. 
A zero or negative value will terminate the initialization process with 
the preceding point, permitting the last-defined line or curve to be 
continued indefinitely in performance.  The default is zero.   
 
PERFORMANCE  
 
These units generate control or audio signals whose values can pass 
through 2 or more specified points.  The sum of dur values may or 
may not equal the instrument’s performance time: a shorter 
performance will truncate the specified pattern, while a longer 
one.will cause the last-defined segment to continue on in the same 
direction.   
 
 
Example:  
 
     k2   expseg 440, p3/2,880, p3/2,440  
 
This statement creates a control signal which moves exponentially 
from 440 to 880 and back, over the duration p3.   
 
      
     kr   phasor    kcps[, iphs]  
     ar   phasor    xcps[, iphs]  
 

Produce a normalized moving phase value.   
 
INITIALIZATION  
 
iphs (optional) - initial phase, expressed as a fraction of a cycle (0 to 
1).  A negative value will cause phase initialization to he skipped.  
The default value is zero. 
 
 
PERFORMANCE 
An internal phase is successively accumulated in accordance with the 
cps frequency to produce a moving phase value, normalized to lie in 
the range 0.  <= phs < 1.   
 
When used as the index to a table unit, this phase (multiplied by the 
desired function table length) will cause it to behave like an 
oscillator.   
 
Note that phasor is a special kind of integrator, accumulating phase 
increments that represent frequency settings. 
 
 
Example:  
 
     phasor              1                               ; cycle once per second 
     kpch table         k1 * 12, 1                ; through 12-note pch table 
     a1   oscil          p4, cpspch(kpch), 2  ; with continuous sound 
 
 

ir  table indx, ifn[, ixmode][, ixoff][, iwrap] 
ir  tablei indx, ifn[, ixmode][, ixoff][, iwrap] 
kr  table kndx, ifn[, ixmode][, ixoff][, iwrap] 
kr  tablei kndx, ifn[, ixmode][, ixoff][, iwrap] 
ar  table andx, ifn[, ixmode][, ixoff][, iwrap] 
ar  tablei andx, ifn[, ixmode][, ixoff][, iwrap] 
kr  oscil1 idel, kamp, idur, ifn 
kr  oscil1i idel, kamp, idur, ifn 

 
Table values are accessed by direct indexing or by incremental 
sampling.   
 
INITIALIZATION  
 
ifn - function table number.  tablei, oscil1i require the extended guard 
point.   
 
ixmode (optional) - ndx data mode.  0 = raw ndx, 1 = normalized (0 
to 1).  The default value is 0. 
 
ixoff (optional) - amount by which ndx is to be offset.  For a table 
with origin at center, use tablesize/2 (raw) or .5 (normalized).  The 
default value is 0.   
 
iwrap (optional) - wraparound ndx flag.  0 = nowrap (ndx < 0 treated 
as ndx=0; ndx > tablesize sticks at ndx=size), 1 = wraparound.  The 
default value is 0.   
 
idel - delay in seconds before oscil1 incremental sampling begins.   
 
idur - duration in seconds to sample through the oscil1 table just 
once.  A zero or negative value will cause all initialization to be 
skipped.   
 
PERFORMANCE  
 
table invokes table lookup on behalf of init, control or audio indices.  
These indices can be raw entry numbers (0,l,2...size - 1) or scaled 
values (0 to 1-e).  Indices are first modified by the offset value then 
checked for range before table lookup (see iwrap).  If ndx is likely to 
be full scale, or if interpolation is being used, the table should have 
an extended guard point. table indexed by a periodic phasor (see 
phasor) will simulate an oscillator.   
 
oscil1 accesses values by sampling once through the function table at 
a rate determined by idur.  For the first idel seconds, the point of scan 
will reside at the first location of the table; it will then begin moving 
through the table at a constant rate, reaching the end in another idur 



 

 

11 

seconds; from that time on (i.e. after idel + idur seconds) it will 
remain pointing at the last location.  Each value obtained from 
sampling is then multiplied by an amplitude factor kamp before 
being written into the result.  
 
tablei and oscil1i are interpolating units in which the fractional part 
of ndx is used to interpolate between adjacent table entries.  The 
smoothness gained by interpolation is at some small cost in execution 
time (see also oscili, etc.), but the interpolating and non-interpolating 
units are otherwise interchangeable.  Note that when tablei uses a 
periodic index whose modulo n is less than the power of 2 table 
length, the interpolation process requires that there be an (n + 1)th 
table value that is a repeat of the 1st (see F statement in Score).   
 

kr  oscil kamp, kcps, ifn[, iphs] 
kr  oscili kamp, kcps, ifn[, iphs] 
ar  oscil xamp, xcps, ifn[, iphs] 
ar  oscili xamp, xcps, ifn[, iphs] 
ar  foscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs] 
ar  foscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs] 

 
Table ifn is incrementally sampled modulo the table length and the 
value obtained is multiplied by amp. 
 
INITIALIZATION  
 
ifn - function table number.  Requires a wrap-around guard point.  
 
 
iphs (optional) - initial phase of sampling, expressed as a fraction of 
a cycle (0 to 1).  A negative value will cause phase initialization to be 
skipped.  The default value is 0. 
 
 
PERFORMANCE  
 
The oscil units output periodic control (or audio) signals consisting 
of the value of kamp(xamp)times the value returned from control rate 
(audio rate) sampling of a stored function table.  The internal phase is 
simultaneously advanced in accordance with the cps input value.  
While the amplitude and frequency inputs to the K-rate oscils are 
scalar only, the corresponding inputs to the audio-rate oscils may 
each be either scalar or vector, thus permitting amplitude and 
frequency 
modulation at either sub-audio or audio frequencies.   
 
foscil is a composite unit that effectively banks two oscils in the 
familiar Chowning FM setup, wherein the audio-rate output of one 
generator is used to modulate the frequency input of another (the 
“carrier”).  Effective carrier frequency = kcps * kcar, and modulating 
frequency = kcps * kmod.  For integral values of kcar and kmod, the 
perceived fundamental will be the minimum positive value of kcps  * 
(kcar - n * kmod), n = 1,1,2,...  The input kndx is the index of 
modulation (usually time-varying and ranging 0 to 4 or so) which 
determines the spread of acoustic energy over the partial positions 
given by n = 0,1,2,.., etc.  ifn should point to a stored sine wave.   
 
oscili and foscili differ from oscil and foscil respectively in that the 
standard procedure of using a truncated phase as a sampling index is 
here replaced by a process that interpolates between two successive 
lookups.  Interpolating generators will produce a noticeably cleaner 
output signal, but they may take as much as twice as long to run.  
Adequate accuracy can also be gained without the time cost of 
interpolation by using large stored function tables of 2K, 4K or 8K 
points if the space is available.   
 
 
Example:  
 
     k1   oscil     10, 5, 1                    ; 5 cps vibrato 
     a1   oscil     5000, 440 + k1, 1   ; around A440 + -10 cps 
 
 
ar1 [,ar2]   loscil   xamp, kcps, ifn[, ibas][,imod1,ibeg1,iend1][, 
imod2,ibeg2,iend2] 
 

Read sampled sound (mono or stereo) from a table, with optional 
sustain and release looping. 
 
INITIALIZATION  
 
ifn - function table number, typically denoting an AIFF sampled 
sound segment with prescribed looping points.  The source file may 
be mono or stereo. 
 
ibas (optional) - base frequency in cps of the recorded sound.  
This optionally overrides the frequency given in the AIFF file, but is 
required if the file did not contain one. The default value is 0 (no 
override). 
 
imod1, mod2 (optional) - play modes for the sustain and release 
loops.  A value of 1 denotes normal looping, 2 denotes forward & 
backward looping, 0 denotes no looping.  The default value (-1) will 
defer to the mode and the looping points given in the source file.  
 
ibeg1, iend1, ibeg2, iend2 (optional, dependent on mod1, mod2) -
begin and end points of the sustain and release loops.  These are 
measured in sample frames from the beginning of the file, so will 
look the same whether the sound segment is monaural or stereo. 
 
PERFORMANCE  
 
loscil samples the ftable audio at a rate determined by kcps, then 
multiplies the result by xamp.  The sampling increment for kcps is 
dependent on the table’s base-note frequency ibas, and is 
automatically adjusted if the orchestra sr value differs from that at 
which the source was recorded.  In this unit, ftable is always sampled 
with interpolation. 
 
If sampling reaches the sustain loop endpoint and looping is in effect, 
the point of sampling will be modified and loscil will continue 
reading from within that loop segment.  Once the instrument has 
received a turnoff signal (from the score or from a MIDI noteoff 
event), the next sustain endpoint encountered will be ignored and 
sampling will continue towards the release loop end-point, or 
towards the last sample (henceforth to zeros). 
 
loscil is the basic unit for building a sampling synthesizer.  
Given a sufficient set of recorded piano tones, for example, this unit 
can resample them to simulate the missing tones.  Locating the sound 
source nearest a desired pitch can be done via table lookup.  Once a 
sampling instrument has begun, its turnoff point may be 
unpredictable and require an external release envelope; this is often 
done by gating the sampled audio with linenr, which will extend the 
duration of a turned-off instrument by a specific period while it 
implements a decay. 
 
 
Example: 
 
     inum notnum 
     icps cpsmidi 
     iamp ampmidi  3000, 1 
     ifno table          inum, 2              ;notnum to choose an audio 
sample 
     ibas table         inum, 3 
     kamp linenr      iamp, 0, .05, .01 ;at noteoff, extend by 50 
millisecs 
     asig loscil        kamp, icps, ifno, cpsoct(ibas/12. + 3) 
 
 
 ar   buzz       xamp, xcps, knh, ifn[, iphs] 
 ar   gbuzz     xamp, xcps, knh, klh, kr, ifn[, iphs] 
 
Output is a set of harmonically related cosine partials.   
 
INITIALIZATION  
 
ifn - table number of a stored function containing (for buzz) a sine 
wave, or (for gbuzz) a cosine wave.  In either case a large table of at 
least 8192 points is recommended. 
 



 

 

12 

iphs (optional) - initial phase of the fundamental frequency, 
expressed as a fraction of a cycle (0 to 1).  A negative value will 
cause phase initialization to be skipped.  The default value is zero.   
 
 
 
 
PERFORMANCE  
 
These units generate an additive set of harmonically related cosine 
partials of fundamental frequency xcps, and whose amplitudes are 
scaled so their summation peak equals xamp.  The selection and 
strength of partials is determined by the following control 
parameters:  
 
knh - total number of harmonics requested.  Must be positive.   
 
klh - lowest harmonic present.  Can be positive, zero or negative.  In 
gbuzz the set of partials can begin at any partial number and proceeds 
upwards; if klh is negative, all partials below zero will reflect as 
positive partials without phase change (since cosine is an even 
function), and will add constructively to any positive partials in the 
set.   
 
kr - specifies the multiplier in the series of amplitude coefficients.  
This is a power series: if the klhth partial has a strength coefficient of 
A, the (klh + n)th partial will have a coefficient of A * (kr ** n), i.e.  
strength values trace an exponential curve.  kr may be positive, zero 
or negative, and is not restricted to integers.   
 
buzz and gbuzz are useful as complex sound sources in subtractive 
synthesis.  buzz is a special case of the more general gbuzz in which 
klh = kr = 1; it thus produces a set of knh equal-strength harmonic 
partials, beginning with the fundamental.  (This is a band-limited 
pulse train; if the partials extend to the Nyquist, i.e.  knh = int (sr / 2 / 
fundamental freq.), the result is a real pulse train of amplitude xamp.)  
Although both knh and klh may be varied during performance, their 
internal values are necessarily integer and may cause “pops” due to 
discontinuities in the output; kr, however, can be varied during 
performance to good effect.  Both buzz and gbuzz can be amplitude- 
and/or frequency-modulated by either control or audio signals.   
 
 
N.B.  These two units have their analogs in GEN11, in which the 
same set of cosines can be stored in a function table for sampling by 
an oscillator.  Although computationally more efficient, the stored 
pulse train has a fixed spectral content, not a time-varying one as 
above.   
 
 
     ar   adsyn     kamod, kfmod, ksmod, ifilcod  
     ar   pvoc       ktimpnt, kfmod, ifilcod [, ispecwp] 
 
Output is an additive set of individually controlled sinusoids,  
using either an oscillator bank or phase vocoder resynthesis.   
 
INITIALIZATION  
 
ifilcod - integer or character-string denoting a control-file derived 
from analysis of an audio signal.  An integer denotes the suffix of a 
file adsyn.m or pvoc.m;  a character-string (in double quotes) gives a 
filename, optionally a full pathname.  If not fullpath, the file is 
sought first in the current directory, then in the one given by the 
environment variable SADIR (if defined).  adsyn control contains 
breakpoint amplitude- and frequency-envelope values organized for 
oscillator resynthesis, while pvoc control contains similar data 
organized for fft resynthesis.  Memory usage depends on the size of 
the files involved, which are read and held entirely in memory during 
computation but are shared by multiple calls (see also lpread).  
 
ispecwp (optional) - if non-zero, attempts to preserve the spectral 
envelope while its frequency content is varied by kfmod.  
The default value is zero. 
 
 
 
 

PERFORMANCE  
 
adsyn synthesizes complex time-varying timbres through the method 
of additive synthesis.  Any number of sinusoids, each individually 
controlled in frequency and amplitude, can be summed by high-speed 
arithmetic to produce a high-fidelity result.   
 
Component sinusoids are described by a control file describing 
amplitude and frequency tracks in millisecond breakpoint fashion. 
Tracks are defined by sequences of 16-bit binary integers: 
               -1, time, amp, time, amp,... 
               -2, time, freq, time, freq,... 
such as from hetrodyne filter analysis of an audio file. (For details 
see the Appendix on hetro.)  The instantaneous amplitude and 
frequency values are used by an internal fixed-point oscillator that 
adds each active partial into an accumulated output signal.  While 
there is a practical limit (currently 50) on the number of contributing 
partials, there is no restriction on their behavior over time.  Any 
sound that can be described in terms of the behavior of sinusoids can 
be synthesized by adsyn alone.   
 
Sound described by an adsyn control file can also be modified during 
re-synthesis.  The signals kamod, kfmod, ksmod will modify the 
amplitude, frequency, and speed of contributing partials. These are 
multiplying factors, with kfmod modifying the cps frequency and 
ksmod modifying the speed with which the millisecond bread-point 
line-segments are traversed.  Thus .7, 1.5, and 2 will give rise to a 
softer sound, a perfect fifth higher, but only half as long.  The values 
1,1,1 will leave the sound unmodified.  Each of these inputs can be a 
control signal.   
 
pvoc implements signal reconstruction using an fft-based phase 
vocoder.  The control data stems from a precomputed analysis file 
with a known frame rate.  The passage of time through this file is 
specified by ktimpnt, which represents the time in seconds.  
ktimpnt must always be positive, but can move forwards or 
backwards in time, be stationary or discontinuous, as a pointer into 
the analysis file.  kfmod is a control-rate transposition factor: a value 
of 1 incurs no transposition, 1.5 transposes up a perfect fifth, and .5 
down an octave.   
 
This implementation of pvoc was written by Dan Ellis.  It is 
based in part on the system of Mark Dolson, but the pre-analysis 
concept is new.   
 
 
     ar   fof  xamp, xfund, xform, koct, kband, kris, kdur, kdec, 
                 iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]  
 
Audio output is a succession of sinusoid bursts initiated at frequency 
xfund with a spectral peak at xform.  For xfund above 25 Hz these 
bursts produce a speech-like formant with spectral characteristics 
determined by the k-input parameters.  For lower fundamentals this 
generator provides a special form of granular synthesis.   
 
INITIALIZATION  
 
iolaps - number of preallocated spaces needed to hold overlapping 
burst data.  Overlaps are frequency dependent, and the space required 
depends on the maximum value of xfund * kdur.   Can be over-
estimated at no computation cost.  Uses less than 50 bytes of memory 
per iolap. 
 
ifna, ifnb - table numbers of two stored functions.  The first is a sine 
table for sineburst synthesis (size of at least 4096 recommended).  
The second is a rise shape, used forwards and backwards to shape the 
sineburst rise and decay;  this may be linear (GEN07) or perhaps a 
sigmoid (GEN19). 
 
itotdur - total time during which this fof will be active.  
Normally set to p3.  No new sineburst is created if it cannot complete 
its kdur within the remaining itotdur. 
 
iphs (optional) - initial phase of the fundamental, expressed as a 
fraction of a cycle (0 to 1).  The default value is 0. 
 



 

 

13 

ifmode (optional) - formant frequency mode. If zero, each sineburst 
keeps the xform frequency it was launched with.  If non-zero, each is 
influenced by xform continuously.  The default value is 0. 
 
PERFORMANCE 
 
xamp - peak amplitude of each sineburst, observed at the true end of 
its rise pattern.  The rise may exceed this value given a large 
bandwidth (say, Q < 10) and/or when the bursts are overlapping. 
 
xfund - the fundamental frequency (in Hertz) of the impulses that 
create new sinebursts. 
 
xform - the formant frequency, i.e. freq of the sinusoid burst induced 
by each xfund impulse.  This frequency can be fixed for each burst or 
can vary continuously (see ifmode). 
 
koct - octaviation index, normally zero.  If greater than zero, lowers 
the effective xfund frequency by attenuating odd-numbered 
sinebursts.  Whole numbers are full octaves, fractions transitional. 
 
kband - the formant bandwidth (at -6dB), expressed in Hz.  The 
bandwidth determines the rate of exponential decay throughout the 
sineburst, before the enveloping described below is applied. 
 
kris, kdur, kdec - rise, overall duration, and decay times (in seconds) 
of the sinusoid burst.  These values apply an enveloped duration to 
each burst, in similar fashion to a Csound linen generator  but with 
rise and decay shapes derived from the ifnb input.  kris inversely 
determines the skirtwidth (at -40 dB) of the induced formant region.  
kdur affects the density of sineburst overlaps, and thus the speed of 
computation.  Typical values for vocal imitation are .003,.02,.007.  
 
Csound’s fof generator is loosely based on Michael Clarke’s C-
coding of IRCAM’s CHANT program (Xavier Rodet et al.).  Each 
fof produces a single formant, and the output of four or more of these 
can be summed to produce a rich vocal imitation.  fof synthesis is a 
special form of granular synthesis, and this implementation aids 
transformation between vocal imitation and granular textures.  
Computation speed depends on kdur, xfund, and the density of any 
overlaps. 
 
 
     ar   pluck     kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]  
 
Audio output is a naturally decaying plucked string or drum sound 
based on the Karplus-Strong algorithms.   
 
INITIALIZATION  
 
icps - intended pitch value in cps, used to set up a buffer of 1 cycle of 
audio samples which will be smoothed over time by a chosen decay 
method.  icps normally anticipates the value of kcps, but may be set 
artificially high or low to influence the size of the sample buffer.   
 
ifn - table number of a stored function used to initialize the cyclic 
decay buffer.  If ifn = 0, a random sequence will be used instead.   
 
imeth - method of natural decay.  There are six, some of which use 
parameters values that follow.   
 
1 - simple averaging.  A simple smoothing process, uninfluenced by   
parameter values.   
 
2 - stretched averaging.  As above, with smoothing time stretched by 
a factor of iparm1 ( >= 1 ).   
 
3 - simple drum.  The range from pitch to noise is controlled by a     
‘roughness factor’ in iparm1 (0 to 1).  Zero gives the plucked string 
effect, while 1 reverses the polarity of every sample (octave down, 
odd harmonics).  The setting .5 gives an optimum snare drum.   
 
4 - stretched drum.  Combines both roughness and stretch factors. 
iparm1 is roughness (0 to 1), and iparm2 the stretch factor ( >= 1 ).   
 

5 - weighted averaging.  As method 1, with iparm1 weighting the 
current sample (the status quo) and iparm2 weighting the previous 
adjacent one.  iparm1 + iparm2 must be <= 1.   
 
6 - 1st order recursive filter, with coefs .5.  Unaffected by parameter 
values.   
 
iparm1, iparm2 (optional) - parameter values for use by the 
smoothing algorithms (above).  The default values are both 0.   
 
PERFORMANCE  
 
An internal audio buffer, filled at I-time according to ifn, is 
continually resampled with periodicity kcps and the resulting output 
is multiplied by kamp.  Parallel with the sampling, the buffer is 
smoothed to simulate the effect of natural decay.   
 
Plucked strings (1,2,5,6) are best realized by starting with a random 
noise source, which is rich in initial harmonics.  Drum sounds 
(methods 3,4) work best with a flat source (wide pulse), which 
produces a deep noise attack and sharp decay. 
 
The original Karplus-Strong algorithm used a fixed number of 
samples per cycle, which caused serious quantization of the pitches 
available and their intonation.  This implementation resamples a 
buffer at the exact pitch given by kcps, which can be varied for 
vibrato and glissando effects.  For low values of the orch sampling 
rate (e.g.  sr = 10000), high frequencies will store only very few 
samples (sr / icps).  Since this may cause noticeable noise in the 
resampling process, the internal buffer has a minimum size of 64 
samples.  This can be further enlarged by setting icps to some 
artificially lower pitch.   
 
 

kr  rand xamp[, iseed] 
kr randh kamp, kcps[, iseed] 
kr  randi kamp, kcps[, iseed] 
ar  rand xamp[, iseed] 
ar  randh xamp, xcps[, iseed] 
ar  randi xamp, xcps[, iseed] 

 
Output is a controlled random number series between +amp and -
amp  
 
INITIALIZATION 
 
iseed (optional) - seed value for the recursive psuedo-random 
formula.  A value between 0 and +1 will produce an initial output of 
kamp * iseed A negative value will cause seed re-initialization to be 
skipped.  The default seed value is .5.   
 
PERFORMANCE  
 
The internal psuedo-random formula produces values which are 
uniformly distributed over the range kamp to -kamp.  rand will thus 
generate uniform white noise with an R.M.S value of kamp / root 2.   
 
The remaining units produce band-limited noise: the cps parameters 
permit the user to specify that new random numbers are to be 
generated at a rate less than the sampling or control frequencies.  
randh will hold each new number for the period of the specified 
cycle; randi will produce straightline interpolation between each new 
number and the next. 
 
 
Example:  
 
i1  =  octpch(p5) ; center pitch, to be modified 
k1   randh   1,10  ;10 time/sec by random displacements up to 1 
octave 
     a1  oscil   5000,  cpsoct(i1+k1), 1 
 
SIGNAL MODIFIERS  
 

kr  linen kamp, irise, idur, idec 
ar  linen xamp, irise, idur, idec 
kr  linenr kamp, irise, idec, iatdec 



 

 

14 

ar  linenr xamp, irise, idec, iatdec 
kr  envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[,ixmod] 
ar  envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[,ixmod] 

 
linen - apply a straight line rise and decay pattern to an input amp 
signal.   
linenr - apply a straight line rise, then an exponential decay while the 
note is extended in time. 
envlpx - apply an envelope consisting of 3 segments: 1) stored 
function rise shape, 2) modified exponential “pseudo steady state”,  
3) exponential decay  
 
INITIALIZATION  
 
irise - rise time in seconds.  A zero or negative value signifies no rise 
modification. 
 
idur - overall duration in seconds.  A zero or negative value will 
cause initialization to be skipped.   
 
idec - decay time in seconds.  Zero means no decay.  An idec > idur 
will cause a truncated decay. 
 
ifn - function table number of stored rise shape with extended guard 
point. 
 
iatss - attenuation factor, by which the last value of the envlpx rise is 
modified during the note’s pseudo “steady state.”  A factor > l causes 
an exponential growth, and < l an exponential decay.  A 1 will 
maintain a true steady state at the last rise value.  Note that this 
attenuation is not by fixed rate (as in a piano), but is sensitive to a 
note’s duration.  However, if iatss is negative (or if “steady state” < 4 
k-periods) a fixed attenuation rate of abs(iatss) per second will be 
used.  0 is illegal.   
 
iatdec - attenuation factor by which the closing “steady state” value is 
reduced exponentially over the decay period.  This value must be 
positive and is normally of the order of .01.  A large or excessively 
small value is apt to produce a cutoff which is audible.  A zero or neg 
value is illegal.   
 
ixmod (optional, between +- .9 or so) - exponential curve modifier, 
influencing the “steepness” of the exponential trajectory during the 
“steady state.” Values less than zero will cause an accelerated growth 
or decay towards the target (e.g.  subito piano).  Values greater than 
zero will cause a retarded growth or decay.  The default value is zero 
(unmodified exponential).   
 
PERFORMANCE  
 
Rise modifications are applied for the first irise seconds, and decay 
from time idur - idec.  If these periods are separated in time there will 
be a “steady state” during which amp will be unmodified (linen) or 
modified by the first exponential pattern (envlpx).  If linen rise and 
decay periods overlap then both modifications will be in effect for 
that time; in envlpx that will cause a truncated decay.  If the overall 
duration idur is exceeded in performance, the final decay will 
continue on in the same direction, going negative for linen but 
tending 
asymptotically to zero in envlpx. 
 
linenr is unique within Csound in containing a note-off sensor and 
release time extender. When it senses either a score event termination 
or a MIDI noteoff, it will immediately extend the performance time 
of the current instrument by idec seconds, then execute an 
exponential decay towards the factor iatdec.  For two or more units in 
an instrument, extension is by the greatest idec. 
 

kr  port ksig, ihtim[, isig] 
ar  tone asig, khp[, istor] 
ar  atone asig, khp[, istor] 
ar  reson asig, kcf, kbw[, iscl, istor] 
ar  areson asig, kcf, kbw[, iscl, istor] 

 
A control or audio signal is modified by a low- or band-pass 
recursive filter with variable frequency response.   
 

INITIALIZATION 
 
isig - initial (i.e. previous) value for internal feedback.  The default 
value is 0.   
 
istor - initial disposition of internal data space.  Since filtering 
incorporates a feedback loop of previous output, the initial status of 
the storage space used is significant.  A zero value will clear the 
space;  a non-zero value will allow previous information to remain.  
The default value is 0.   
 
iscl - coded scaling factor for resonators.  A value of 1 signifies a 
peak response factor of 1, i.e.  all frequencies other than kcf are 
attenuated in accordance with the (normalized) response curve.  A 
value of 2 raises the response factor so that its overall RMS value 
equals 1.  (This intended equalization of input and output power 
assumes all frequencies are physically present; hence it is most 
applicable to white noise.)  A zero value signifies no scaling of the 
signal, leaving that to some later adjustment (e.g. see balance).  The 
default value is 0.   
 
PERFORMANCE  
 
port applies portamento to a step-valued control signal.  At each new 
step value, ksig is low-pass filtered to move towards that value at a 
rate determined by ihtim.  ihtim is the “half-time” of the function (in 
seconds), during which the curve will traverse half the distance 
towards the new value, then half as much again, etc., theoretically 
never reaching its asymptote. 
 
tone implements a first-order recursive low-pass filter in which the 
variable khp (in cps) determines the response curve’s half-power 
point.  Half power is defined as peak power / root 2. 
reson is a second-order filter in which kcf controls the center 
frequency, or cps position of the peak response, and kbw controls 
its bandwidth (the cps difference between the upper and lower half -
power points). 
 
atone, areson are filters whose transfer functions are the 
complements of tone and reson.  atone is thus a form of high-pass 
filter and areson a notch filter whose transfer functions represent the 
“filtered out” aspects of their complements.  Note, however, that 
power scaling is not normalized in atone, areson, but remains the true 
complement of the corresponding unit.  Thus an audio signal, filtered 
by parallel matching reson and areson units, would under addition 
simply reconstruct the original spectrum.  This property is 
particularly useful for controlled mixing of different sources (e.g., 
see lpreson).   
 
Complex response curves such as those with multiple peaks can be 
obtained by using a bank of suitable filters in series.  (The resultant 
response is the product of the component responses.) In such cases, 
the combined attenuation may result in a serious loss of signal power, 
but this can be regained by the use of balance.   
 
 
  krmsr,krmso,kerr,kcps  lpread    ktimpnt, ifilcod[, 
inpoles][,ifrmrate]  
                                 ar   lpreson   asig  
                                 ar   lpfreson  asig, kfrqratio  
 
These units, used as a read/reson pair, use a control file of time-
varying filter coefficients to dynamically modify the spectrum of an 
audio signal.   
 
INITIALIZATION  
 
ifilcod - integer or character-string denoting a control-file (reflection 
coefficients and four parameter values) derived from n-pole linear 
predictive spectral analysis of a source audio signal.  An integer 
denotes the suffix of a file lp.m;  a character-string (in double quotes) 
gives a filename, optionally a full pathname.  If not fullpath, the file 
is sought first in the current directory, then in that of the environment 
variable SADIR (if defined).  Memory usage depends on the size of 
the file, which is held entirely in memory during computation but 
shared by multiple calls (see also adsyn, pvoc). 
 



 

 

15 

inpoles, ifrmrate (optional) - number of poles, and frame rate per 
second in the lpc analysis.  These arguments are required only when 
the control file does not have a header; they are ignored when a 
header is detected.  The default value for both is zero.   
 
PERFORMANCE  
 
lpread accesses a control file of time-ordered information frames, 
each containing n-pole filter coefficients derived from linear 
predictive analysis of a source signal at fixed time intervals (e.g.  
1/100 of a second), plus four parameter values:  
          krmsr   - root-mean-square (rms) of the residual of analysis,  
          krmso  - rms of the original signal,  
          kerr     - the normalized error signal,  
          kcps    - pitch in cps.   
lpread gets its values from the control file according to the input 
value ktimpnt (in seconds).  If ktimpnt proceeds at the analysis rate, 
time-normal synthesis will result; proceeding at a faster, slower, or 
variable rate will result in time-warped synthesis.  At each K-period, 
lpread interpolates between adjacent frames to more accurately 
determine the parameter values (presented as output) and the filter 
coefficient settings (passed internally to a subsequent lpreson).   
 
The error signal kerr (between 0 and 1) derived during predictive 
analysis reflects the deterministic/random nature of the analyzed 
source.  This will emerge low for pitched (periodic) material and 
higher for noisy material.  The transition from voiced to unvoiced 
speech, for example, produces an error signal value of about .3.  
During synthesis, the error signal value can be used to determine the 
nature of the lpreson driving function: for example, by arbitrating 
between pitched and non-pitched input, or even by determining a mix 
of the two.  In normal speech resynthesis, the pitched input to lpreson 
is a wideband periodic signal or pulse train derived from a unit such 
as buzz, and the nonpitched source is usually derived from rand.  
However, any audio signal can be used as the driving function, the 
only assumption of the analysis being that it has a flat response.   
 
lpfreson is a formant shifted lpreson, in which kfrqratio is the (cps) 
ratio of shifted to original formant positions.  This permits synthesis 
in which the source object changes its apparent acoustic size.  
lpfreson with kfrqratio = 1 is equivalent to lpreson.   
 
Generally, lpreson provides a means whereby the time-varying 
content and spectral shaping of a composite audio signal can be 
controlled by the dynamic spectral content of another.  There can be 
any number of lpread/lpreson (or lpfreson) pairs in an instrument or 
in an orchestra; they can read from the same or different control files 
independently.   
 
 
     kr   rms          asig[, ihp, istor] 
     nr   gain         asig, krms[, ihp, istor] 
     ar   balance   asig, acomp[, ihp, istor] 
 
The rms power of asig can be interrogated, set, or adjusted to match 
that of a comparator signal.   
 
INlTlALIZATlON  
 
ihp (optional) - half-power point (in cps) of a special internal low-
pass filter.  The default value is 10. 
 
istor (optional) - initial disposition of internal data space (see reson).  
The default value is 0.   
 
PERFORMANCE  
 
rms output values kr will trace the rms value of the audio input asig.  
This unit is not a signal modifier,  but functions rather as a signal 
power-guage.   
 
gain provides an amplitude modification of asig so that the output ar 
has rms power equal to krms.  rms and gain used together (and given 
matching ihp values) will provide the same effect as balance.   
 
balance outputs a version of asig, amplitude-modified so that its rms 
power is equal to that of a comparator signal acomp.  Thus a signal 

that has suffered loss of power (eg., in passing through a filter bank) 
can be restored by matching it with, for instance, its own source.  It 
should be noted that gain and balance provide amplitude 
modification only - output signals are not altered in any other respect.   
 
Example:  
 
     asrc buzz        10000,440, sr/440, 1  ; band-limited pulse train 
     a1   reson        asrc, 1000,100           ; sent through 
     a2   reson        a1,3000,500               ; 2 filters 
     afin balance    a2, asrc                       ; then balanced with 
 
source 
    

kr  downsamp asig[, iwlen] 
ar  upsamp ksig 
ar  interp ksig[, istor] 
kr  integ ksig[, istor] 
ar  integ asig[, istor] 
kr  diff ksig[, istor] 
ar  diff asig[, istor] 
kr  samphold xsig, kgate[, ival, ivstor] 
ar  samphold asig, xgate[, ival, ivstor] 

 
Modify a signal by up- or down-sampling, integration, and 
differentiation.   
 
 
INITIALIZATION 
 
iwlen (optional) - window length in samples over which the audio 
signal is averaged to determine a downsampled value.  Maximum 
length is ksmps; 0 and 1 imply no window averaging.   The default 
value is 0.   
 
istor (optional) - initial disposition of internal save space (see reson).  
The default value is 0.   
 
ival, ivstor (optional) - controls initial disposition of internal save 
space.  If ivstor is zero the internal “hold” value is set to ival ; else it 
retains its previous value.  Defaults are 0,0 (i.e.  init to zero).   
 
PERFORMANCE 
 
downsamp converts an audio signal to a control signal by 
downsampling.  It produces one kval for each audio control period.  
The optional window invokes a simple averaging process to suppress 
foldover.   
 
upsamp, interp convert a control signal to an audio signal.  The 
first does it by simple repetition of the kval, the second by linear 
interpolation between successive kvals.  upsamp is a slightly more 
efficient form of the assignment, `asig = ksig’.   
 
integ, diff perform integration and differentiation on an input control 
signal or audio signal.  Each is the converse of the other, and 
applying both will reconstruct the original signal. Since these units 
are special cases of low-pass and high-pass filters, they produce a 
scaled (and phase shifted) output that is frequency-dependent.  Thus 
diff of a sine produces a cosine, with amplitude 2 * sin(pi * cps / sr) 
that of the original (for each component partial); integ will inversely 
affect the magnitudes of its component inputs.  With this 
understanding, these units can provide useful signal modification.   
 
samphold performs a sample-and-hold operation on its input 
according to the value of gate.  If gate > 0, the input samples are 
passed to the output;  If gate <= 0, the last output value is repeated.  
The controlling gate can be a constant, a control signal, or an audio 
signal.   
 
Example:  
 
     asrc     buzz         10000,440,20, 1     ; band-limited pulse train 
     adif      diff           asrc                       ; emphasize the highs 
     anew    balance    adif, asrc               ; but retain the power 
     agate    reson        asrc,0,440             ; use a lowpass of the original 
     asamp  samphold anew, agate            ; to gate the new audiosig 



 

 

16 

     aout      tone         asamp,100             ; smooth out the rough edges 
 
 
     ar   delayr     idlt[, istor] 
           delayw    asig 
     ar   delay      asig, idlt[, istor] 
     ar   delay1    asig[, istor] 
 
A signal can be read from or written into a delay path, or it can be 
automatically delayed by some time interval.   
 
INITIALIZATION  
 
idlt - requested delay time in seconds.  This can be as large as 
available memory will permit.  The space required for n seconds of 
delay is 4n * sr bytes.  It is allocated at the time the instrument is first 
initialized, and returned to the pool at the end of a score section.   
 
istor (optional) - initial disposition of delay-loop data space (see 
reson).  The default value is 0. 
 
 
 
PERFORMANCE  
 
delayr reads from an automatically established digital delay line, in 
which the signal retrieved has been resident for idlt seconds.  This 
unit must be paired with and precede an accompanying delayw unit.  
Any other Csound statements can intervene.   
 
delayw writes asig into the delay area established by the preceding 
delayr unit.  Viewed as a pair, these two units permit the formation of 
modified feedback loops, etc.  However, there is a lower bound on 
the value of idlt, which must be at least 1 control period (or 1/kr).   
 
delay is a composite of the above two units, both reading from and 
writing into its own storage area.  It can thus accomplish signal time-
shift, although modified feedback is not possible.  
There is no minimum delay period.   
 
delay1 is a special form of delay that serves to delay the audio signal 
asig by just one sample.  It is thus functionally equivalent to “delay  
asig, 1/sr” but is more efficient in both time and space.  This unit is 
particularly useful in the fabrication of generalized non-recursive 
filters. 
 
 
Example:  
 
     tigoto    contin                  ; except on a tie, 
     a2   delay     a1, .05, 0     ; begin 50 msec clean delay of sig 
     contin: 
 
 
     ar   deltap    kdlt 
     ar   deltapi   xdlt  
 
Tap a delay line at variable offset times.   
 
PERFORMANCE  
 
These units can tap into a delayr/delayw pair, extracting delayed 
audio from the idlt seconds of stored sound.  There can be any 
number of deltap and/or deltapi units between a read/write pair.  
Each receives an audio tap with no change of original amplitude.   
 
deltap extracts sound by reading the stored samples directly; deltapi 
extracts sound by interpolated readout.  By interpolating between 
adjacent stored samples deltapi represents a particular delay time 
with more accuracy, but it will take about twice as long to run.   
 
The arguments kdlt, xdlt specify the tapped delay time in seconds.  
Each can range from 1 Control Period to the full delay time of the 
read/write pair; however, since there is no internal check for 
adherence to this range, the user is wholly responsible.  Each 
argument can be a constant, a variable, or a time-varying signal; the 

xdlt argument in deltapi implies that an audio-varying delay is 
permitted there.   
 
These units can provide multiple delay taps for arbitrary delay path 
and feedback networks.  They can deliver either constant-time or 
time-varying taps, and are useful for building chorus effects, 
harmonizers, and doppler shifts.  Constant-time delay taps (and some 
slowly changing ones) do not need interpolated readout; they are well 
served by deltap.  
Medium-paced or fast varying dlt’s, however, will need the extra 
services of deltapi. 
 
N.B. K-rate delay times are not internally interpolated, but rather lay 
down stepped time-shifts of audio samples; this will be found quite 
adequate for slowly changing tap times.  For medium to fastpaced 
changes, however, one should provide a higher resolution audio-rate 
timeshift as input.   
 
 
Example:  
 
     asource   buzz      1, 440, 20, 1  
     atime       linseg    1, p3/2,.01, p3/2,1   ; trace a distance in secs 
     ampfac    =    1/atime/atime                  ; and calc an amp factor 
     adump     delayr    1                              ; set maximum distance  
     amove     deltapi   atime                       ; move sound source past 
     delays      asource                                 ; the listener 
              out  amove * ampfac 
 
 
     ar   comb      asig, krvt, ilpt[, istor] 
     ar   alpass    asig, krvt, ilpt[, istor] 
     ar   reverb   asig, krvt[, istor] 
 
An input signal is reverberated for krvt seconds with “colored” 
(comb), flat (alpass), or “natural room” (reverb) frequency response.   
 
INITIALIZATION  
 
ilpt - loop time in seconds, which determines the “echo density” of 
the reverberation.  This in turn characterizes the “color” of the comb 
filter whose frequency response curve will contain ilpt * sr/2 peaks 
spaced evenly between 0 and sr/2 (the Nyquist frequency).  Loop 
time can be as large as available memory will permit.  The space 
required for an n second loop is 4n * sr bytes.  comb and alpass delay 
space is  allocated and returned as in delay.   
 
istor (optional) - initial disposition of delay-loop data space (cf.  
reson).  The default value is 0. 
 
PERFORMANCE  
 
These filters reiterate input with an echo density determined by loop 
time ilpt.  The attenuation rate is independent and is determined by 
krvt, the reverberation time (defined as the time in seconds for a 
signal to decay to 1/1000, or 60dB down from its original amplitude).  
Output from a comb filter will appear only after ilpt seconds; alpass 
output will begin to appear immediately.   
 
A standard reverb unit is composed of four comb filters in parallel 
followed by two alpass units in series.  Looptimes are set for optimal 
“natural room response.” Core storage requirements for this unit are 
proportional only to the sampling rate, each unit requiring 
approximately 3K words for every 10KC.  
The comb, alpass, delay, tone and other Csound units provide the 
means for experimenting with alternate reverberator designs. 
 
Since output from the standard reverb will begin to appear only after 
1/20 second or so of delay, and often with less than three-fourths of 
the original power, it is normal to output both the source and the 
reverberated signal.  Also, since the reverberated sound will persist 
long after the cessation of source events, it is normal to put reverb in 
a separate instrument to which sound is passed via a global variable, 
and to leave that instrument running throughout the performance. 
 
 
 



 

 

17 

Example:  
 
     ga1  init 0              ; init an audio receiver/mixer 
 
     instr     1               ; instr (there may be many copies) 
     a1   oscili  8000, cpspch(p5), 1 ; generate a source signal 
          out  a1             ; output the direct sound 
     ga1  =    ga1 + a1 ; and add to audio receiver 
          endin 
 
      instr     99                   ; (highest instr number executed last) 
     a3   reverb    ga1, 1.5  ; reverberate whatever is in ga1 
          out  a1                    ; and output the result 
     ga1  =    0                    ; empty the receiver for the next pass 
          endin 
 
OPERATIONS USING SPECTRAL DATA-TYPES  
 
These units generate and process non-standard signal data types, such 
as down-sampled time-domain control signals and audio signals, and 
their frequency-domain (spectral) representations.  The new data 
types (d-, w-) are self-defining, and the contents are not processable 
by any other Csound units.  These unit generators are experimental, 
and subject to change between releases; they will also be joined by 
others later. 
 
 
     dsig  octdown   xsig, iocts, isamps[, idisprd] 
     wsig noctdft    dsig, iprd, ifrqs, iq[, ihann, idbout, idsines] 
 
INITIALIZATION  
 
idisprd (optional) - if non-zero, display the output every idisprd 
seconds.  The default value is 0 (no display).   
 
ihann, idbout, idsines (optional) - if non-zero, then respectively: 
apply a hanning window to the input; convert the output magnitudes 
to dB; display the windowed sinusoids used in DFT filtering.  The 
default values are 0,0,0 (rectangular window, magnitude output, no 
sinusoid display).   
 
PERFORMANCE  
 
octdown - put signal asig or ksig through iocts successive 
applications of octave decimation and downsampling, and preserve 
isamps down-sampled values in each octave.  Optionally display the 
composite buffer every idisprd seconds. 
 
noctdft - generate a constant-Q, exponentially-spaced DFT across all 
octaves of the multiply-downsampled input dsig.  Every iprd 
seconds, each octave of dsig is optionally windowed (ihann non-
zero), filtered (using ifrqs parallel filters per octave, exponentially 
spaced, and with frequency/bandwidth Q of iq), and the output 
magnitudes optionally converted to dB (idbout non-zero).  This unit 
produces a self-defining spectral datablock wsig, whose 
characteristics are readable by any units that receive it as input, and 
for which it becomes the template for 
output.  The information used in producing this wsig (iprd, iocts, 
ifrqs) is passed via the data block to all derivative wsigs, and is thus 
available to subsequent spectral operators if needed. 
 
Example:  
 
asig     in                                                    ; get external audio 
dsamp octdown asig, 6, 180, 0                  ; downsample in 6 octaves 
wsig1 noctdft    dsamp, .02, 12, 33, 0, 1, 1; and calc 72-point dft (dB) 
 
   
     

wsig  specaddm wsig1, wsig2[, imul2] 
wsig  specdiff wsigin 
wsig  specscal wsigin, ifscale, ifthresh 
wsig  spechist wsigin 
wsig  specfilt wsigin, ifhtim 

 
 
 

INITIALIZATION  
 
imul2 (optional) - if non-zero, scale the wsig2 magnitudes before 
adding.  The default value is 0.   
 
PERFORMANCE  
 
specaddm - do a weighted add of two input spectra.  For each 
channel of the two input spectra, the two magnitudes are combined 
and written to the output according to: magout = mag1in + mag2in * 
imul2.  The operation is performed whenever the input wsig1 is 
sensed to be new.  This unit will (at Initialization) verify the 
consistency of the two spectra (equal size, equal period, equal mag 
types).   
 
specdiff - find the positive difference values between consecutive 
spectral frames.  At each new frame of wsigin, each magnitude value 
is compared with its predecessor, and the positive changes written to 
the output spectrum.  This unit is useful as an energy onset detector.   
 
specscal - scale an input spectral datablock with spectral envelopes.  
Function tables ifthresh and ifscale are initially sampled across the 
(logarithmic) frequency space of the input spectrum; then each time a 
new input spectrum is sensed the sampled values are used to scale 
each of its magnitude channels as follows: if ifthresh is non-zero, 
each magnitude is reduced by its corresponding table-value (to not 
less than zero); then each magnitude is rescaled by the corresponding 
ifscale value, and the resulting spectrum written to wsig.   
 
spechist - accumulate the values of successive spectral frames.  
At each new frame of wsigin, the accumulations-to-date in each 
magnitude track are written to the output spectrum.  This unit 
thus provides a running histogram of spectral distribution.   
 
specfilt - filter each channel of an input spectrum.  At each new 
frame of wsigin, each magnitude value is injected into a 1st-order 
lowpass recursive filter, whose half-time constant has been initially 
set by sampling the ftable ifhtim across the (logarithmic) frequency 
space of the input spectrum.  This unit effectively applies a 
persistence factor to the data occurring in each spectral channel, and 
is useful for simulating the energy integration that occurs during 
auditory perception.  It may also be used as a time-attenuated running 
histogram of the spectral 
distribution.   
 
 
Example:  
 
     wsig2      specdiff   wsig1           ; sense onsets 
     wsig3      specfilt    wsig2, 2       ; absorb slowly 
     specdisp  wsig2, .1                     ; & display both spectra 
     specdisp  wsig3, .1 
 
 
     koct specptrk  wsig, inptls, irolloff, iodd[, interp, ifprd, iwtflg] 
     ksum specsum  wsig[, interp] 
                 specdisp  wsig, iprd[, iwtflg] 
 
INITIALIZATION  
 
interp (optional) - if non-zero, interpolate the output signal (koct or 
ksum).  The default value is 0 (repeat the signal value between 
changes).   
 
ifprd (optional) - if non-zero, display the internally computed 
fundamental spectrum.  The default value is 0 (no display). 
 
iwtflg (optional) - wait flag.  If non-zero, hold each display 
until released by the user.  The default value is 0 (no wait).   
 
PERFORMANCE  
 
specptrk - estimate the pitch of the most prominent complex tone in 
the spectrum.  At note initialization this unit creates a set of inptls 
harmonically related partials (odd if iodd non-zero) with amplitude 
rolloff to the fraction irolloff per octave. Then at each new frame of 
wsig, the spectrum is cross-correlated with this set, and the result at 



 

 

18 

each point added to an internal copy of the spectrum (optionally 
displayed).  A pitch is then estimated, and the result is released in 
decimal octave form.  
Between frames, the output is either repeated or interpolated at 
the K-rate. 
 
specsum - sum the magnitudes across all channels of the spectrum.  
At each new frame of wsig, the magnitudes are summed and released 
as a scalar ksum signal.  Between frames, the output is either 
repeated or interpolated at the K-rate.  This unit produces a k-signal 
summation of the magnitudes present in the spectral data, and is 
thereby a running measure of its moment-to-moment overall 
strength.   
 
specdisp - display the magnitude values of spectrum wsig every iprd 
seconds (rounded to some integral number of wsig’s originating 
iprd).   
 
 
Example:  
 
     ksum  specsum   wsig,  1              ; sum the spec bins, and 
ksmooth 
     if        ksum < 2000   kgoto  zero  ; if sufficient amplitude 
     koct   specptrk    wsig                   ; pitch-track the signal 
     kgoto contin 
     zero:  koct =     0                           ; else output zero 
     contin: 
 
 
 
SENSING & CONTROL  
 
Ktemp tempest   kin, iprd, imindur, imemdur, ihp, ithresh, ihtim,  
                   ixfdbak, istartempo, ifn[, idisprd, itweek] 
 
Estimate the tempo of beat patterns in a control signal.   
 
INITIALIZATION 
 
iprd - period between analyses (in seconds).  Typically about .02 
seconds.   
 
imindur - minimum duration (in seconds) to serve as a unit of tempo.  
Typically about .2 seconds. 
 
imemdur - duration (in seconds) of the kin short-term memory buffer 
which will be scanned for periodic patterns.  Typically about 3 
seconds. 
 
ihp - half-power point (in cps) of a low-pass filter used to smooth 
input kin prior to other processing.  This will tend to suppress 
activity that moves much faster.  Typically 2 cps. 
 
ithresh - loudness threshold by which the low-passed kin is center-
clipped before being placed in the short-term buffer as tempo-
relevant data.  Typically at the noise floor of the incoming data.   
 
ihtim - half-time (in seconds) of an internal forward-masking filter 
that masks new kin data in the presence of recent, louder data.  
Typically about .005 seconds.   
 
ixfdbak - proportion of this unit’s anticipated value to be mixed with 
the incoming kin prior to all processing.  Typically about .3.   
 
istartempo - initial tempo (in beats per minute).  Typically 60.   
 
ifn - table number of a stored function (drawn left-to-right) by which 
the short-term memory data  is attenuated over time.   
 
idisprd (optional) - if non-zero, display the short-term past and future 
buffers every idisprd seconds (normally a multiple of iprd).  The 
default value is 0 (no display).   
 
itweek (optional) - fine-tune adjust this unit so that it is stable when 
analyzing events controlled by its own output.  The default value is 1 
(no change).   

PERFORMANCE  
 
tempest examines kin for amplitude periodicity, and estimates a 
current tempo.  The input is first low-pass filtered, then center-
clipped, and the residue placed in a short-term memory buffer 
(attenuated over time) where it is analyzed for periodicity using a 
form of autocorrelation.  The period, expressed as a tempo in beats 
per minute, is output as ktemp.  
The period is also used internally to make predictions about future 
amplitude patterns, and these are placed in a buffer adjacent to that of 
the input.  The two adjacent buffers can be periodically displayed, 
and the predicted values optionally mixed with the incoming signal 
to simulate expectation.   
 
This unit is useful for sensing the metric implications of any k-signal 
(e.g- the RMS of an audio signal, or the second derivative of a 
conducting gesture), before sending to a tempo statement.   
 
 
Example: 
 
ksum specsum   wsignal, 1             ; sum the amps of a spectrum 
ktemp  tempest   ksum, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ; and  
                                                       ;look for beats 
 
 
kx, ky  xyin     iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit]  

tempo  ktempo, istartempo  
 
Sense the cursor position in an input window.  Apply tempo control 
to an uninterpreted score.   
 
INITIALIZATION  
 
iprd - period of cursor sensing (in seconds).  Typically .1 seconds.   
 
xmin, xmax, ymin, ymax - edge values for the x-y coordinates of a 
cursor in the input window.   
 
ixinit, iyinit (optional) - initial x-y coordinates reported; the default 
values are 0,0.  If these values are not within the given min-max 
range, they will be coerced into that range.   
 
istartempo - initial tempo (in beats per minute).  Typically 60.   
 
PERFORMANCE  
 
xyin samples the cursor x-y position in an input window every iprd 
seconds.  Output values are repeated (not interpolated) at the K-rate, 
and remain fixed until a new change is registered in the window.  
There may be any number of input windows.  This unit is useful for 
Realtime control,  but continuous motion should be avoided if iprd is 
unusually small.   
 
tempo allows the performance speed of Csound scored events to be 
controlled from within an orchestra.  It operates only in the presence 
of the csound -t flag.  When that flag is set, scored events will be 
performed from their uninterpreted p2 and p3 (beat) parameters, 
initially at the given command-line tempo. 
When a tempo statement is activated in any instrument (ktempo > 
0.), the operating tempo will be adjusted to ktempo beats per minute.  
There may be any number of tempo statements in an orchestra, but 
coincident activation is best avoided. 
 
 
Example:  
 
          kx,ky     xyin .05, 30, 0, 120, 0, 75  ; sample the cursor 
          tempo    kx, 75                ; and control the tempo of 
performance 
 
 
 
 
 
 
 



 

 

19 

SOUND INPUT & OUTPUT 
  
a1                   in  
a1, a2             ins  
a1, a2, a3, a4  inq  
a1                   soundin  ifilcod[, iskptim][, iformat]  
a1, a2             soundin   ifilcod[, iskptim][, iformat]  
a1, a2, a3, a4 soundin   ifilcod[, iskptim][, iformat]  
                      out           asig  
                      outs1       asig  
                      outs2       asig  
                      outs         asig1, asig2 
                      outq1       asig  
                      outq2       asig 
                      outq3       asig  
                      outq4       asig  
                      outq         asig1, asig2, asig3, asig4  
 
These units read/write audio data from/to an external device or 
stream.   
 
INITIALIZATION 
 
filcod - integer or character-string denoting the source soundfile 
name.  An integer denotes the file soundin.filcod ;  a character-string 
(in double quotes, spaces permitted) gives the filename itself, 
optionally a full pathname.  If not a full path, the named file is sought 
first in the current directory, then in that given by the environment 
variable SSDIR (if defined) then by SFDIR.  See also GEN01. 
 
iskptim (optional) - time in seconds of input sound to be skipped.  
The default value is 0.   
 
iformat (optional) - specifies the audio data file format (1 = 8-bit 
signed char, 2 = 8-bit A-law bytes, 3 = 8-bit U-law bytes, 4 = 16-bit 
short integers, 5 = 32bit long integers, 6 = 32-bit floats). If iformat = 
0 it is taken from the soundfile header, and if no header from the 
csound -o command flag.  The default value is 0. 
 
PERFORMANCE  
 
in, ins, inq - copy the current values from the standard audio input 
buffer.  If the command-line flag -i is set, sound is read continuously 
from the audio input stream (e.g. stdin or a soundfile) into an internal 
buffer.  Any number of these units can read freely from this buffer. 
 
soundin is functionally an audio generator that derives its signal 
from a pre-existing file.  The number of channels read in is set by the 
number of result cells, a1, a2, etc.  A soundin unit opens this file 
whenever the host instrument is initialized, then closes it again each 
time the instrument is turned off.  
There can be any number of soundin units within a single instrument 
or orchestra; also, two or more of them can read simultaneously from 
the same external file.   
 
out, outs, outq send audio samples to an accumulating output buffer 
(created at the beginning of performance) which serves to collect the 
output of all active instruments before the sound is written to disk.  
There can be any number of these output units in an instrument.  The 
type (mono, stereo, or quad) must agree with nchnls, but units can be 
chosen to direct sound to any particular channel: outs1 sends to 
stereo channel 1, outq3 to quad channel 3, etc.   
 
a1, a2, a3, a4   pan    asig, kx, ky, ifn[, imode][, ioffset]  
 
Distribute an audio signal amongst four channels with localization 
control.   
 
INITIALIZATION  
 
ifn - function table number of a stored pattern describing the 
amplitude growth in a speaker channel as sound moves towards it 
from an adjacent speaker.  Requires extended guard-point. 
 
imode (optional) - mode of the kx, ky position values.  0 signifies 
raw index mode, 1 means the inputs are normalized (0 - 1).  The 
default value is 0.   

ioffset (optional) - offset indicator for kx, ky.  0 infers the origin to 
be at channel 3 (left rear); 1 requests an axis shift to the quadraphonic 
center.  The default value is 0.   
 
PERFORMANCE  
 
pan takes an input signal asig and distributes it amongst four outputs 
(essentially quad speakers) according to the controls kx and ky.  For 
normalized input (mode=1) and no offset, the four output locations 
are in order: left-front at (0,1), right-front at (1,1), left-rear at the 
origin (0,0), and right-rear at (1,0).  
In the notation (kx, ky), the coordinates kx and ky, each ranging 0 - 
1, thus control the ‘rightness’ and ‘forwardness’ of a sound location.   
 
Movement between speakers is by amplitude variation, controlled by 
the stored function table ifn.  As kx goes from 0 to 1, the strength of 
the right-hand signals will grow from the left-most table value to the 
right-most, while that of the left-hand signals will progress from the 
right-most table value to the left-most.  For a simple linear pan, the 
table might contain the linear function 0 - 1.  A more correct pan that 
maintains constant power would be obtained by storing the first 
quadrant of a sinusoid.  Since pan will scale and truncate kx and ky 
in simple table lookup, a medium-large table (say 8193) should be 
used.  kx, ky values are not restricted to 0 - 1.  A circular motion 
passing through all four speakers (enscribed) would have a diameter 
of root 2, and might be defined by a circle of radius R = root 1/2 with 
center at (.5,.5).  kx, ky would then come from Rcos(angle), 
Rsin(angle), with an implicit origin at (.5,.5) (i.e.  ioffset = 1).  
Unscaled raw values operate similarly.  
Sounds can thus be located anywhere in the polar or cartesian plane; 
points lying outside the speaker square are projected correctly onto 
the square’s perimeter as for a listener at the center.   
 
 
 
Example: 
   
instr   1 
k1   phasor  1/p3                             ; fraction of circle 
k2   tablei    k1, 1, 1                        ; sin of angle (sinusoid in f1) 
k3   tablei    k1, 1, 1, .25, 1             ; cos of angle (sin offset 1/4 
circle) 
a1   oscili    10000,440, 1               ; audio signal.. 
a1,a2,a3,a4 pan a1, k2/2, k3/2, 2, 1,1;sent in a circle (f2=1st quad sin) 
          outq a1, a2, a3, a4 
             endin 
 
SIGNAL DISPLAY 
 
          print          iarg[, iarg,...]  
          display      xsig, iprd[, iwtflg]  
          dispfft       xsig, iprd, iwsiz[, iwtyp][, idbouti][, iwtflg]  
 
These units will print orchestra Init-values, or produce graphic 
display of orchestra control signals and audio signals.  Uses X11 
windows if enabled, else (or if -g flag is set) displays are 
approximated in ascii characters.   
 
INITlALIZATION  
 
iprd - the period of display in seconds.   
 
iwsiz - size of the input window in samples.  A window of iwsiz 
points will produce a Fourier transform of iwsiz/2 points, spread 
linearly in frequency from 0 to sr/2.  iwsiz must be a power of 2.  The 
windows are permitted to overlap.   
 
iwtyp (optional) - window type.  0 = rectangular, 1 = hanning.  
The default value is 0 (rectangular).   
 
idbout (optional) - units of output for the Fourier coefficients.  
0 = magnitude, 1 = decibels.  The default is 0 (magnitude).   
 
iwtflg (optional) - wait flag.  If non-zero, each display is held until 
released by the user.  The default value is 0 (no wait).   
 
 



 

 

20 

PERFORMANCE 
 
print - print the current value of the I-time arguments (or 
expressions) iarg at every I-pass through the instrument. 
 
display - display the audio or control signal xsig every iprd seconds, 
as an amplitude vs. time graph.   
 
dispfft - display the Fourier Transform of an audio or control signal 
(asig or ksig) every iprd seconds using the Fast Fourier Transform 
method.   
 
 
Example:  
 
     k1   envlpx    l, .03, p3, .05, l, .5, .0l   ; generate a note envelope 
            display   k1, p3                            ; and display entire shape  
 
 

3.  THE STANDARD NUMERIC SCORE 
 
A score is a data file that provides information to an orchestra about 
its performance.  Like an orchestra file, a score file is made up of 
statements in a known format.  The Csound orchestra expects to be 
handed a score comprised mainly of ascii numeric characters.  
Although most users will prefer a higher level score language such as 
provided by Cscore, Scot, or another score-generating program, each 
resulting score must eventually appear in the format expected by the 
orchestra.  A Standard Numeric Score can be created and edited 
directly by the beginner using standard text editors; indeed, some 
users continue to prefer it.  The purpose of this section is to describe 
this 
format in detail.   
 
The basic format of a standard numeric score statement is:  
 
           opcode p1 p2 p3 p4...             ;comments  
 
The opcode is a single character, always alphabetic.  Legal opcodes 
are f, i, a, t, s, and e, the meanings of which are described in the 
following pages.  The opcode is normally the first character of a line; 
leading spaces or tabs will be ignored.  Spaces or tabs between the 
opcode and p1 are optional.   
 
p1, p2, p3, etc...  are parameter fields (pfields).  Each contains a 
floating point number comprised of an optional sign, digits, and an 
optional decimal point.  Expressions are not permitted in Standard 
Score files.  pfields are separated from each other by one or more 
spaces or tabs, all but one space of which will be ignored.   
 
Continuation lines are permitted.  If the first printing character of a 
new scoreline is not an opcode, that line will be regarded as a 
continuation of the pfields from the previous scoreline.   
 
Comments are optional and are for the purpose of permitting the user 
to document his score file.  Comments always begin with a 
semicolon (;) and extend to the end of the line.  Comments will not 
affect the pfield continuation feature.   
 
Blank lines or comment-only lines are legal (and will be ignored).   
 
Preprocessing of Standard Scores 
  
A Score (a collection of score statements) is divided into time-
ordered sections by the s statement.  Before being read by the 
orchestra, a score is preprocessed one section at a time.  
Each section is normally processed by 3 routines: Carry, Tempo, and 
Sort.   
 
1. Carry - within a group of consecutive i statements whose p1 
whole numbers correspond, any pfield left empty will take its value 
from the same pfield of the preceding statement.  An empty pfield 
can be enoted by a single point (.) delimited by spaces.  
No point is required after the last nonempty pfield.  The output of 
Carry preprocessing will show the carried values explicitly.  

The Carry Feature is not affected by intervening comments or blank 
lines; it is turned off only by a non-i statement or by an i statement 
with unlike p1 whole number. 
 
An additional feature is available for p2 alone.  The symbol + in p2 
will be given the value of p2 + p3 from the preceding i statement.  
This enables note action times to be automatically determined from 
the sum of preceding durations.  The + symbol can itself be carried.  
It is legal only in p2.   
 
 
E.g.:     the statements  
               i1   0    .5        100          
               i .  +                    
               i 
     will result in            
               i1   0    .5        100 
               i1  .5    .5        100 
               i1   1    .5        100  
 
The Carry feature should be used liberally.  Its use, especially in 
large scores, can greatly reduce input typing and will simplify later 
changes.   
 
2.  Tempo - this operation time warps a score section according to 
the information in a t statement.  The tempo operation converts p2 
(and, for i statements, p3) from original beats into real seconds, since 
those are the units required by the orchestra.  After time warping, 
score files will be seen to have orchestra-readable format 
demonstrated by the following:  
 
          i p1 p2beats p2seconds p3beats p3seconds p4 p5 ....   
 
3.  Sort - this routine sorts all action-time statements into 
chronological order by p2 value.  It also sorts coincident events into 
precedence order.  Whenever an f statement and an i statement have 
the same p2 value, the f statement will precede. 
Whenever two or more i statements have the same p2 value, they will 
be sorted into ascending p1 value order.  If they also have the same 
p1 value, they will be sorted into ascending p3 value order.  Score 
sorting is done section by section (see s statement).  Automatic 
sorting implies that score statements may appear in any order within 
a section.   
 
N.B.  The operations Carry, Tempo and Sort are combined in a 
3-phase single pass over a score file, to produce a new file in 
orchestra-readable format (see the Tempo example).  Processing can 
be invoked either explicitly by the scsort command, or implicitly by 
csound which processes the score before calling the orchestra.  
Source-format files and orchestra-readable files are both in ascii 
character form, and may be either perused or further modified by 
standard text editors.  Userwritten routines can be used to modify 
score files before or after the above processes, provided the final 
orchestra-readable statement format is not violated.  Sections of 
different formats can be sequentially batched; and sections of like 
format can be merged for automatic sorting.   
 
Next-P and Previous-P Symbols 
  
At the close of any of the above operations, three additional score 
features are interpreted during file writeout: next-p, previous-p, and 
ramping. 
 
i statement pfields containing the symbols npx or ppx (where x is 
some integer) will be replaced by the appropriate pfield value found 
on the next i statement (or previous i statement) that has the same p1.  
For example, the symbol np7 will be replaced by the value found in 
p7 of the next note that is to be played by this instrument.  np and pp 
symbols are recursive and can reference other np and pp symbols 
which can reference others, etc.  
References must eventually terminate in a real number or a ramp 
symbol (see below).  Closed loop references should be avoided.  
np and pp symbols are illegal in p1,p2 and p3 (although they may 
reference these).  np and pp symbols may be Carried.  np and pp 
references cannot cross a Section boundary.  Any forward or 
backward reference to a non-existent note-statement will be given 
the value zero.   



 

 

21 

 
 
E.g.:     the statements 
               i1   0    1    10   np4  pp5  
               i1   1    1    20 
               i1   1    1    30 
     will result in 
               i1   0    1    10   20   0  
               i1   1    1    20   30  20  
               i1   2    1    30   0    30  
 
np and pp symbols can provide an instrument with contextual 
knowledge of the score, enabling it to glissando or crescendo, 
for instance, toward the pitch or dynamic of some future event 
(which may or may not be immediately adjacent).  Note that while 
the Carry feature will propagate np and pp through unsorted 
statements, the operation that interprets these symbols is acting on a 
time-warped and fully sorted version of the score.   
 
Ramping 
  
i statement pfields containing the symbol < will be replaced by 
values derived from linear interpolation of a time-based ramp.  
Ramps are anchored at each end by the first real number found in  
the same pfield of a preceding and following note played by the 
same instrument. 
 
E.g.:     the statements 
               i1   0    1    100 
               i1   1    1    < 
               i1   2    1    < 
               i1   3    1    400 
               i1   4    1    < 
               i1   5    1    0 
     will result in 
               i1   0    1    100  
               i1   1    1    200 
               i1   2    1    300 
               i1   3    1    400 
               i1   4    1    200 
               i1   5    1    0 
 
Ramps cannot cross a Section boundary.  Ramps cannot be anchored 
by an np or pp symbol (although they may be referenced by these).  
Ramp symbols are illegal in p1, p2 and p3.  Ramp symbols may be 
Carried.  Note, however, that while the Carry feature will propagate 
ramp symbols through unsorted statements, the operation that 
interprets these symbols is acting on a time-warped and fully sorted 
version of the score.  In fact, time-based linear interpolation is based 
on warped score-time, so that a ramp which spans a group of 
accelerating notes will remain linear with respect to strict 
chronological time.   
 
F STATEMENT (or  FUNCTION TABLE STATEMENT)  
 
     f  p1  p2  p3  p4 ...   
 
This causes a GEN subroutine to place values in a stored function 
table for use by instruments.   
 
 
PFIELDS 
 
p1   Table number (from 1 to 200) by which the stored function will   
       be known. 
       A negative number requests that the table be destroyed.   
 
p2   Action time of function generation (or destruction) in beats. 
 
p3   Size of function table (i.e.  number of points). 
       Must be a power of 2, or a power-of-2 plus 1 (see below). 
       Maximum table size is 16777216 (2**24) points.  
 
p4   Number of the GEN routine to be called (see GEN ROUTINES).      
        A negative value will cause rescaling to be omitted. 
 
     p5   | 

     p6   |   Parameters whose meaning is determined by the particular 
GEN routine.   
     .    | 
     .    | 
 
 
SPECIAL CONSIDERATIONS  
 
Function tables are arrays of floating-point values.  Arrays can be of 
any length in powers of 2; space allocation always provides for 2**n 
points plus an additional guard point.  The guard point value, used 
during interpolated lookup, can be automatically set to reflect the 
table’s purpose: If size is an exact power of 2, the guard point will be 
a copy of the first point; this is appropriate for interpolated wrap-
around lookup as in oscili, etc., and should even be used for non-
interpolating oscil for safe consistency.  If size is set to 2**n + 1, the 
guard point value automatically extends the contour of table values; 
this is appropriate for single-scan functions such in envlpx, oscil1, 
oscil1i, etc.   
 
Table space is allocated in primary memory, along with instrument 
data space.  The maximum table number has a soft limit of 200; this 
can be extended if required. 
 
An existing function table can be removed by an f statement 
containing a negative p1 and an appropriate action time.  A function 
table can also be removed by the generation of another table with the 
same p1.  Functions are not automatically erased at the end of a score 
section.   
 
p2 action time is treated in the same way as in i statements with 
respect to sorting and modification by t statements.  If an f statement 
and an i statement have the same p2, the sorter gives the f statement 
precedence so that the function table will be available during note 
initialization.   
 
An f 0 statement (zero p1, positive p2) may be used to create an 
action time with no associated action.  Such time markers are useful 
for padding out a score section (see s statement).   
 
I STATEMENT (INSTRUMENT or NOTE STATEMENT)  
 
     i  p1  p2  p3  p4  ...   
 
This statement calls for an instrument to be made active at a specific 
time and for a certain duration.  The parameter field values are 
passed to that instrument prior to its initialization, and remain valid 
throughout its Performance.   
 
PFIELDS 
 
p1   Instrument number (from 1 to 200), usually a non-negative 
integer. 
       An optional fractional part can provide an additional tag for  
       specifying ties between particular notes of consecutive clusters.      
       A negative p1 (including tag) can be used to turn off a particular  
       `held’ note. 
 
p2   Starting time in arbitrary units called beats.   
 
p3   Duration time in beats (usually positive).  A negative value will  
       initiate a held note (see also ihold).  A zero value will invoke an  
       initialization pass without performance (see also instr).   
 
     p4   | 
     p5   |   Parameters whose significance is determined by the 
instrument.   
     .    | 
     .    | 
 
SPECIAL CONSIDERATIONS  
 
Beats are evaluated as seconds, unless there is a t statement in this 
score section or a -t flag in the command line.   
 
Starting or action times are relative to the beginning of a section (see 
s statement), which is assigned time 0.   



 

 

22 

Note statements within a section may be placed in any order.  
Before being sent to an orchestra, unordered score statements must 
first be processed by Sorter, which will reorder them by ascending p2 
value.  Notes with the same p2 value will be ordered by ascending 
p1; if the same p1, then by ascending p3.   
 
Notes may be stacked, i.e., a single instrument can perform any 
number of notes simultaneously.  (The necessary copies of the 
instrument’s data space will be allocated dynamically by the 
orchestra loader.)  Each note will normally turn off when its p3 
duration has expired, or on receipt of a MIDI noteoff signal.  An 
instrument can modify its own duration either by changing its p3 
value during note initialization, or by prolonging itself through the 
action of a linenr unit. 
 
An instrument may be turned on and left to perform indefinitely 
either by giving it a negative p3 or by including an ihold in its I-time 
code.  If a held note is active, an i statement with matching p1 will 
not cause a new allocation but will take over the data space of the 
held note.  The new pfields (including p3) will now be in effect, and 
an I-time pass will be executed in which the units can either be newly 
initialized or allowed to continue as required for a tied note (see 
tigoto).  A held note may be succeeded either by another held note or 
by a note of 
finite duration.  A held note will continue to perform across section 
endings (see s statement).  It is halted only by turnoff or by an i 
statement with negative matching p1 or by an e statement.   
 
A STATEMENT (or ADVANCE STATEMENT)  
 
     a  p1  p2  p3  
 
This causes score time to be advanced by a specified amount without 
producing sound samples.   
 
 
PFIELDS 
 
     p1   carries no meaning.  Usually zero  
     p2   Action time, in beats, at which advance is to begin.   
     p3   Durational span (distance in beats) of time advance.   
 
     p4   | 
     p5   |    These carry no meaning.   
     . 
SPECIAL CONSIDERATIONS  
 
This statement allows the beat count within a score section to be 
advanced without generating intervening sound samples.  This can be 
of use when a score section is incomplete (the beginning or middle is 
missing) and the user does not wish to generate and listen to a lot of 
silence.   
 
p2 action time and p3 distance are treated as in i statements, with 
respect to sorting and modification by t statements. 
 
An a statement will be temporarily inserted in the score by the Score 
Extract feature when the extracted segment begins later than the start 
of a Section.  The purpose of this is to preserve the beat count and 
time count of the original score for the benefit of the peak amplitude 
messages which are reported on the user console.   
 
Whenever an a statement is encountered by a performing orchestra, 
its presence and effect will be reported on the user’s console. 
 
T STATEMENT (TEMPO STATEMENT)  
 
     t  p1  p2  p3  p4  .....  (unlimited)  
 
This statement sets the tempo and specifies the accelerations and 
decelerations for the current section.  This is done by converting 
beats into seconds.   
 
 
PFIELDS 
 
     p1                      must be zero  

     p2                      initial tempo in beats per minute  
     p3, p5, p7, ...     times in beats (in non-decreasing order)  
     p4, p6, p8, ...     tempi for the referenced beat times  
 
 
SPECIAL CONSIDERATIONS  
 
Time and Tempo-for-that-time are given as ordered couples that 
define points on a “tempo vs time” graph.  (The time-axis here is in 
beats so is not necessarily linear.) The beat-rate of a Section can be 
thought of as a movement from point to point on that graph: motion 
between two points of equal height signifies constant tempo, while 
motion between two points of unequal height will cause an 
accelarando or ritardando accordingly.  The graph can contain 
discontinuities: two points given equal times but different tempi will 
cause an immediate tempo change. 
 
Motion between different tempos over non-zero time is inverse 
linear.  That is, an accelerando between two tempos M1 and M2 
proceeds by linear interpolation of the single-beat durations from 
60/M1 to 60/M2.   
 
The first tempo given must be for beat 0.   
 
A tempo, once assigned, will remain in effect from that time-point 
unless influenced by a succeeding tempo, i.e.  the last specified 
tempo will be held to the end of the section. 
 
A t statement applies only to the score section in which it appears.  
Only one t statement is meaningful in a section; it can be placed 
anywhere within that section.  If a score section contains no t 
statement, then beats are interpreted as seconds (i.e. with an implicit t 
0 60 statement). 
 
N.B.  If the csound command includes a -t flag, the interpreted tempo 
of all score t statements will be overridden by the command-line 
tempo.  
 
S STATEMENT  
 
    s  anything  
 
The s statement marks the end of a section.   
 
 
 
PFIELDS 
 
All pfields are ignored.   
 
 
SPECIAL CONSIDERATIONS  
 
Sorting of the i, f and a statements by action time is done section by 
section. 
 
Time warping for the t statement is done section by section.   
 
All action times within a section are relative to its beginning.  
A section statement establishes a new relative time of 0, but has no 
other reinitializing effects (e.g. stored function tables are preserved 
across section boundaries). 
 
A section is considered complete when all action times and finite 
durations have been satisfied (i.e., the “length” of a section is 
determined by the last occurring action or turn-off).  A section can be 
extended by the use of an f 0 statement. 
 
A section ending automatically invokes a Purge of inactive 
instrument and data spaces.   
 
N.B. Since score statements are processed section by section, the 
amount of memory required depends on the maximum number of 
score statements in a section.  Memory allocation is dynamic, and the 
user will be informed as extra memory blocks are requested during 
score processing. 
 



 

 

23 

For the end of the final section of a score, the s statement is optional; 
the e statement may be used instead.   
 
E STATEMENT  
 
     e anything  
 
This statement may be used to mark the end of the last section of the 
score.   
 
 
PFIELDS 
 
All pfields are ignored. 
 
 
SPECIAL CONSIDERATIONS  
 
The e statement is contextually identical to an s statement. 
Additionally, the e statement terminates all signal generation 
(including indefinite performance) and closes all input and output 
files. 
 
If an e statement occurs before the end of a score, all subsequent 
score lines will be ignored. 
 
The e statement is optional in a score file yet to be sorted.  If a score 
file has no e statement, then Sort processing will supply one.   
 
 
4.  GEN ROUTINES 
 
The GEN subroutines are function-drawing procedures called by f 
statements to construct stored wavetables.  They are available 
throughout orchestra performance, and can be invoked at any point in 
the score as given by p2.  p1 assigns a table number, and p3 the table 
size (see f statement).  p4 specifies the GEN routine to be called; 
each GEN routine will assign special meaning to the pfield values 
that follow.   
 
 
 
GEN01  
 
This subroutine transfers data from a soundfile into a function table.   
 
     f  #  time  size  1  filcod  skiptime  format  
 
size - number of points in the table.  Ordinarily a power of 2 or a 
power-of-2 plus 1 (see f statement);  the maximum tablesize is 
16777216 (2**24) points.  If the source soundfile is of type AIFF, 
allocation of table memory can be deferred by setting this parameter 
to 0;  the size allocated is then the number of points in the file 
(probably not a power-of-2), and the table is not usable by normal 
oscillators, but it is usable by a loscil unit.  
An AIFF source can also be mono or stereo. 
 
filcod - integer or character-string denoting the source soundfile 
name.  An integer denotes the file soundin.filcod ; a character-string 
(in double quotes, spaces permitted) gives the filename itself, 
optionally a full pathname.  If not a full path, the file is sought first in 
the current directory, then in that given by the environment variable 
SSDIR (if defined) then by SFDIR.  See also soundin. 
 
skiptime - begin reading at skiptime seconds into the file. 
 
format  - specifies the audio data-file format:  
 
          1 - 8-bit signed character    4 - 16-bit short integers  
          2 - 8-bit A-law bytes          5 - 32-bit long integers  
          3 - 8-bit U-law bytes          6 - 32-bit floats 
  
If format = 0 the sample format is taken from the soundfile header, or 
by default from the csound -o command flag. 
 
Reading stops at end-of-file or when the table is full.  Table locations 
not filled will contain zeros. 

 
Note:  
 
If p4 is positive, the table will be post-normalized (rescaled to a 
maximum absolute value of 1 after generation).  A negative p4 will 
cause rescaling to be skipped. 
 
Examples:  
 
     f   1  0  8192  1  23  0  4 
     f   2  0  0  -1  “trumpet  A#5”  0  4 
 
The tables are filled from 2 files, “soundin.23” and “trumpet A#5”, 
expected in SSDIR or SFDIR.  The first table is pre-allocated;  the 
second is allocated dynamically, and its rescaling is inhibited.   
 
 
GEN02  
 
This subroutine transfers data from immediate pfields into a function 
table. 
 
     f  #  time  size  2  v1  v2  v3  .  .  .   
 
size - number of points in the table.  Must be a power of 2 or a 
power-of-2 plus 1 (see f statement).  The maximum tablesize is 
16777216 (2**24) points. 
 
v1, v2, v3, ... - values to be copied directly into the table space.  The 
number of values is limited by the compile-time variable PMAX, 
which controls the maximum pfields (currently 150).  The values 
copied may include the table guard point;  any table locations not 
filled will contain zeros.   
 
Note:  
 
If p4 is positive, the table will be post-normalized (rescaled to a 
maximum absolute value of 1 after generation).  A negative p4 will 
cause rescaling to be skipped. 
 
Example:  
 
     f   1  0  16  -2  0  1  2  3  4  5  6  7  8  9  10  11  0  
 
This calls upon GEN02 to place 12 values plus an explicit wrap-
around guard value into a table of size next-highest power of 2.  
Rescaling is inhibited. 
 
 
GEN03  
 
This subroutine generates a stored function table by evaluating a 
polynomial in x over a fixed inter- val and with specified 
coefficients.   
 
 
     f  #  time  size  3  xval1  xval2  c0  c1  c2  .  .  .  cn  
 
 
size - number of points in the table.  Must be a power of 2 or a 
power-of-2 plus 1 (see f statement). 
 
xval1, xval2 - left and right values of the x interval over which the 
polynomial is defined (xval1 < xval2).  These will produce the 1st 
stored value and the (power-of-2 plus l)th stored value respectively in 
the generated function table. 
 
c0, c1, c2,  ...  cn  - coefficients of the nth-order polynomial  
 
c0 + c1x + c2x2 + .  .  .  + cnxn 
 
Coefficients may be positive or negative real numbers; a zero denotes 
a missing term in the polynomial.  The coefficient list begins in p7, 
providing a current upper limit of 144 terms. 
Note:  
 
The defined segment [fn(xval1),fn(xval2)] is evenly distributed. 



 

 

24 

Thus a 512-point table over the interval [-1,1] will have its origin at 
location 257 (at the start of the 2nd half).  Provided the extended 
guard point is requested, both fn(-1) and fn(1) will exist in the table.   
 
GEN03 is useful in conjunction with table or tablei for audio 
waveshaping (sound modification by non-linear distortion). 
Coefficients to produce a particular formant from a sinusoidal lookup 
index of known amplitude can be determined at preprocessing time 
using algorithms such as Chebyshev formulae. 
See also GEN13.   
 
 
Example:  
 
 
     f   1  0   1025  3  -1  1  5  4  3  2  2  1  
 
 
This calls GEN03 to fill a table with a 4th order polynomial function 
over the x-interval -1 to 1.  The origin will be at the offset position 
512.  The function is post-normalized. 
 
GEN04  
 
This subroutine generates a normalizing function by examining the 
contents of an existing table.   
 
 
     f  #  time  size  4  source#  sourcemode  
 
 
size - number of points in the table.  Should be power-of-2 plus 
1.  Must not exceed (except by 1) the size of the source table 
being examined; limited to just half that size if the sourcemode 
is of type offset (see below).   
 
source #  -  table number of stored function to be examined. 
 
sourcemode - a coded value, specifying how the source table is to 
be scanned to obtain the normalizing function.  Zero indicates that 
the source is to be scanned from left to right.  Non-zero indicates that 
the source has a bipolar structure; scanning will begin at the mid-
point and progress outwards, looking at pairs of points equidistant 
from the center. 
 
 
Note:  
 
The normalizing function derives from the progressive absolute 
maxima of the source table being scanned.  The new table is created 
left-to-right, with stored values equal to 1/(absolute maximum so far 
scanned).  Stored values will thus begin with 1/(first value scanned), 
then get progressively smaller as new maxima are encountered.  For 
a source table which is normalized (values <= 1), the derived values 
will range from 1/(first value scanned) down to 1.  If the first value 
scanned is zero, that inverse will be set to 1.   
 
The normalizing function from GEN04 is not itself normalized.   
 
GEN04 is useful for scaling a table-derived signal so that it has a 
consistent peak amplitude.  A particular application occurs in 
waveshaping when the carrier (or indexing) signal is less than full 
amplitude. 
 
 
Example:  
 
 
     f   2   0   512   4    1   1  
 
 
This creates a normalizing function for use in connection with the 
GEN03 table 1 example.  Midpoint bipolar offset is specified.  
 
 
 
 

GEN05, GEN07  
 
These subroutines are used to construct functions from segments of 
exponential curves (GEN05) or straight lines (GEN07). 
 
 
     f  #    time    size   5   a   n1   b   n2   c  .  .  .   
     f  #    time    size   7   a   n1   b   n2   c  .  .  .   
 
 
size - number of points in the table.  Must be a power of 2 or power-
of-2 plus 1 (see f statement). 
 
a, b, c, etc.  - ordinate values, in odd-numbered pfields p5, p7, p9, .  .  
.  For GEN05 these must be nonzero and must be alike in sign.  No 
such restrictions exist for GEN07.   
 
n1, n2, etc.  - length of segment (no.  of storage locations), in even-
numbered pfields.  Cannot be negative, but a zero is meaningful for 
specifying discontinuous waveforms (e.g. in the example below).  
The sum n1 + n2 + ....  will normally equal size for fully specified 
functions.  If the sum is smaller, the function locations not included 
will be set to zero; if the sum is greater, only the first size locations 
will be stored. 
 
 
Note:  
 
If p4 is positive, functions are post-normalized (rescaled to a 
maximum absolute value of 1 after generation).  A negative p4 will 
cause rescaling to be skipped. 
 
Discrete-point linear interpolation implies an increase or decrease 
along a segment by equal differences between adjacent locations; 
exponential interpolation implies that the progression is by equal 
ratio.  In both forms the interpolation from a to b is such as to assume 
that the value b will be attained in the n + 1th location.  For 
discontinuous functions, and for the segment encompassing the end 
location, this value will not actually be reached, although it may 
eventually appear as a result of final scaling.   
 
Example:  
 
     f   1   0   256   7   0   128   1   0   -1   128   0  
 
This describes a single-cycle sawtooth whose discontinuity is mid-
way in the stored function. 
 
GEN06 
 
This subroutine will generate a function comprised of segments of  
cubic polynomials, spanning specified points just three at a time.   
 
 
     f  #   time   size   6   a   n1   b   n2   c   n3   d .  .  
.   
 
 
size - number of points in the table.  Must be a power off or power-
of-2 plus 1 (see f statement). 
 
a, c, e, ...  - local maxima or minima of successive segments, 
depending on the relation of these points to adjacent inflexions. May 
be either positive or negative. 
 
b, d, f, ...  - ordinate values of points of inflexion at the ends of 
successive curved segments.  May be positive or negative.  
 
 
n1, n2, n3...  - number of stored values between specified points.  
Cannot be negative, but a zero is meaningful for specifying 
discontinuities.  The sum n1 + n2 + ...  will normally equal size for 
fully specified functions.  (for details, see GEN05).   
 
 
 
 



 

 

25 

Note:  
 
GEN06 constructs a stored function from segments of cubic 
polynomial functions.  Segments link ordinate values in groups of 3: 
point of inflexion, maximum/minimum, point of inflexion.  The first 
complete segment encompasses b,c,d and has length n2 + n3, the 
next encompasses d,e,f and has length n4 + n5, etc.  The first 
segment (a,b with length n1) is partial with only one inflexion; the 
last segment may be partial too.  Although the inflexion points b,d,f 
...  each figure in two segments (to the left and right), the slope of the 
two segments remains independent at that common point (i.e.  the 1st 
derivative will 
likely be discontinuous).  When a,c,e...  are alternately maximum and 
minimum, the inflexion joins will be relatively smooth; for 
successive maxima or successive minima the inflexions will be 
comb-like.   
 
 
Example:  
 
      f    1    0    65    6   0   16   .5    16   1   16   0   16  -1  
 
This creates a curve running 0 to 1 to -1, with a minimum, maximum 
and minimum at these values respectively.  Inflexions are at  .5 and 
0, and are relatively smooth. 
 
GEN08 
 
This subroutine will generate a piecewise cubic spline curve, the 
smoothest possible through all specified points.   
 
 
f   #    time    size    8    a    n1    b    n2    c    n3  d  .  .  .   
 
 
size - number of points in the table.  Must be a power of 2 or 
power-of-2 plus 1 (see f statement).   
 
a, b, c ... - ordinate values of the function.   
 
n1, n2, n3  ... - length of each segment measured in stored 
values.  May not be zero, but may be fractional.  A particular 
segment may or may not actually store any values; stored values 
will be generated at integral points from the beginning of the 
function.  The sum n1 + n2 + ... will normally equal size for 
fully specified functions.   
 
Note:  
 
GEN08 constructs a stored table from segments of cubic polynomial 
functions.  Each segment runs between two specified points but 
depends as well on their neighbors on each side.  Neighboring 
segments will agree in both value and slope at their common point.  
(The common slope is that of a parabola through that point and its 
two neighbors).  The slope at the two ends of the function is 
constrained to be zero (flat).   
 
Hint:  to make a discontinuity in slope or value in the function as 
stored, arrange a series of points in the interval between two stored 
values; likewise for a non-zero boundary slope. 
 
 
Examples:  
 
 f    1    0    65    8    0    16    0    16    1    16    0  16    0  
 
This example creates a curve with a smooth hump in the middle, 
going briefly negative outside the hump then flat at its ends. 
 
 
f   2   0   65   8   0   16   0  .1   0   15.9  1   15.9   0   .1   0   16   0  
 
This example is similar, but does not go negative.   
 
 
 
 

GEN09, GEN10, GEN19  
 
These subroutines generate composite waveforms made up of 
weighted sums of simple sinusoids.  The specification of each 
contributing partial requires 3 pfields using GEN09, 1 using GEN10, 
and 4 using GEN19. 
 
 
f   #    time  size    9  pna     stra    phsa   pnb   strb  phsb  .  .  .   
f   #    time  size  10  str1     str2   str3    str4  .  .  .  .   
f   #    time  size  19  pna     stra    phsa  dcoa  pnb  strb  phsb  cob .  .  
.   
 
 
size - number of points in the table.  Must be a power of 2 or power-
of-2 plus 1 (see f statement).   
 
pna, pnb, etc.  - partial no.  (relative to a fundamental that would 
occupy size locations per cycle) of sinusoid a, sinusoid b, etc.  Must 
be positive, but need not be a whole number, i.e., non-harmonic 
partials are permitted.  Partials may be in any order.   
 
stra, strb, etc.  - strength of partials pna, pnb, etc.  These are relative 
strengths, since the composite waveform may be rescaled later.  
Negative values are permitted and imply a 180 degree phase shift.   
 
phsa, phsb, etc.  - initial phase of partials pna, pnb, etc., expressed in 
degrees. 
 
dcoa, dcob,  etc.  - DC offset of partials pna, pnb, etc.  This 
is applied after strength scaling, i.e. a value of 2 will lift a 
2-strength sinusoid from range [-2,2] to range [0,4]  (before 
later rescaling). 
 
str1, str2, str3, etc.  - relative strengths of the fixed harmonic partial 
numbers 1,2,3, etc., beginning in p5.  Partials not required should be 
given a strength of zero. 
 
Note:  
 
These subroutines generate stored functions as sums of sinusoids of 
different frequencies.  The two major restrictions on GEN10Ñthat the 
partials be harmonic and in phaseÑdo not apply to GEN09 or 
GEN19.   
 
In each case the composite wave, once drawn, is then rescaled to 
unity if p4 was positive.  A negative p4 will cause rescaling to be 
skipped.   
 
Examples:  
 
f    1    0    1024      9    1    3      0    3    1    0   9   .3333    180  
f    2    0    1024    19    .5   1  270    1 
 
f 1 combines partials l, 3 and 9 in the relative strengths in which they 
are found in a square wave, except that partial 9 is upside down.   f 2 
creates a rising sigmoid [0 - 2].   Both will be rescaled. 
 
GEN11 
 
This subroutine generates an additive set of cosine partials, in the 
manner of Csound generators buzz and gbuzz. 
 
 
     f    #    time    size    11    nh    lh    r  
 
 
size - number of points in the table.  Must be a power of 2 or power-
of-2 plus 1 (see f statement). 
 
nh - number of harmonics requested.  Must be positive. 
 
lh (optional) - lowest harmonic partial present.  Can be positive, zero 
or negative.  The set of partials can begin at any partial number and 
proceeds upwards; if lh is negative, all partials below zero will reflect 
in zero to produce positive partials without phase change (since 



 

 

26 

cosine is an even function), and will add constructively to any 
positive partials in the set. The default value is 1.   
 
r (optional) - multiplier in an amplitude coefficient series. This is a 
power series: if the lhth partial has a strength coefficient of A the (lh 
+ n)th partial will have a coefficient of A * r**n, i.e.  strength values 
trace an exponential curve.  r may be positive, zero or negative, and 
is not restricted to integers.  The default value is 1.   
 
 
Note:  
 
This subroutine is a non-time-varying version of the csound buzz and 
gbuzz generators, and is similarly useful as a complex sound source 
in subtractive synthesis.  With lh and r present it parallels gbuzz; 
with both absent or equal to 1 it reduces to the simpler buzz (i.e. nh 
equal-strength harmonic partials beginning with the fundamental).   
 
Sampling the stored waveform with an oscillator is more efficient 
than using dynamic buzz units.  However, the spectral content is 
invariant, and care is necessary lest the higher partials exceed the 
Nyquist during sampling to produce foldover. 
 
 
Examples:  
 
     f  1    0    2049   11    4  
     f  2    0    2049   11    4    1    1  
     f  3    0    2049  -11    7    3   .5  
 
The first two tables will contain identical band-limited pulse waves 
of four equal-strength harmonic partials beginning with the 
fundamental.  The third table will sum seven consecutive harmonics, 
beginning with the third, and at progressively weaker strengths (1, .5, 
.25, .125 .  .  .).  It will not be post-normalized.   
 
GEN12  
 
This generates the log of a modified Bessel function of the second 
kind, order 0, suitable for use in amplitude-modulated FM.  
 
 
     f    #    time    size    -12    xint  
 
 
size - number of points in the table.  Must be a power of 2 or a 
power-of-2 plus 1 (see f statement).  The normal value is power-of-2 
plus 1.   
 
xint - specifies the x interval [0 to +int] over which the function is 
defined. 
Note:  
 
This subroutine draws the natural log of a modified Bessel function 
of the second kind, order 0 (commonly written as I subscript 0), over 
the x-interval requested.  The call should have rescaling inhibited.   
 
The function is useful as an amplitude scaling factor in cycle-
synchronous amplitude-modulated FM.  (See Palamin & Palamin, J. 
Audio Eng. Soc., 36/9, Sept. 1988, pp.671-684.) The algorithm is 
interesting because it permits the normally symmetric FM spectrum 
to be made asymmetric around a frequency other than the carrier, and 
is thereby useful for formant positioning.  By using a table lookup 
index of I(r - 1/r), where I is the FM modulation index and r is an 
exponential parameter affecting partial strengths, the Palamin 
algorithm becomes relatively efficient, requiring only oscil’s, table 
lookups, and a single exp call.   
 
 
Example:  
 
     f    1    0    2049    -12    20  
 
This draws an unscaled ln(I0(x)) from 0 to 20.   
 
GEN13, GEN14  
 

These subroutines use Chebyshev coefficients to generate stored 
polynomial functions which, under waveshaping, can be used to split 
a sinusoid into harmonic partials having a predefinable spectrum.   
 
 
     f    #    time    size    13    xint    xamp    h0    h1   h2  .  .  .  hn  
     f    #    time    size    14    xint    xamp    h0    h1   h2  .  .  .  hn  
 
 
size - number of points in the table.  Must be a power of 2 or a 
power-of-2 plus 1 (see f statement).  The normal value is power-of-2 
plus 1.   
 
xint - provides the left and right values [-xint,  +xint] of the x interval 
over which the polynomial is to be drawn.  These subroutines both 
call GEN03 to draw their functions; the p5 value here is therefor 
expanded to a negative-positive p5,p6 pair before GEN03 is actually 
called.  The normal value is 1. 
 
xamp - amplitude scaling factor of the sinusoid input that is expected 
to produce the following spectrum. 
 
h0, h1, h2, ....  hn - relative strength of partials 0 (DC), 1 
(fundamental), 2 ...  that will result when a sinusoid of amplitude 
xamp * int(size/2)/xint is waveshaped using this function table.  
These values thus describe a frequency spectrum associated with a 
particular factor xamp of the input signal. 
 
 
Note:  
 
GEN13 is the function generator normally employed in standard 
waveshaping.  It stores a polynomial whose coefficients derive from 
the Chebyshev polynomials of the first kind, so that a driving 
sinusoid of strength xamp will exhibit the specified spectrum at 
output.  Note that the evolution of this spectrum is generally not 
linear with varying xamp.  However, it is bandlimited (the only 
partials to appear will be those specified at generation time); and the 
partials will tend to occur and to develop in ascending order (the 
lower partials dominating at low xamp, and the spectral richness 
increasing for higher values of xamp).  A negative hn value implies a 
180 degree phase shift of that partial; the requested full-amplitude 
spectrum will not be affected by this shift, although the evolution of 
several of its component partials may be.  The pattern +,+,-,-,+,+,...  
for h0,h1,h2...  will minimize the normalization problem for low 
xamp values (see above), but does not necessarily provide the 
smoothest pattern of evolution.   
 
GEN14 stores a polynomial whose coefficients derive from 
Chebyshevs of the second kind.   
 
Example:  
 
     f    1    0   1025    13    1   1    0    5    0    3    0   1  
 
This creates a function which, under waveshaping, will split a 
sinusoid into 3 odd-harmonic partials of relative strength 5:3:1.  
 
 
GEN15 
 
This subroutine creates two tables of stored polynomial functions, 
suitable for use in phase quadrature operations. 
 
 
f    #    time  size   15   xint    xamp  h0  phs0   h1  phs1  h2  phs2  .  .  
.   
 
 
size - number of points in the table.  Must be a power of 2 or a 
power-of-2 plus 1 (see f statement).  The normal value is power-of-2 
plus 1.   
 
xint - provides the left and right values [-xint,  +xint] of the x interval 
over which the polynomial is to be drawn.  This subroutine will 
eventually call GEN03 to draw both functions; this p5 value is 



 

 

27 

therefor expanded to a negative-positive p5, p6 pair before GEN03 is 
actually called.  The normal value is 1. 
 
xamp - amplitude scaling factor of the sinusoid input that is expected 
to produce the following spectrum.   
 
h0, h1, h2, ... hn - relative strength of partials 0 (DC), 1 
(fundamental), 2 ...  that will result when a sinusoid of amplitude 
xamp * int(size/2)/xint is waveshaped using this function table.  
These values thus describe a frequency spectrum associated with a 
particular factor xamp of the input signal. 
 
phs0, phs1, ...  - phase in degrees of desired harmonics h0, h1, ...  
when the two functions of GEN15 are used with phase quadrature.   
 
 
Note:  
 
GEN15 creates two tables of equal size, labelled f # and f # + 1. 
Table # will contain a Chebyshev function of the first kind, drawn 
using GEN03 with partial strengths h0cos(phs0), h1cos(phs1), ...  
Table #+1 will contain a Chebyshev function of the 2nd kind by 
calling GEN14 with partials h1sin(phs1), h2sin(phs2),...  (note the 
harmonic displacement).  The two tables can be used in conjunction 
in a waveshaping network that exploits phase quadrature.   
 
 
GEN17 
 
This subroutine creates a step function from given x -y pairs. 
 
 
     f    #    time    size    17    x1  a  x2  b  x3  c  .  .  .  
 
 
 
size - number of points in the table.  Must be a power of 2 or a 
power-of-2 plus 1 (see f statement).  The normal value is power-of-2 
plus 1. 
 
x1, x2, x3, etc. - x-ordinate values, in ascending order, 0 first. 
 
a, b, c, etc. - y-values at those x-ordinates, held until the next x-
ordinate. 
 
 
This subroutine creates a step function of x-y pairs whose y-values 
are held to the right.  The right-most y-value is then held to the end 
of the table.  The function is useful for mapping one set of data 
values onto another, such as MIDI note numbers onto sampled sound 
ftable numbers  (see loscil). 
Example: 
 
 f  1  0  128  -17   0  1   12  2   24  3   36  4   48  5  60  6   72  7   84  8 
 
This describes a step function with 8 successively increasing levels, 
each 12 locations wide except the last which extends its value to the 
end of the table.  Rescaling is inhibited.  Indexing into this table with 
a MIDI note-number would retrieve a different value every octave up 
to the eighth, above which the value returned would remain the same. 
 

 
5.  SCOT:  A Score Translator 
 
Scot is a language for describing scores in a fashion that parallels 
traditional music notation.  Scot is also the name of a program which 
translates scores written in this language into standard numeric score 
format so that the score can be performed by Csound.  The result of 
this translation is placed in a file called score.  A score file written in 
Scot (named file.sc, say) can be sent through the translator by the 
command 
 
     scot  file.sc 
 
The resulting numeric score can then be examined for errors, edited, 
or performed by typing 
 

     csound  file.orc  score 
 
Alternatively, the command 
 
     csound  file.orc  -S file.sc 
 
would combine both processes by informing Csound of the initial 
score format. 
 
Internally, a Scot score has at least three parts:  a section to define 
instrument names, a section to define functions, and one or more 
actual score sections.  It is generally advisable to keep score sections 
short to facilitate finding errors.  The overall layout of a Scot score 
has three main sections: 
 
     orchestra { .... } 
     functions { .... } 
     score { .... } 
 
The last two sections may be repeated as many times as desired.  
The functions section is also optional.  Throughout this Scot 
document, bear in mind that you are free to break up each of these 
divisions into as many lines as seem convenient, or to place a 
carriage return anywhere you are allowed to insert a space, including 
before and after the curly brackets. Furthermore, you may use as 
many spaces or tabs as you need to make the score easy to read.  Scot 
imposes no formatting restrictions except that numbers, instrument 
names, and keywords (for example, orchestra) may not be broken 
with spaces.  You may insert comments (such as measure numbers) 
anywhere in the score by preceding them with a semicolon.  A 
semicolon causes Scot to ignore the rest of a line. 
 
Orchestra Declaration Section 
 
The orchestra section of a Scot score serves to designate instrument 
names for use within the score.  This is a matter of convenience, 
since an orchestra knows instruments only by numbers, not names.  
If you declare three instruments, such as: 
 
     orchestra { flute=1 cello=2 trumpet=3 } 
 
Csound will neither know nor care what you have named the note 
lists.  However, when you use the name $flute, Scot will know you 
are referring to instr 1 in the orchestra, $cello will refer to instr 2, and 
$trumpet will be instr 3.  You may meaningfully skip numbers or 
give several instruments the same number.  It is up to you to make 
sure that your orchestra has the correct instruments and that the 
association between these names and the instruments is what you 
intend.  There is no limit (or a very high one, at least) as to how 
many instruments you can declare. 
 
 
Function Declaration Section 
 
The major purpose of this division is to allow you to declare function 
tables for waveforms, envelopes, etc.  These functions are declared 
exactly as specified for Csound.  In fact, everything you type 
between the brackets in this section will be passed directly to the 
resulting numeric score with no modification, so that mistakes will 
not be caught by the Scot program, but rather by the subsequent 
performance.  You can use this section to write notes for instruments 
for which traditional pitch-rhythm notation is inappropriate.  The 
most common example would be turning on a reverb instrument.  
Instruments referenced in this way need not appear in the Scot 
orchestra declaration. 
Here is a possible function declaration: 
 
     functions { 
     f1 0 256 10 1 0 .5 0 .3 
     f2 0 256 7 0 64 1 64 .7 64 0  
     i9 0 -1 3           ; this turns on instr 9 
     } 
 
Score Section 
 
The Scot statements contained inside the braces of each score 
statement is translated into a numeric score Section (q.v.).  It is wise 



 

 

28 

to keep score sections small, say seven or eight measures of five 
voices at a time.  This avoids overloading the system, and simplifies 
error checking. 
 
The beginning of the score section is specified by typing: 
 
     score { 
 
Everything which follows until the braces are closed is within a 
single section.  Within this section you write measures of notes in 
traditional pitch and rhythm notation for any of the instrument names 
listed in your orchestra declaration. These notes may carry additional 
information such as slurs, ties and parameter fields.  Let us now 
consider the format for notes entered in a Scot score. 
 
The first thing to do is name the instrument you want and the desired 
meter.  For example, to write some 4/4 measures for the cello, type: 
 
     $cello 
     !ti “4/4” 
 
The dollar sign and exclamation point tell Scot that a special 
declarator follows. The time signature declarator is optional; if  
resent, Scot will check the number of beats in each measure for you. 
 
Pitch and Rhythm 
 
The two basic components of a note statement are the pitch and 
duration.  Pitch is specified using the alphabetic note name, and 
duration is specified using numeric characters.  Duration is indicated 
at the beginning of the note as a number representing the division of 
a whole beat.  You may always find the number specifying a given 
duration by thinking of how many times that duration would fit in a 
4/4 measure.  Also, if the duration is followed by a dot (`.’) it is 
increased by 50%, exactly as in traditional notation.  Some sample 
durations are listed below: 
 
     whole note                    1 
     half note                        2 
     double dotted quarter    4.. 
     dotted quarter note        4. 
     quarter note                   4 
     half note triplet             6 
     eighth note                    8 
     eighth note triplet         12 
     sixteenth note               16 
     thirty-second note        32 
 
Pitch is indicated next by first (optionally) specifying the register and 
then the note name, followed by an accidental if desired.  Normally, 
the “octave following” feature is in effect. This feature causes any 
note named to lie within the interval of an augmented fourth of the 
previous note, unless a new register is chosen.  The first note you 
write will always be within a fourth of middle c unless you choose a 
different register. 
 
For example, if the first note of an instrument part is notated g flat, 
the scot program assigns the pitch corresponding to the g flat below 
middle c.  On the other hand, if the first note is f sharp, the pitch 
assigned will be the f sharp above middle c. 
Changes of register are indicated by a preceding apostrophe for each 
octave displacement upward or a preceding comma for each octave 
displacement downward.  Commas and apostrophes always displace 
the pitch by the desired number of octaves starting from that note 
which is within an augmented fourth of the previous pitch. 
 
If you ever get lost, prefacing the pitch specification with an `=‘ 
returns the reference to middle c.  It is usually wise to use the equals 
sign in your first note statement and whenever you feel uncertain as 
to what the current registration is.  Let us now write two measures for 
the cello part, the first starting in the octave below middle c and the 
second repeating but starting in the octave above middle c: 
 
     $cello 
     !ti “4/4” 
     4=g 4e 4d 4c/ 4=‘g 4e 4d 4c 
 

As you can see, a slash indicates a new measure and we have chosen 
to use the dummy middle c to indicate the new register.  A more 
convenient way of notating these two measures would be to type the 
following: 
 
     $cello 
     !ti “4/4” 
     4=g e d c/ ‘‘g e d c 
 
You may observe in this example that the quarter note duration 
carries to the following notes when the following durations are left 
unspecified.  Also, two apostrophes indicate an upward pitch 
displacement of two octaves from two g’s below middle c, where the 
pitch would have fallen without any modification.  It is important to 
remember three things, then, when specifying pitches: 
 
1)  Note pitches specified by letter name only (with or without 
accidental) will always fall within an interval of a fourth from the 
preceding pitch. 
 
2)  These pitches can be octave displaced upward or downward by 
preceding the note letter with the desired number of apostrophes or 
commas. 
 
3)  If you are unsure of the current register, you may begin the pitch 
component of the note with an equals sign which acts as a dummy 
middle c. 
 
The pitch may be modified by an accidental after the note name: 
 
     n                   natural 
     #                   sharp 
     -  (hyphen)    flat 
     ##                 double sharp 
     -- (double hyphen)  double flat 
 
Accidentals are carried throughout the measure just as in traditional 
music notation.  However, an accidental specified within a measure 
will hold for that note in all registers, in contrast with traditional 
notation.  Therefore, make sure to specify n when you no longer want 
an accidental applied to that pitch-class. 
 
Pitches entered in the Scot score are translated into the appropriate 
octave point pitch-class value and appear as parameter p5 in the 
numeric score output.  This means you must design your instruments 
to accept p5 as pitch. 
 
Rests are notated just like notes but using the letter r instead of a 
pitch name.  4r therefore indicates a quarter rest and 1r a whole rest.  
Durations carry from rest to rest or to following pitches as mentioned 
above. 
 
The tempo in beats per minute is specified in each section by 
choosing a single instrument part and using tempo statements (e.g. 
t90) at the various points in the score as needed.  A quarter note is 
interpreted as a single beat, and tempi are interpolated between the 
intervening beats (see score t statement). 
 
 
Scot Example I 
 
 
_ 
 
A Scot encoding of this score might appear as follows: 
  
     ; A BASIC Tune 
     orchestra { guitar=1 bass=2 } 
     functions  { 
     f1 0 512 10 1 .5 .25 .126 
     f2 0 256  7 1 120 1 8 0 128 1  
     } 
     score     {  ;section 1 
     $guitar 
     !ti “4/4” 
     4=c 8d e- f r 4=‘c/ 
     8.b- 16a a- g  g- f  4e- c/ 



 

 

29 

     $bass 
     2=,,c ‘a-/ 
     g  =,c/ 
     } 
     score     {  ;section 2 
     $guitar 
     !ti “4/4” 
     6=‘c r c 4..c## 16e- / 
     6f r f 4..f## 16b / 
     $bass 
     4=,,c ‘g, c ‘g/ 
     2=a-  g / 
     } 
 
The score resulting from this Scot notation is shown at the end of this 
chapter. 
 
Groupettes 
 
Duration numbers can have any integral value; for instance, 
 
     !time “4/4” 
     5cdefg/ 
 
would encode a measure of 5 in the time of 4 quarter notes.  
However, specification of arbitrary rhythmic groupings in this way is 
at best awkward.  Instead, arbitrary portions of the score section may 
be enclosed in groupette brackets.  The durations of all notes inside 
groupette brackets will be multiplied by a fraction n/d, where the 
musical meaning is d in the time of n. 
Assuming d and n here are integers, groupette brackets may take 
these several forms: 
 
     {d:n:     ....      :}   d in the time of n 
     {d:: ....      :}         n will be the largest power of 2 less than d  
     {:   ....      :}          d=3, n=2 (normal triplets) 
 
It can be seen that the second and third form are abbreviations for the 
more common kinds of groupettes.  (Observe the punctuation of each 
form carefully.)  Groupettes may be nested to a reasonable depth.  
Also, groupette factors apply only after the written duration is carried 
from note to note.  Thus, the following example is a correct 
specification for two measures of 6/8 time: 
 
     !time “6/8” 8cde {4:3: fgab :} / crc 4.c / 
 
The notes inside the groupette are 4 in the space of 3 8th notes, and 
the written-8th-note duration carries normally into the next measure.  
This closely parallels the way groupette brackets and note durations 
interact in standard notation. 
 
 
Slurs and Ties 
 
Now that you understand part writing in the Scot language, we can 
start discussing more elaborate features.  Immediately following the 
pitch specification of each note, one may indicate a slur or a tie into 
the next note (assuming there is one), but not both simultaneously.  
The slur is typed as a single underscore (`_’) and a tie as a double 
underscore (`__’).  Despite the surface similarity, there is a 
substantial difference in the effect of these modifiers. 
 
For purposes of Scot, tied notes are notes which, although comprised 
of several graphic symbols, represent only a single musical event.  
(Tied notes are necessary in standard music notation for several 
reasons, the most common being notes which span a measure line 
and notes with durations not specifiable with a single symbol, such as 
quarter note tied to a sixteenth). Notes which are tied together are 
summed by duration and output by Scot as a single event.  This 
means you cannot, for example, change the parameters of a note in 
the middle of a tie (see below).  Two or more notes may be tied 
together, as in the following example, which plays an f# for eleven 
beats: 
 
     !ti “4/4” 
     1 f#__ / 1 f#__ / 2. f# 4r / 
 

By contrast, slurred notes are treated as distinct notes at the Csound 
level, and may be of arbitrary pitch.  The presence of a slur is 
reflected in parameter p4, but the slur has no other meaning beyond 
the interpretation of p4 by your instrument.  
Since instrument design is beyond the scope of this manual, it will 
suffice for now to explain that the Scot program gives sets p4 to one 
of four values depending on the existence of a slur before and after 
the note in question.  This means Scot pays attention not only to the 
slur attached to a given note, but whether the preceding note 
specified a slur.  The four possibilities are as follows, where the p4 
values are taken to apply to the note `d’: 
 
     4c  d         (no slur)                 p4 = 0 
     4c  d_       (slur after only)      p4 = 1 
     4c_ d        (slur before only)   p4 = 2 
     4c_ d_      (before & after)     p4 = 3 
 
Parameters 
 
The information contained in the Scot score notation we have 
considered so far is manifested in the output score in parameters p1 
through p5 in the following way: 
 
     p1:  instrument number 
     p2:  initialization time of instrument 
     p3:  duration 
     p4:  slur information 
     p5:  pitch information in octave point pitch-class notation 
 
Any additional parameters you may want to enter are listed in 
brackets as the last part of a note specification.  These parameters 
start with p6 and are separated from each other with spaces.  Any 
parameters not specified for a particular note have their value carried 
from the most recently specified value. You may choose to change 
some parameters and not others, in which case you can type a dot 
(`.’) for parameters whose values don’t change, and new values for 
those that do.  Alternatively, the construction N:, where N is an 
integer, may be used to indicate that the following parameter 
specifications apply to successive parameters starting with parameter 
N.  For example: 
 
     4e[15000 3 4 12:100 150] g_ d_[10000 . 5]    c 
 
Here, for the first two quarter notes p6, p7, p8, p12, and p13 
respectively assume the values 15000, 3, 4, 100, and 150.  The values 
of p9 through p11 are either unchanged, or implicitly zero if they 
have never been specified in the current section.  On the third quarter 
note, the value of p6 is changed to 10000, and the value of p8 is 
changed to 5.  All others are unchanged. 
 
Normally, parameter values are treated as globalsÑthat is, a value 
specification will carry to successive notes if no new value is 
specified.  However, if a parameter specification begins with an 
apostrophe, the value applies locally to the current note only, and 
will not carry to successive notes either horizontally or vertically (see 
divisi below). 
 
 
 
 
Pfield Macros 
 
Scot has a macro text substitution facility which operates only on the 
pfield specification text within brackets.  It allows control values to 
be specified symbolically rather than numerically.  Macro definitions 
appear inside brackets in the orchestra section.  A single bracketed 
list of macro definitions preceding the first instrument declaration 
defines macros which apply to all instruments.  An additional 
bracketed list of 
definitions may follow each instrument to specify macros that apply 
to that particular instrument. 
 
     orchestra { 
          [ pp=2000 p=4000 mp=7000 mf=10000 f=20000 ff=30000  
            modi = 11: w = 1 x = 2 y = 3 z = 4 
            vib = “10:1 “ novib = “10:0 1” 
          ] 



 

 

30 

     violin = 1     [ pizz = “ 20:1” arco = “ 20:0” ] 
     serpent = 3    [ ff = 25000 sfz = ‘f sffz = ‘ff]  
     } 
     score { 
      $violin = 4c[mf modi z.y novib] d e a[‘f vib3] / 
               8 b[pizz]c 4d[f] 2c[ff arco] / 
      $serpent =, 4.c[mp modi y.x] 8b 2c / 
               ‘g[f ], c[ff] / 
     } 
 
As can be seen from this example, a macro definition consists of the 
macro name, which is a string of alphabetic characters, followed by 
an equal sign, followed by the macro value.  As usual, spaces, tabs, 
and newlines may be used freely.  The macro value may contain 
arbitrary characters, and may be quoted if spacing characters need to 
be included. 
 
When a macro name is encountered in bracketed pfield lists in a 
score section, that name is replaced with the macro text with no 
additional punctuation supplied.  The macro text may itself invoke 
other macros, although it is a serious error for a macro to contain 
itself, directly or indirectly.  Since macro names are identified as 
strings of alphabetic characters, and no additional spaces are 
provided when a macro is expanded, macros may easily perform 
such concatenations as found in the first serpent note above, where 
the integer and fractional parts of a single pfield are constructed.  
Also, a macro may do no more than define a symbolic pfield, as in 
the definition of modi.  The primary intention of macros is in fact not 
only to reduce the number of characters required, but also to enable 
symbolic definitions of parameter numbers and parameter values.  
For instance, a particular instrument’s interpretation of the dynamic 
ff can be changed merely by changing a macro value, rather than 
changing all occurrences of that particular value in the score. 
 
Divisi 
 
Notes may be stacked on top of each other by using a back arrow 
(`<‘) between the notes of the divisi.  Each time Scot encounters a 
back arrow, it understands that the following note is to start at the 
same time as the note to the left of the back arrow. 
Durations, accidentals and parameters carry from left to right through 
the divisi.  Each time these are given new values, the notes to the 
right of the back arrows also take on the new values unless they are 
specified again. 
 
When writing divisi you can stack compound events by enclosing 
them in parentheses.  Also, divisi which occur at the end of the 
measure must have the proper durations or the scot program will mis-
interpret the measure duration length. 
 
Scot Example II 
 
 
Scot encoding: 
 
     orchestra { right=1 left=2 } 
     functions { f1 0 256 10 1} 
     score { 
     $right !key “-b” 
     ; since p5 is pitch, p7 is set to the pitch of next note 
     !ti “2/4” 
     !next p5 “p7”  ;since p5 is pitch, p7 refers to pitch of next note 
     !next p6 “p8”  ;If p6 is vol, say, then p8 refers to vol of next note 
     t90 
     8r c[3 np5]<e<=‘g r c<f<a / t90 r d-<g<b r =c[5]<f<a__ / 
     !ti “4/4” 
     t80 
     4d_<f__<(8a g__) 4c<(8fe)<4g 4.c<f<f 8r/ 
 
     $left  !key “-b” 
     !next p5 “p7” 
     !next p6 “p8” 
     !ti “2/4” 
     8=,c[3 np5] r f r/ e r f r/ 
     !ti “4/4” 
     2b_[5]<(4=,b_c) 4.a<f 8r/ 
     } 

 
Notice in this example that tempo statements occurred in instrument 
`right’ only.  Also, all notes had p6=3 until the third measure, at 
which point p6 took on the value 5 for all notes. The next parameter 
option used is described in Additional Features.  The output score is 
given at the end. 
 
Additional Features 
 
Several options can be included in any of the individual instrument 
parts within a section.  A sample statement follows the description of 
each option.  The keyword which follows the `!’ in these statements 
may be abbreviated to the first two characters. 
 
Key Signatures 
 
Any desired key signature is specified by listing the accidentals as 
they occur in a key signature statement.  Thereafter, all notes of that 
instrument part are sharpened or flattened accordingly.  For example, 
for the key of D, type 
 
     !key “#fc” 
 
Accidental Following 
 
Accidental following may be turned on or off as needed.  When 
turned off, accidentals no longer carry throughout the measure as in 
traditional notation.  This convention is sometimes used in 
contemporary scores. 
 
     !accidentals “off” 
 
Octave Following 
 
Turning off octave following indicates that pitches stay in the same 
absolute octave register until explicitly moved. An absolute octave 
starts at pitch c and ends at the b above it.  The octave middle-c-to-b 
is indicated with an equals sign (`=‘) and octave displacement is 
indicated with the appropriate number of commas or apostrophes.  
These displacements are cummulative.  For example, 
 
     !octaves “off” 
     4=‘c g b ‘c 
 
starts at the c above middle c and ends at two c’s above middle c.  
 
Vertical Following 
 
Turning off vertical following means that durations, register, and 
parameters only carry horizontally from note to note and not 
vertically as described in the section on divisi. 
 
     !vertical “off” 
 
Transposition 
 
Any instrument part can be transposed to another key by indicating 
the intervalic difference between the notated key and the desired key.  
This difference is always taken with reference to middle c - to 
transpose a whole step upward, for example, type 
 
     !transpose “d” 
 
This indicates that the part is transposed by the interval difference 
between middle c and d. 
 
 
Next-value and Previous-value Parameteres 
 
In order to play a note, it is sometimes necessary for an instrument to 
know what value one or more parameters will have for the next note.  
For instance, an instrument might be designed which glisses during 
the last portion of its performance (perhaps only when a slur is 
indicated) from its written pitch to the pitch of the next note.  This 
can only be done, of course, if the instrument can know what the 
pitch of the next note will be. 
 



 

 

31 

The necessary information can be provided using next-value 
parameters.  A next value parameter might be declared by 
 
     !next p5 “p6” 
 
which is interpreted to mean that for the current instrument, p6 will 
contain the next note’s p5 value. This holds true globally for all 
occurences of this instrument until further modifications.  If for any 
reason you wish to override this value, p6 may be filled in explicitly.  
This is sometimes useful for the last note of a section, for which p6 
will otherwise assume the p5 value for the current note.  The next-
value feature is illustrated in the Scot example II. 
 
The necessary information may also be provided using standard 
numeric score next-value parameters.  A parameter argument 
containing the symbol npx (where x is an integer) will substitute 
parameter number x of the following note for that instrument. 
Similarly, the value of a parameter occurring during the previous 
note may be referenced with the symbol ppx (where x is an integer).  
Details of the next- and previous-value parameter feature may be 
found in the Numeric Scores section. 
 
Ramping 
 
Pfields containing the symbol < will be replaced by values derived 
from linear interpolation of a time-based ramp.  Ramp endpoints are 
defined by the first real number found in the same pfield of a 
preceding and following note played by the same instrument.  Details 
of the ramping feature are likewise found in the Numeric Scores 
section. 
 
f0 Statements 
 
In each score section, Scot automatically produces an f0 statement 
with a p2 equal to the ending time of the last note or rest in the 
section.  Thus, `dead time’ at the end of a section for reverberation 
decay or whatever purpose may be specified musically by rests in 
one or more parts.  See the eighth rest at the end of Scot example II 
and its output score shown below. 
 
 
Output Scores 
 
Output file score from Scot Example I. 
 
     f1 0 512 10 1 .5 .25 .126 
     f2 0 256  7 1 120 1 8 0 128 1  
     i1.01 0 1 0 8.00 
     i1.01 1 0.5 0 8.02 
     i1.01 1.5 0.5 0 8.03 
     i1.01 2 0.5 0 8.05 
     i1.01 3 1 0 9.00 
     i1.01 4 0.75 0 8.10 
     i1.01 4.75 0.25 0 8.09 
     i1.01 5 0.25 0 8.08 
     i1.01 5.25 0.25 0 8.07 
     i1.01 5.5 0.25 0 8.06 
     i1.01 5.75 0.25 0 8.05 
     i1.01 6 1 0 8.03 
     i1.01 7 1 0 8.00 
     i2.01 0 2 0 6.00 
     i2.01 2 2 0 6.08 
     i2.01 4 2 0 6.07 
     i2.01 6 2 0 7.00 
     t0 60 
     f0 8 
     s 
     i1.01 0 0.6667 0 9.00 
     i1.01 1.3333 0.6667 0 9.00 
     i1.01 2 1.75 0 9.02 
     i1.01 3.75 0.25 0 9.03 
     i1.01 4 0.6667 0 9.05 
     i1.01 5.3333 0.6667 0 9.05 
     i1.01 6 1.75 0 9.07 
     i1.01 7.75 0.25 0 9.09 
     i2.01 0 1 0 6.00 
     i2.01 1 1 0 6.07 

     i2.01 2 1 0 6.00 
     i2.01 3 1 0 6.07 
     i2.01 4 2 0 7.08 
     i2.01 6 2 0 7.07 
     t0 60 
     f0 8 
     s 
 
 
 
Output file score from Scot Example II. 
 
     f1 0 256 10 1 
     c r1 n 7 5 
     c r1 n 8 6 
     i1.01 0.5000 0.5000 0 8.00 3 8.00 3 
     i1.02 0.5000 0.5000 0 8.04 3 8.05 3 
     i1.03 0.5000 0.5000 0 8.07 3 8.09 3 
     i1.01 1.5000 0.5000 0 8.00 3 8.01 3 
     i1.02 1.5000 0.5000 0 8.05 3 8.07 3 
     i1.03 1.5000 0.5000 0 8.09 3 8.10 3 
     i1.01 2.5000 0.5000 0 8.01 3 8.00 5 
     i1.02 2.5000 0.5000 0 8.07 3 8.05 5 
     i1.03 2.5000 0.5000 0 8.10 3 8.09 5 
     i1.01 3.5000 0.5000 0 8.00 5 8.02 5 
     i1.02 3.5000 0.5000 0 8.05 5 8.05 5 
     i1.01 4.0000 1.0000 1 8.02 5 8.00 5 
     i1.03 3.5000 1.0000 0 8.09 5 8.07 5 
     i1.01 5.0000 1.0000 2 8.00 5 8.00 5 
     i1.02 4.0000 1.5000 0 8.05 5 8.04 5 
     i1.02 5.5000 0.5000 0 8.04 5 8.05 5 
     i1.03 4.5000 1.5000 0 8.07 5 8.05 5 
     i1.01 6.0000 1.5000 0 8.00 5 8.00 5 
     i1.02 6.0000 1.5000 0 8.05 5 8.05 5 
     i1.03 6.0000 1.5000 0 8.05 5 8.05 5 
     c r2 n 7 5 
     c r2 n 8 6 
     i2.01 0.0000 0.5000 0 7.00 3 7.05 3 
     i2.01 1.0000 0.5000 0 7.05 3 7.04 3 
     i2.01 2.0000 0.5000 0 7.04 3 7.05 3 
     i2.01 3.0000 0.5000 0 7.05 3 7.10 5 
     i2.01 4.0000 2.0000 1 7.10 5 7.09 5 
     i2.02 4.0000 1.0000 1 6.10 5 7.00 5 
     i2.02 5.0000 1.0000 2 7.00 5 7.05 5 
     i2.01 6.0000 1.5000 2 7.09 5 7.09 5 
     i2.02 6.0000 1.5000 0 7.05 5 7.05 5 
     t0 60 0.0000 90.0000 2.0000 90.0000 4.0000 80.0000 4.0000  
     90.0000 
     f0 8.0000 
     s 
     e 
 
 

6. The Unix CSOUND Command 
 
csound is a command for passing an  orchestra file and score file to 
Csound to generate a soundfile.  The score file can be in one of many 
different formats, according to user preference. 
Translation, sorting, and formatting into orchestra-readable numeric 
text is handled by various preprocessors; all or part of the score is 
then sent on to the orchestra.  Orchestra performance is influenced by 
command flags, which set the level of displays and console reports, 
specify 1/0 filenames and sample formats, and declare the nature of 
realtime sensing and control. 
 
The format of a command is:  
 
          csound [-flags] orchname scorename  
 
where the arguments are of 2 types: flag arguments (beginning with a 
“-”), and name arguments (such as filenames).  Certain flag 
arguments take a following name or numeric argument.  The 
available flags are:  
 
          -I, -n                                      sound output inhibitors  
          -iName, -oName                    sound I/O filenames  
          -bNumb, -BNumb, -h            audio buffers & header control  



 

 

32 

          -A, -c, -a, -u, -s, -1, -f           audio output formats  
          -v, -mNumb, -d, -g                message & display levels  
          -S, -xName, -tNumb              score formats & tempo control 
          -LName                                 line-oriented realtime event 
stream 
          -MName, -FName, -PNumb  MIDI event streams 
          -N, -T                                    notify or terminate when done 
 
Flags may appear anywhere in the command line, either separately or 
bundled together.  A flag taking a Name or Number will find it in 
that argument, or in the immediately subsequent one.  The following 
are thus equivalent commands: 
 
          csound  -nm3  orchname  -Sxxfilename  scorename  
          csound  -n  -m  3  orchname  -x  xfilename  -S scorename  
 
All flags and names are optional.  The default values are:  
 
 csound  -s  -otest  -b1024  -B1024  -m7  -P128  orchname  
scorename  
 
where orchname is a file containing Csound orchestra code, and 
scorename is a file of score data in standard numeric score format, 
optionally presorted and time-warped.  If scorename is omitted, there 
are two default options:  1)  if realtime input is expected (-L, -M or -
F), a dummy scorefile is substituted consisting of the single 
statement  ‘f 0 3600’  (i.e. listen for RT input for one hour);  2)  else 
csound uses the previously processed score.srt  in the current 
directory.   
 
Csound reports on the various stages of score and orchestra 
processing as it goes, doing various syntax and error checks along the 
way.  Once the actual performance has begun, any error messages 
will derive from either the instrument loader or the unit generators 
themselves.  A csound command may include any rational 
combination of the following flag arguments, with default values as 
described:  
 
 
csound -I  
I-time only.  Allocate and initialize all instruments as per the score, 
but skip all P-time processing (no k-signals or a-signals, and thus no 
amplitudes and no sound).  Provides a fast validity check of the score 
pfields and orchestra i-variables. 
 
csound -n  
Nosound.  Do all processing, but bypass writing of sound to disk. 
This flag does not change the execution in any other way. 
 
csound -i  isfname 
Input soundfile name.  If not a full pathname, the file will be ought 
first in the current directory, then in that given by the environment 
variable SSDIR (if defined), then by SFDIR.  The name stdin will 
cause audio to be read from standard input.  If RTAUDIO is enabled, 
the name devaudio will request sound from the host audio input 
device.   
 
csound -o osfname  
Output soundfile name.  If not a full pathname, the soundfile will be 
placed in the directory given by the environment variable SFDIR (if 
defined), else in the current directory.  The name stdout will cause 
audio to be written to standard output.  If no name is given, the 
default name will be test.  If RTAUDIO is enabled, the name 
devaudio will send to the host audio output device.  
 
csound -b Numb  
Number of audio sample-frames per soundio software buffer.  Large 
is efficient, but small will reduce audio I/O delay.  The default is 
1024.  In realtime performance, Csound waits on audio I/O on Numb 
boundaries.  It also processes audio (and polls for other input like 
MIDI) on orchestra ksmps boundaries.  The two can be made 
synchronous.  For convenience, if Numb = -N (is negative) the 
effective value is ksmps * N  (audio synchronous with k-period 
boundaries).  With N small  (e.g. 1) polling is then frequent and also 
locked to fixed DAC sample boundaries. 
 
csound -B Numb  

Number of audio sample-frames held in the DAC hardware buffer. 
This is a threshold on which software audio I/O (above) will wait 
before returning.  A small number reduces audio I/O delay;  but the 
value is often hardware limited, and small values will risk data lates.  
The default is 1024. 
 
csound -h  
No header on output soundfile.  Don’t write a file header, just binary 
samples. 
 
csound {-c, -a, -u, -s, -l, -f}  
Audio sample format of the output soundfile.  One of:  
     c    8-bit signed character  
     a    8-bit a-law  
     u    8-bit u-law  
     s    short integer  
     l    long integer  
     f    single-precision float (not playable, but can be read 
          by -i, soundin and GEN01)  
 
csound -A  
Write an AIFF output soundfile.  Restricts the above formats to c, s, 
or l.  
 
csound -v  
Verbose translate and run.  Prints details of orch translation and 
performance, enabling errors to be more clearly located. 
 
 
csound -m Numb  
Message level for standard (terminal) output.  Takes the sum of 3 
print control flags, turned on by the following values: 1 = note 
amplitude messages, 2 = samples out of range message, 4 = warning 
messages.  The default value is m7 (all messages on). 
 
csound -d  
Suppress all displays.   
 
csound -g  
Recast graphic displays into ascii characters, suitable for any 
terminal.   
 
csound -S  
Interpret scorename as a Scot file and create a standard score file 
(named “score”) from it, then sort and perform that. 
 
csound -x xfile  
Extract a portion of the sorted score score.srt, according to xfile (see 
extract below). 
 
csound -t Numb 
Use the uninterpreted beats of score.srt for this performance, and set 
the initial tempo at Numb beats per minute.  When this flag is set, the 
tempo of score performance is also controllable from within the 
orchestra (see the tempo unit). 
 
csound -L devname  
Read Line-oriented realtime score events from device devname. The 
name stdin will permit score events to be typed at your terminal, or 
piped from another process.  Each line-event is terminated by a 
carriage-return.  Events are coded just like those in a standard 
numeric score, except that an event with p2=0 will be performed 
immediately, and an event with p2=T will be performed T seconds 
after arrival.  Events can arrive at any time, and in any order.  The 
score carry feature is legal here, as are held notes (p3 negative) and 
string arguments, but ramps and pp or np references are not. 
 
csound -M devname  
Read MIDI events from device devname. 
 
csound -F mfname  
Read MIDI events from midifile mfname. 
 
csound -P Numb  
Set MIDI sustain pedal threshold (0 - 128).  The official switch value 
of 64 is normally too low, and is more realistic above 100.  
The default value of 128 will block all pedal info. 



 

 

33 

 
csound -N  
Notify (ring the bell) when score or miditrack is done. 
 
csound -T  
Terminate the performance when miditrack is done. 
 
 
 
The EXTRACT feature 
  
This feature will extract a segment of a sorted numeric score file 
according to instructions taken from a control file.  The control file 
contains an instrument list and two time points, from and to, in the 
form:  
 
          instruments 1  2  from  1:27.5  to  2:2  
 
The component labels may be abbreviated as i, f and t.  The time 
points denote the beginning and end of the extract in terms of:  
 
          [section no.] : [beat no.].   
 
each of the three parts is also optional.  The default values for 
missing i, f or t are:  
 
          all instruments, beginning of score, end of score.  
 
extract reads an orchestra-readable score file and produces an 
orchestra-readable result.  Comments, tabs and extra spaces are 
flushed, w and a statements are added and an f0 reflecting the extract 
length is appended to the output.  Following an extract process, the 
abbreviated score will contain all function table statements, together 
with just those note statements that occur in the from-to interval 
specified.  Notes lying completely in the interval will be unmodified; 
notes that lie only partly within will have their p3 durations truncated 
as necessary. 
 
 
Independent Preprocessing 
  
Although the result of all score preprocessing is retained in the file 
score.srt after orchestra performance (it exists as soon as score 
preprocessing has completed), the user may sometimes want to run 
these phases independently.  The command  
 
          scot filename  
 
will process the Scot formatted filename, and leave a standard 
numeric score result in a file named score for perusal or later 
processing. 
 
The command  
          scscort < infile > outfile  
 
will put a numeric score infile through Carry, Tempo, and Sort 
preprocessing, leaving the result in outfile.   
 
Likewise extract, also normally invoked as part of the csound 
command, can be invoked as a standalone program:  
 
          extract xfile < score.sort > score.extract  
This command expects an already sorted score.  An unsorted score 
should first be sent through scsort then piped to the extract 
program:  
 
          scsort < scorefile | extract xfile > score.extract  
 
 

Appendix 1: The Soundfile Utility Programs 
 
 
The Csound Utilities are soundfile preprocessing programs that 
return information on a soundfile or create some analyzed version of 
it for use by certain Csound generators.  Though different in goals, 
they share a common soundfile access mechanism and are 

describable as a set.  The Soundfile Utility programs can be invoked 
in two equivalent forms: 
 
          csound -U utilname  [flags]  filenames  . . . 
          utilname  [flags]  filenames  . . . 
 
In the first, the utility is invoked as part of the Csound executable, 
while in the second it is called as a standalone program.  The second 
is smaller by about 200K, but the two forms are identical in function. 
The first is convenient in not requiring the maintenance and use of 
several independent programsÑone program does all.  When using 
this form, a -U flag detected in the command line will cause all 
subsequent flags and names to be interpreted as per the named utility;  
i.e. Csound 
generation will not occur, and the program will terminate at the end 
of utility processing. 
 
Directories.  Filenames are of two kinds, source soundfiles and 
resultant analysis files.  Each has a hierarchical naming convention, 
influenced by the directory from which the Utility is invoked.  
Source soundfiles with a full pathname (begins with dot (.), slash (/), 
or for ThinkC includes a colon (:)), will be sought only in the 
directory named.  Soundfiles without a path will be sought first in the 
current directory, then in the directory named by the SSDIR 
environment variable (if defined), then in the directory named by 
SFDIR.  An unsuccessful search will return a “cannot open” error. 
 
Resultant analysis files are written into the current directory, or to the 
named directory if a path is included.  It is tidy to keep analysis files 
separate from sound files, usually in a separate directory known to 
the SADIR variable.  Analysis is conveniently run from within the 
SADIR directory.  When an analysis file is later invoked by a 
Csound generator (adsyn, lpread, pvoc) it is sought first in the current 
directory, then in the directory defined by SADIR. 
Soundfile Formats.  Csound can read and write audio files in a 
variety of formats.  Write formats are described by Csound command 
flags.  On reading, the format is determined from the soundfile 
header, and the data automatically converted to floating-point during 
internal processing.  When Csound is installed on a host with local 
soundfile conventions (SUN, NeXT, Macintosh) it may conditionally 
include local packaging code which creates soundfiles not portable to 
other hosts.  However, Csound on any host can always generate and 
read AIFF files, which is thus a portable format.  Sampled sound 
libraries are typically AIFF, and the variable SSDIR usually points to 
a directory of such sounds.  If defined, the SSDIR directory is in the 
search path during soundfile access.  Note that some AIFF sampled 
sounds have an audio looping feature for sustained performance;  the 
analysis programs will traverse any loop segment once only. 
 
For soundfiles without headers, an SR value may be supplied by a 
command flag (or its default).  If both header and flag are present, the 
flag value will over-ride.   
 
When sound is accessed by the audio Analysis programs (below), 
only a single channel is read.  For stereo or quad files, the default is 
channel one;  alternate channels may be obtained on request. 
 
 
SNDINFO -  get basic information about one or more soundfiles. 
 
 
csound -U sndinfo  soundfilenames  . . .  
or    
sndinfo   soundfilenames  . . . 
 
sndinfo will attempt to find each named file, open it for reading, read 
in the soundfile header, then print a report on the basic information it 
finds.  The order of search across soundfile directories is as described 
above.  If the file is of type AIFF, some further details are listed first.  
 
EXAMPLE 
 
csound -U sndinfo  test  Bosendorfer/”BOSEN mf A0 st”  foo foo2 
 
where the environment variables SFDIR = /u/bv/sound, and SSDIR = 
/so/bv/Samples, might produce the following: 
 



 

 

34 

     util  SNDINFO: 
      
     /u/bv/sound/test: 
          srate 22050, monaural, 16 bit shorts, 1.10 seconds 
          headersiz 1024, datasiz 48500  (24250 sample frames)  
 
/so/bv/Samples/Bosendorfer/BOSEN mf A0 st:  AIFF, 197586 stereo  
samples, base Frq 261.6 (midi 60), sustnLp: mode 1, 121642 to 
197454, relesLp: mode 0 
     AIFF soundfile, looping with modes 1, 0 
     srate 44100, stereo, 16 bit shorts, 4.48 seconds  
     headersiz  402, datasiz 790344  (197586 sample frames)  
 
     /u/bv/sound/foo: 
          no recognizable soundfile header 
 
     /u/bv/sound/foo2: 
          couldn’t find 
 
HETRO -  hetrodyne filter analysis for the Csound adsyn generator. 
 
     csound -U hetro  [flags]  infilename  outfilename 
or   hetro  [flags]  infilename  outfilename 
 
hetro takes an input soundfile, decomposes it into component 
sinusoids, and outputs a description of the components in the form of 
breakpoint amplitude and frequency tracks.  Analysis is conditioned 
by the control flags below.  A space is optional between flag and 
value. 
-s<srate> sampling rate of the audio input file.  This will over-ride 
the srate of the soundfile header, which otherwise applies.   If neither 
is present, the default is 10000.  Note that for adsyn synthesis the 
srate of the source file and the generating orchestra need not be the 
same. 
 
-c<channel>    channel number sought.  The default is 1. 
 
-b<begin> beginning time (in seconds) of the audio segment to be 
analyzed.  The default is 0.0 
 
-d<duration>   duration (in seconds) of the audio segment to be 
analyzed.  The default of 0.0 means to the end of the file.  
Maximum length is 32.766 seconds. 
 
-f<begfreq>    estimated starting frequency of the fundamental, 
necessary to initialize the filter analysis.  The default is 100 
(cps). 
 
-h<partials>   number of harmonic partials sought in the audio file.  
Default is 10, maximum 50. 
 
-M<maxamp> maximum amplitude summed across all concurrent 
tracks.  
The default is 32767. 
 
-m<minamp>     amplitude threshold below which a single pair of 
amplitude/frequency tracks is considered dormant and will not 
contribute to output summation.  Typical values:  128 (48 db down 
from full scale), 64 (54 db down), 32 (60 db down), 0 (no 
thresholding).  The default threshold is 64 (54 db down). 
 
-n<brkpts>     initial number of analysis breakpoints in each 
amplitude and frequency track, prior to thresholding (-m) and linear 
breakpoint consolidation.  The initial points are spread evenly over 
the duration.  The default is 256. 
 
-l<cutfreq>    substitute a 3rd order Butterworth low-pass filter with 
cutoff frequency cutfreq (in cps), in place of the default averaging 
comb filter.  The default is 0 (don’t use). 
 
EXAMPLE 
   hetro  -s44100  -b.5  -d2.5  -h16  -M24000 audiofile.test  adsynfile7 
 
This will analyze 2.5 seconds of channel 1 of a file “audiofile.test”, 
recorded at 44.1 KHz, beginning .5 seconds from the start, and place 
the result in a file “adsynfile7”.  We request just the first 16 
harmonics of the sound, with 256 initial breakpoint values per 

amplitude or frequency track, and a peak summation amplitude of 
24000.  The fundamental is estimated to begin at 100 Hz.  Amplitude 
thresholding is at 54 db down. 
The Butterworth LPF is not enabled. 
 
FILE FORMAT 
The output file contains time-sequenced amplitude and frequency 
values for each partial of an additive complex audio source.  The 
information is in the form of breakpoints (time, value, time, value, 
....) using 16-bit integers in the range 0 - 32767.  Time is given in 
milliseconds, and frequency in Hertz (cps).  The breakpoint data is 
exclusively non-negative, and the values -1 and -2 uniquely signify 
the start of new amplitude and frequency tracks.  A track is 
terminated by the value 32767. 
Before being written out, each track is data-reduced by amplitude 
thresholding and linear breakpoint consolidation. 
 
A component partial is defined by two breakpoint sets: an amplitude 
set, and a frequency set.  Within a composite file these sets may 
appear in any order (amplitude, frequency, amplitude ....;  or 
amplitude, amplitude..., then frequency, frequency,...).  During adsyn 
resynthesis the sets are automatically paired (amplitude, frequency) 
from the order in which they were found.  There should be an equal 
number of each. 
 
A legal adsyn control file could have following format: 
 
-1  time1  value1  ...  timeK valueK  32767  ; amplitude breakpoints  
                                                                      ; for partial 1 
-2  time1  value1  ...  timeL  valueL  32767  ; frequency breakpoints  
                                                                      ; for partial 1 
-1  time1  value1  ...  timeM valueM  32767 ; amp litude breakpoints  
                                                                      ; for partial 2 
-2  time1  value1  ...  timeN  valueN  32767 ; frequency breakpoints    
                                                                      ; for partial 2 
-2  time1  value1  .......... 
-2  time1  value1  ..........               ; pairable tracks for partials 3 and 4 
-1  time1  value1  .......... 
-1  time2  value1  .......... 
 
 
LPANAL - linear predictive analysis for the Csound lp generators 
 
 
csound -U lpanal   [flags]   infilename   outfilename  
or    
lpanal   [flags]   infilename   outfilename 
 
lpanal performs both lpc and pitch-tracking analysis on a soundfile to 
produce a time-ordered sequence of frames of control information 
suitable for Csound resynthesis.  Analysis is conditioned by the 
control flags below.  A space is optional between the flag and its 
value. 
 
-s<srate> sampling rate of the audio input file.  This will over-ride 
the srate of the soundfile header, which otherwise applies.   If neither 
is present, the default is 10000. 
 
-c<channel>    channel number sought.  The default is 1. 
 
-b<begin> beginning time (in seconds) of the audio segment to be 
analyzed.  The default is 0.0 
 
-d<duration>   duration (in seconds) of the audio segment to be 
analyzed.  The default of 0.0 means to the end of the file.  
 
-p<npoles>     number of poles for analysis.  The default is 34, the 
maximum 50. 
 
-h<hopsize>    hop size (in samples) between frames of analysis. This 
determines the number of frames per second (srate / hopsize) in the 
output control file.  The analysis framesize is hopsize * 2 samples.  
The default is 200, the maximum 500. 
 
-C<string>     text for the comments field of the lpfile header.  
The default is the null string. 
 



 

 

35 

-P<mincps>     lowest frequency (in cps) of pitch tracking.  -P0 
means no pitch tracking. 
 
-Q<maxcps>     highest frequency (in cps) of pitch tracking.  The 
narrower the pitch range, the more accurate the pitch estimate.  
The defaults are -P70, -Q200. 
 
-v<verbosity> level of terminal information during analysis.  0 = 
none,  1 = verbose, 2 = debug. The default is 0. 
 
EXAMPLE 
      lpanal  -p26  -d2.5  -P100  -Q400  audiofile.test lpfil22 
 
will analyze the first 2.5 seconds of file “audiofile.test”, producing 
srate/200 frames per second, each containing 26-pole filter 
coefficients and a pitch estimate between 100 and 400 Hertz.  Output 
will be placed in “lpfil22” in the current directory. 
 
FILE FORMAT 
     Output is a file comprised of an identifiable header plus a set of 
frames of floating point analysis data.  Each frame contains four 
values of pitch and gain information, followed by npoles filter 
coefficients.  The file is readable by Csound’s lpread. 
     lpanal is an extensive modification of Paul Lanksy’s lpc analysis 
programs. 
 
 
PVANAL - Fourier analysis for the Csound pvoc generator 
 
      csound -U pvanal   [flags]   infilename   outfilenam 
                 or   pvanal   [flags]   infilename   outfilename 
 
pvanal converts a soundfile into a series of short-time Fourier 
transform (STFT) frames at regular timepoints (a frequency-domain 
representation).  The output file can be used by pvoc to generate 
audio fragments based on the original sample, with timescales and 
pitches arbitrarily and dynamically modified.  Analysis is 
conditioned by the flags below.  A space is optional between the flag 
and its argument. 
 
-s<srate> sampling rate of the audio input file.  This will over-ride 
the srate of the soundfile header, which otherwise applies.   If neither 
is present, the default is 10000. 
 
-c<channel>    channel number sought.  The default is 1. 
 
-b<begin> beginning time (in seconds) of the audio segment to be 
analyzed.  The default is 0.0 
 
-d<duration>   duration (in seconds) of the audio segment to be 
analyzed.  The default of 0.0 means to the end of the file.  
 
-n<frmsiz>     STFT frame size, the number of samples in each 
Fourier analysis frame.  Must be a power of two, in the range 16 to 
16384.  For clean results, a frame must be larger than the longest 
pitch period of the sample.  However, very long frames result in 
temporal “smearing” or reverberation.  The bandwidth of each STFT 
bin is determined by sampling rate / frame size.  The default 
framesize is the smallest power of two that corresponds to more than 
20 milliseconds of the source (e.g. 256 points at 10 kHz sampling, 
giving a 25.6 ms frame). 
 
-w<windfact> Window overlap factor.  This controls the number of 
Fourier transform frames per second.  Csound’s pvoc will interpolate 
between frames, but too few frames will generate audible distortion;  
too many frames will result in a huge analysis file.  A good 
compromise for windfact is 4, meaning that each input point occurs 
in 4 output windows, or conversely that the offset between 
successive STFT frames is framesize/4.  The default value is 4.  Do 
not use this flag with -h. 
 
-h<hopsize>  STFT frame offset.  Converse of above, specifying the 
increment in samples between successive frames of analysis (see also 
lpcanal).  Do not use with -w. 
 
EXAMPLE 
          pvanal  asound  pvfile 

 
will analyze the soundfile “asound” using the default frmsiz and 
windfact to produce the file “pvfile” suitable for use with pvoc. 
 
FILES 
The output file has a special pvoc header containing details of the 
source audio file, the analysis frame rate and overlap.  
Frames of analysis data are stored as float, with the magnitude and 
‘frequency’ (in Hz) for the first N/2 + 1 Fourier bins of each frame in 
turn.  ‘Frequency’ encodes the phase increment in such a way that for 
strong harmonics it gives a good indication of the true frequency.  
For low amplitude or rapidly moving harmonics it is less meaningful. 
 
DIAGNOSTICS 
Prints total number of frames, and frames completed on every 20th. 
 
AUTHOR:   Dan Ellis, dpwe@media-lab.media.mit.edu 
 
 
 

Appendix 2:  CSCORE 
 
 
Cscore is a standalone program for generating and manipulating 
numeric score files.  It comprises a number of function subprograms, 
called into operation by a user-written main program.  The function 
programs augment the C language library functions;  they can 
optionally read standard numeric score files, can massage and expand 
the data in various ways, then write the data out as a new score file to 
be read by a Csound orchestra. 
 
The user-written main program is also in C.  It is not essential to 
know the C language well to write a main program, since the 
function calls have a simple syntax, and are powerful enough to do 
most of the complicated work.  Additional power can come from C 
later as the need arises. 
 
Events, Lists, and Operations 
 
An event in Cscore is equivalent to one statement of a standard 
numeric score.  It is either created or read in from an existing score 
file.  An event is comprised of an opcode and an array of pfield 
values stored somewhere in memory.  Storage is organized by the 
following structure: 
 
     struct event { 
          char op;            /* opcode */ 
          char tnum; 
          short pcnt; 
          float p[PMAX+1];         /* pfields */ 
     }; 
 
Any function subprogram that creates, reads, or copies an event 
function will return a pointer to the storage structure holding the 
event data.  The event pointer can be used to access any component 
of the structure, in the form of e->op or e->p[n].  
Each newly stored event will give rise to a new pointer, and a 
sequence of new events will generate a sequence of distinct pointers 
that must themselves be stored.  Groups of event pointers are stored 
in a list, which has its own structure: 
 
     struct evlist { 
          int nslots;         /* size of this list      */ 
          struct event *e[1];      /* list of event pointers */ 
     }; 
 
Any function that creates or modifies a list will return a pointer to the 
new list.  The list pointer can be used to access any of its component 
event pointers, in the form of a->e[n].  
Event pointers and list pointers are thus primary tools for 
manipulating the data of a score file. 
 
Pointers and lists of pointers can be copied and reordered without 
modifying the data values they refer to.  This means that notes and 
phrases can be copied and manipulated from a high level of control.  
Alternatively, the data within an event or group of events can be 
modified without changing the event or list pointers.  Cscore 



 

 

36 

provides a library of programming methods or function subprograms 
by which scores can be created and manipulated in this way.   
 
In the following summary of Cscore function calls, some simple 
naming conventions are used: 
 
the symbols e, f are pointers to events (notes);  
the symbols a, b are pointers to lists (arrays) of such events; 
the letters ev at the end of a function name signify operation on an 
event; 
the letter l at the start of a function name signifies operation on a list. 
 
         calling syntax           description 
 
     e = createv(n);          create a blank event with n pfields 
     e = defev(“...”);        defines an event as per the character string ... 
     e = copyev(f);           make a new copy of event f 
     e = getev();               read the next event in the score input file 
     putev(e);                  write event e to the score output file 
     putstr(“...”);             write the character string ... to score output 
 
     a = lcreat(n);           create an empty event list with n slots 
     a = lappev(a,e);      append event e to list a 
     n = lcount(a);          count the events now in list a 
     a = lcopy(b);           copy the list b (but not the events) 
     a = lcopyev(b);       copy the events of b, making a new list 
     a = lget();                read events from score input (to next s or e) 
     lput(a);                    write the events of list a to score output 
     a = lsepf(b);            separate the f statements from list b into list a 
     a = lcat(a,b);           concatenate (append) the list b onto the list a 
     lsort(a);                  sort the list a into chronological order by p[2] 
     a = lxins(b,”...”);    extract notes of instruments ... (no new events) 
     a = lxtimev(b,from,to) ; extract notes of time-span, creating new   
                                           events 
 
     relev(e);                release the space of event e 
     lrel(a);                   release the space of list a (but not events) 
     lrelev(a);               release the events of list a, and the list space 
 
Writing a Main program. 
 
The general format for a main program is: 
 
     #include  <csound/cscore.h> 
     main() 
     { 
          /*  VARIABLE DECLARATIONS     */ 
 
          /*  PROGRAM BODY         */ 
     } 
 
The include statement will define the event and list structures for the 
program.  The following C program will read from a standard 
numeric score, up to (but not including) the first s or e statement, 
then write that data (unaltered) as output. 
 
     #include  <csound/cscore.h> 
     main() 
     { 
          struct evlist *a;   /* a is allowed to point to an event list */ 
 
          a = lget();         /* read events in, return the list pointer */ 
          lput(a);       /* write these events out (unchanged) */ 
          putstr(“e”);        /* write the string e to output */ 
     } 
 
After execution of lget(), the variable a points to a list of event 
addresses, each of which points to a stored event.  We have used that 
same pointer to enable another list function (lput) to access and write 
out all of the events that were read.  If we now define another symbol 
e to be an event pointer, then the statement 
 
          e = a->e[4]; 
 
will set it to the contents of the 4th slot in the evlist structure.  The 
contents is a pointer to an event, which is itself comprised of an array 
of parameter field values.  Thus the term e->p[5] will mean the value 

of parameter field 5 of the 4th event in the evlist denoted by a.  The 
program below will multiply the value of that pfield by 2 before 
writing it out. 
 
     #include  <csound/cscore.h> 
     main() 
     { 
          struct event  *e;        /* a pointer to an event          */ 
          struct evlist *a; 
 
          a = lget();         /* read a score as a list of events    */ 
          e = a->e[4];        /* point to event 4 in event list \fIa\fR */ 
          e->p[5] *= 2;       /* find pfield 5, multiply its value by 2 */ 
          lput(a);            /* write out the list of events         */ 
          putstr(“e”);        /* add a “score end” statement          */ 
} 
 
Now consider the following score, in which p[5] contains frequency 
in cps. 
 
     f 1 0 257 10 1 
     f 2 0 257 7 0 300 1 212 .8  
     i 1 1 3 0 440 10000 
     i 1 4 3 0 256 10000 
     i 1 7 3 0 880 10000 
     e 
 
If this score were given to the preceding main program, the resulting 
output would look like this: 
 
     f 1 0 257 10 1 
     f 2 0 257 7 0 300 1 212 .8  
     i 1 1 3 0 440 10000 
     i 1 4 3 0 512 10000      ; p[5] has become 512 instead of 256.  
     i 1 7 3 0 880 10000 
     e 
 
Note that the 4th event is in fact the second note of the score. 
So far we have not distinguished between notes and function table 
setup in a numeric score.  Both can be classed as events.  Also note 
that our 4th event has been stored in e[4] of the structure.  
For compatibility with Csound pfield notation, we will ignore p[0] 
and e[0] of the event and list structures, storing p1 in p[1], event 1 in 
e[1], etc.  The Cscore functions all adopt this convention. 
 
As an extension to the above, we could decide to use a and e to 
examine each of the events in the list.  Note that e has not preserved 
the numeral 4, but the contents of that slot.  To inspect p5 of the 
previous listed event we need only redefine e with the assignment 
 
          e = a->e[3]; 
 
More generally, if we declare a new variable f to be a pointer to a 
pointer to an event, the statement 
 
          f = &a->e[4]; 
 
will set f to the address of the fourth event in the event list a, and *f 
will signify the contents of the slot, namely the event pointer itself.  
The expression 
 
          (*f)->p[5], 
 
like e->p[5], signifies the fifth pfield of the selected event. However, 
we can advance to the next slot in the evlist by advancing the pointer 
f.  In C this is denoted by f++. 
In the following program we will use the same input score.  This 
time we will separate the ftable statements from the note statements.  
We will next write the three note-events stored in the list a, then 
create a second score section consisting of the original pitch set and a 
transposed version of itself.  This will bring about an octave 
doubling. 
 
By pointing the variable f to the first note-event and incrementing f 
inside a while block which iterates n times (the number of events in 
the list), one statement can be made to act upon the same pfield of 
each successive event. 



 

 

37 

 
     #include  <csound/cscore.h> 
     main() 
     { 
          struct event *e,**f;          /* declarations. see pp.8-9 in the */ 
          struct evlist *a,*b;          /* C language programming manual */ 
          int n; 
 
          a = lget();              /* read score into event list “a” */ 
          b = lsepf(a);            /* separate f statements */ 
          lput(b);                 /* write f statements out to score */ 
          lrelev(b);               /* and release the spaces used     */ 
          e = defev(“t 0 120”);    /* define event for tempo statement */ 
          putev(e);                /* write tempo statement to score */ 
          lput(a);                 /* write the notes */ 
          putstr(“s”);             /* section end */ 
          putev(e);                /* write tempo statement again */ 
          b = lcopyev(a);          /* make a copy of the notes in “a” */ 
          n = lcount(b);           /* and count the number copied */ 
          f = &a->e[1]; 
          while (n--)              /* iterate the following line n times: */ 
              (*f++)->p[5] *= .5;  /*   transpose pitch down one octave */ 
          a = lcat(b,a);           /* now add these notes to original pitches 
*/ 
          lput(a); 
          putstr(“e”); 
     } 
 
The output of this program is: 
 
     f 1 0 257 10 1 
     f 2 0 257 7 0 300 1 212 .8  
     t 0 120 
     i 1 1 3 0 440 10000 
     i 1 4 3 0 256 10000 
     i 1 7 3 0 880 10000 
     s 
     t 0 120 
     i 1 1 3 0 440 10000 
     i 1 4 3 0 256 10000 
     i 1 7 3 0 880 10000 
     i 1 1 3 0 220 10000 
     i 1 4 3 0 128 10000 
     i 1 7 3 0 440 10000 
     e 
 
Next we extend the above program by using the while statement to 
look at p[5] and p[6].  In the original score p[6] denotes amplitude.  
To create a diminuendo in the added lower octave, which is 
independent from the original set of notes, a variable called dim will 
be used. 
 
     #include <csound/cscore.h> 
     main() 
     { 
          struct event *e,**f; 
          struct evlist *a,*b; 
          int n, dim;              /* declare new variable as integer */ 
 
          a = lget(); 
          b = lsepf(a); 
          lput(b); 
          lrelev(b); 
          e = defev(“t 0 120”); 
          putev(e); 
          lput(a); 
          putstr(“s”); 
          putev(e);           /* write out another tempo statement */ 
          b = lcopyev(a); 
          n = lcount(b); 
          dim = 0;            /* initialize dim to 0 */ 
          f = &a->e[1]; 
          while (n--){ 
               (*f)->p[6] -= dim;  /* subtract current value of dim */ 
               (*f++)->p[5] *= .5; /* transpose, move f to next event */ 
               dim += 2000;        /* increase dim for each note */ 
          } 

          a = lcat(b,a); 
          lput(a); 
          putstr(“e”); 
     } 
 
The increment of f in the above programs has depended on certain 
precedence rules of C.  Although this keeps the code tight, the 
practice can be dangerous for beginners.  Incrementing may 
alternately be written as a separate statement to make it moreclear.  
 
          while (n--){ 
               (*f)->p[6] -= dim; 
               (*f)->p[5] *= .5; 
               dim += 2000; 
               f++; 
          } 
 
Using the same input score again, the output from this program 
is: 
 
     f 1 0 257 10 1 
     f 2 0 257 7 0 300 1 212 .8 
     t 0 120 
     i 1 1 3 0 440 10000 
     i 1 4 3 0 256 10000 
     i 1 7 3 0 880 10000 
     s 
     t 0 120 
     i 1 1 3 0 440 10000         ; Three original notes at  
     i 1 4 3 0 256 10000         ; beats 1,4 and 7 with no dim. 
     i 1 7 3 0 880 10000 
     i 1 1 3 0 220 10000         ; three notes transposed down one octave  
     i 1 4 3 0 128 8000           ; also at beats 1,4 and 7 with dim. 
     i 1 7 3 0 440 6000 
     e 
 
In the following program the same three-note sequence will be 
repeated at various time intervals.  The starting time of each group is 
determined by the values of the array cue.  This time the dim will 
occur for each group of notes rather than each note.  
Note the position of the statement which increments the variable dim 
outside the inner while block. 
 
     #include  <csound/cscore.h> 
 
     int cue[3]={0,10,17};              /* declare array of 3 integers */ 
 
     main() 
     { 
          struct event *e, **f; 
          struct evlist *a, *b; 
          int n, dim, cuecount, holdn;       /* declare new variables */ 
 
          a = lget(); 
          b = lsepf(a); 
          lput(b); 
          lrelev(b); 
          e = defev(“t 0 120”); 
          putev(e); 
          n = lcount(a); 
          holdn = n;                    /* hold the value of “n” to reset below 
*/ 
          cuecount = 0;                 /* initilize cuecount to “0” */ 
          dim = 0; 
          while (cuecount <= 2) {       /* count 3 iterations of inner 
“while” */ 
               f = &a->e[1];            /* reset pointer to first event of list “a” 
*/ 
               n = holdn;                /* reset value of “n” to original note     
               count */ 
               while (n--) { 
               (*f)->p[6] -= dim; 
               (*f)->p[2] += cue[cuecount];       /* add values of cue */ 
               f++; 
               } 
               printf(“; diagnostic:  cue = %d\n”, cue[cuecount]); 
               cuecount++; 



 

 

38 

               dim += 2000; 
               lput(a); 
          } 
          putstr(“e”); 
     } 
 
Here the inner while block looks at the events of list a (the notes) and 
the outer while block looks at each repetition of the events of list a 
(the pitch group repetitions).  This program also demonstrates a 
useful trouble-shooting device with the printf function. The semi-
colon is first in the character string to produce a comment statement 
in the resulting score file.  In this case the value of cue is being 
printed in the output to insure that the program is taking the proper 
array member at the proper time.  When output data is wrong or error 
messages are 
encountered, the printf function can help to pinpoint the problem. 
 
Using the identical input file, the C program above will generate: 
 
     f 1 0 257 10 1 
     f 2 0 257 7 0 300 1 212 .8  
     t 0 120 
 
     ; diagnostic:  cue = 0 
     i 1 1 3 0 440 10000 
     i 1 4 3 0 256 10000 
     i 1 7 3 0 880 10000 
 
     ; diagnostic:  cue = 10 
     i 1 11 3 0 440 8000 
     i 1 14 3 0 256 8000 
     i 1 17 3 0 880 8000 
 
     ; diagnostic:  cue = 17 
     i 1 28 3 0 440 4000 
     i 1 31 3 0 256 4000 
     i 1 34 3 0 880 4000 
     e 
 
Further development of these scores will lead the composer to 
techniques of score manipulation which are similar to serial 
techniques of composition.  Pitch sets may be altered with regard to 
any of the parameter fields.  The programing allows transpositions, 
time warping, pitch retrograding and dynamic controls, to name a 
few. 
 
Compiling a Cscore program 
 
A Cscore program example.c is compiled and linked with its library 
modules by the command: 
 
     $ cc  -o myprog  example.c  -lcscore 
 
The resulting executable file myprog is run by typing: 
 
 $ myprog                 (no input, output printed on the screen) 
 $ myprog < scorin   (input score named \fIscorin\fR, output on 
screen) 
 $ myprog < scorin  > scorout   (input as above, output into a file) 
 
 

Appendix 3: An Instrument Design Tutorial 
by 
Richard Boulanger 
Berklee College of Music 
 
Csound instruments are created in an “orchestra” file, and the list of 
notes to play is written in a separate “score” file.  
Both are created using a standard word processor.  When you run 
Csound on a specific orchestra and score, the score is sorted and 
ordered in time, the orchestra is translated and loaded, the wavetables 
are computed and filled, and then the score is performed.  The score 
drives the orchestra by telling the specific instruments when and for 
how long to play, and what parameters to use during the course of 
each note event. 
 

Unlike today’s commercial hardware synthesizers, which have a 
limited set of oscillators, envelope generators, filters, and a fixed 
number of ways in which these can be interconnected, Csound’s 
power is not limited.  If you want an instrument with hundreds of 
oscillators, envelope generators, and filters you just type them in.   
More important is the freedom to interconnect the modules, and to 
interrelate the parameters which control them.  Like acoustic 
instruments, Csound instruments can exhibit a sensitivity to the 
musical context, and display a level of “musical intelligence” to 
which hardware synthesizers can only aspire. 
 
Because the intent of this tutorial is to familiarize the novice with the 
syntax of the language, we will design several simple instruments.  
You will find many instruments of the sophistication described above 
in various Csound directories, and a study of these will reveal 
Csound’s real power. 
 
The Csound orchestra file has two main parts:  

1.  the “header” section - defining the sample rate, control rate, 
and number of output channels. 

    2.   the “instrument” section - in which the instruments are 
designed. 
 
The Header Section:  A Csound orchestra generates signals at two 
rates - an audio sample rate and a control sample rate.  Each can 
represent signals with frequencies no higher than half that rate, but 
the distinction between audio signals and sub-audio control signals is 
useful since it allows slower moving signals to require less compute 
time.  In the header below, we have specified a sample rate of 16kHz, 
a control rate of 1kHz, and then calculated the number of samples in 
each control period using the formula:  ksmps = sr / kr.   
 
                    sr   =         16000   
                    kr   =         1000 
                    ksmps     =        16 
                    nchnls    =         1 
 
In Csound orchestras and scores, spacing is arbitrary.  It is important 
to be consistent in laying out your files, and you can use spaces to 
help this.  In the Tutorial Instruments shown below you will see we 
have adopted one convention.  The reader can choose his or her own. 
 
The Instrument Section:  All instruments are numbered and are 
referenced thus in the score.  Csound instruments are similar to 
patches on a hardware synthesizer.  Each instrument consists of a set 
of “unit generators,” or software “modules,” which are “patched” 
together with  “i/o” blocks  Ñ i, k, or a variables.  
Unlike a hardware module, a software module has a number of 
variable “arguments” which the user sets to determine its behavior.  
The four types of variables are: 
 
          setup only 
          i-rate variables, changed at the note rate 
          k-rate variables, changed at the control signal rate 
          a-rate variables, changed at the audio signal rate 
 
Orchestra Statements:   Each statement occupies a single line and has 
the same basic format: 
      
          result    action    arguments 
 
To include an oscillator in our orchestra, you might specify it as 
follows: 
 
          a1        oscil          10000, 440, 1 
 
The three “arguments” for this oscillator set its amplitude (10000), its 
frequency (440Hz), and its waveshape (1).   The output is put in i/o 
block “a1.”   This output symbol is significant in prescribing the rate 
at which the oscillator should generate outputÑhere the audio rate.  
We could have named the result anything (e.g. “asig”) as long as it 
began with the letter “a”. 
 
Comments:  To include text in the orchestra or score which will not 
be interpreted by the program, precede it with a semicolon. 



 

 

39 

This allows you to fully comment your code.  On each line, any text 
which follows a semicolon will be ignored by the orchestra and score 
translators. 
 
Tutorial Instruments 
 
Toot 1: Play One Note 
 
For this and all instrument examples below, there exist orchestra and 
score files in the Csound subdirectory tutorfiles that the user can run 
to soundtest each feature introduced.  The instrument code shown 
below is actually preceded by an orchestra header section similar to 
that shown above.  If you are running on a RISC computer, each 
example will likely run in realtime.  
During playback (realtime or otherwise) the audio rate may 
automatically be modified to suit the local d-a converters. 
   
The first orchestra file, called toot1.orc, contains a single instrument 
which uses an oscil unit to play a 440Hz sine wave (defined by f1 in 
the score) at an amplitude of 10000. 
 
     instr 1 
        a1   oscil     10000, 440, 1 
               out  a1 
                 endin 
 
Run this with its corresponding score file, toot1.sco : 
 
        f1     0    4096 10   1    ; use “gen1” to compute a sine wave 
        i1     0    4                    ; run “instr 1” from time 0 for 4 seconds 
        e                                  ; indicate the “end” of the score  
 
Toot 2: “P-Fields” 
 
The first instrument was not interesting because it could play only 
one note at one amplitude level.  We can make things more 
interesting by allowing the pitch and amplitude to be defined by 
parameters in the score.  Each column in the score constitutes a 
parameter field, numbered from the left.   The first three parameter 
fields of the i-statement have a reserved function: 
 
     p1 = instrument number 
     p2 = start time 
     p3 = duration 
 
All other parameter fields are determined by the way the sound 
designer defines his instrument.  In the instrument below, the 
oscillator’s amplitude argument is replaced by p4 and the frequency 
argument by p5.  Now we can change these values at i-time, i.e. with 
each note in the score.  The orchestra and score files now look like: 
 
          instr     2 
          a1   oscil     p4, p5, 1   ; p4 = amp 
                 out  a1                   ; p5 = freq 
                  e ndin 
 
 f1   0    4096 10   1                   ; sine wave 
; instrument   start     duration    amp(p4) freq(p5) 
     i2               0            1           2000         880 
     i2            1.5            1           4000         440 
     i2               3            1           8000         220 
     i2            4.5            1         16000         110 
     i2               6            1         32000           55 
      e 
                                     
Toot 3: Envelopes 
 
Although in the second instrument we could control and vary the 
overall amplitude from note to note, it would be more musical if we 
could contour the loudness during the course of each note.  To do this 
we’ll need to employ an additional unit generator linen, which the 
Csound reference manual defines as follows: 
 
     kr   linen     kamp, irise, idur, idec 
     ar   linen     xamp, irise, idur, idec 
 

linen is a signal modifier, capable of computing its output at either 
control or audio rates.  Since we plan to use it to modify the 
amplitude envelope of the oscillator, we’ll choose the latter version.  
Three of linen’s arguments expect i-rate variables.  
The fourth expects in one instance a k-rate variable (or anything 
slower), and in the other an x-variable (meaning a-rate or anything 
slower).  Our linen we will get its amp from p4. 
 
The output of the linen (k1) is patched into the kamp argument of an 
oscil.  This applies an envelope to the oscil.   The orchestra and score 
files now appear as: 
 
     instr 3 
        k1     linen     p4, p6, p3, p7     ; p4=amp 
        a1     oscil     k1, p5, 1             ; p5=freq 
                 out  a1                             ; p6=attack time 
                   endin                             ; p7=release time 
 
   f1  0  4096  10  1                        ; sine wave 
; instr   start  duration  amp(p4)   freq(p5)   attack(p6)  release(p7)  
   i3     0           1         10000        440          .05              .7 
   i3     1.5        1         10000        440           .9               .1 
   i3     3           1         5000          880          .02              .99 
   i3     4.5        1         5000          880          .7                .01 
   i3     6           2         20000        220          .5                .5 
e 
 
Toot 4: Chorusing 
 
Next we’ll animate the basic sound by mixing it with two slightly 
detuned copies of itself.  We’ll employ Csound’s “cpspch” value 
converter which will allow us to specify the pitches by octave and 
pitch-class rather than by frequency, and we’ll use the “ampdb” 
converter to specify loudness in dB rather than linearly.  
 
Since we are adding the outputs of three oscillators, each with the 
same amplitude envelope, we’ll scale the amplitude before we mix 
them.  Both “iscale” and “inote” are arbitrary names to make the 
design a bit easier to read.  Each is an i-rate variable, evaluated when 
the instrument is initialized. 
 
          instr 4                                      ; toot4.orc 
          iamp = ampdb(p4)                   ; convert decibels to linear amp 
          iscale = iamp * .333                ; scale the amp at initialization 
          inote = cpspch(p5)                   ; convert “octave.pitch” to cps 
          k1 linen     iscale, p6, p3, p7   ; p4=amp 
          a3 oscil     k1, inote*.996, 1    ; p5=freq 
          a2 oscil     k1, inote*1.004, 1  ; p6=attack time 
          a1 oscil     k1, inote, 1             ; p7=release time 
          a1 =    a1 + a2 + a3                       
               out  a1              
                 endin      
      
   f1 0 4096 10 1                                 ; sine wave 
; instr   start  duration  amp(p4)   freq(p5)  attack(p6) release(p7)          
   i4       0             1        75           8.04         .1               .7 
   i4       1             1        70           8.02         .07             .6 
   i4       2             1        75           8.00         .05             .5 
   i4       3             1        70           8.02         .05             .4 
   i4       4             1        85           8.04         .1               .5 
   i4       5             1        80           8.04         .05             .5 
   i4       6             2        90           8.04         .03              1 
e 
 
Toot 5: Vibrato 
 
To add some delayed vibrato to our chorusing instrument we use 
another oscillator for the vibrato and a line segment generator, linseg, 
as a means of controlling the delay.  linseg is a k-rate or a-rate signal 
generator which traces a series of straight line segments between any 
number of specified points.  The Csound manual describes it as: 
 
     kr   linseg    ia, idur1, ib[, idur2, ic[...]] 
     ar   linseg    ia, idur1, ib[, idur2, ic[...]] 
 
Since we intend to use this to slowly scale the amount of signal 
coming from our vibrato oscillator, we’ll choose the k-rate version.  



 

 

40 

The i-rate variables: ia, ib, ic, etc., are the values for the points.  The 
i-rate variables: idur1, idur2, idur3, etc., set the duration, in seconds, 
between segments. 
 
 
          instr 5      ; toot5.orc 
          irel     = .01                           ; set vibrato release time 
          idel1  = p3 - (p10 * p3)        ; calculate initial delay (% of dur)    
          isus    = p3 - (idel1- irel)      ; calculate remaining duration      
          iamp   = ampdb(p4) 
          iscale = iamp * .333            ; p4=amp 
          inote   = cpspch(p5)             ; p5=freq        
  
          k3     linseg   0, idel1, p9, isus, p9, irel, 0  ; p6=attack time 
          k2     oscil     k3, p8, 1                                ; p7=release time     
          k1     linen     iscale, p6, p3, p7                  ; p8=vib rate 
          a3     oscil     k1, inote*.995+k2, 1             ; p9=vib depth    
          a2     oscil     k1, inote*1.005+k2, 1           ; p10=vib delay (0 -
1) 
          a1     oscil     k1, inote+k2, 1                 
                    out  a1+a2+a3                       
                       endin      
      
        f 1  0  4096  10  1 
     ; ins    strt dur  amp  frq       atk       rel       vibrt   vibdpth  vibdel      
        i5     0    3      86   10.00   .1         .7          7          6          .4 
        i5     4    3      86   10.02    1         .2          6          6          .4 
        i5     8    4      86   10.04    2          1          5          6          .4 
     e 
 
Toot 6: Gens 
 
The first character in a score statement is an opcode, determining an 
action request; the remaining data consists of numeric parameter 
fields (p-fields) to be used by that action.  
So far we have been dealing with two different opcodes in our score: 
f and i.   I-statements, or note statements, invoke the p1 instrument at 
time p2 and turn it off after p3 seconds; all remaining p-fields are 
passed to the instrument. 
 
F-statements, or lines with an opcode of f, invoke function-drawing 
subroutines called GENS.  In Csound there are currently seventeen 
gen routines which fill wavetables in a variety of ways.  For example, 
GEN01 transfers data from a soundfile; GEN07 allows you to 
construct functions from segments of straight lines; and GEN10, 
which we’ve been using in our scores so far, generates composite 
waveforms made up of a weighted sum of simple sinusoids.   We 
have named the function “f1,” invoked it at time 0, defined it to 
contain 512 points, and 
instructed GEN10 to fill that wavetable with a single sinusoid whose 
amplitude is 1.  GEN10 can in fact be used to approximate a variety 
of other waveforms, as illustrated by the following: 
                                              
 f1   0    2048 10   1                                                              ; Sine 
 f2   0    2048 10   1    .5    .3   .25 .2   .167   .14  .125 .111 ; Sawtooth 
 f3   0    2048 10   1    0      .3    0 .2    0       .14     0   .111  ; Square 
 f4   0    2048 10   1    1      1     1 .7    .5      .3      .1            ; Pulse 
 
For the opcode f, the first four p-fields are interpreted as follows: 
 
     p1 - table number - In the orchestra, you reference this table by its  
            number. 
     p2 - creation time - The time at which the function is generated. 
     p3 - table size - Number of points in table - must be a power of 2,   
            or that plus 1. 
     p4 - generating subroutine - Which of the 17 GENS will you  
             employ.    
     p5 -> p?  -  meaning determined by the particular GEN 
subroutine. 
 
In the instrument and score below, we have added three additional 
functions to the score, and modified the orchestra so that the 
instrument can call them via p11. 
 
          instr 6                               ; toot6.orc 
          ifunc = p11                       ; select basic waveform 
          irel = .01                          ; set vibrato release 

          idel1 = p3 - (p10 * p3)    ; calculate initial delay 
             isus   = p3 - (idel1- irel)     ; calculate remaining dur 
             iamp = ampdb(p4) 
             iscale = iamp * .333            ; p4=amp 
             inote = cpspch(p5)              ; p5=freq        
  
             k3  linseg  0, idel1, p9, isus, p9, irel, 0 ; p6=attack time 
             k2   oscil   k3, p8, 1                               ; p7=release time        
             k1   linen   iscale, p6, p3, p7                  ; p8=vib rate 
             a3   oscil   k1, inote*.999+k2, ifunc       ; p9=vib depth    
             a2   oscil   k1, inote*1.001+k2, ifunc     ; p10=vib delay (0-1) 
             a1   oscil   k1, inote+k2, ifunc 
               out  a1 + a2 + a3 
                endin 
 
   f1 0 2048 10 1                                                        ; Sine 
   f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111        ; Sawtooth 
   f3 0 2048 10 1 0  .3  0   .2  0  .14  0   .111             ; Square 
   f4 0 2048 10 1 1 1 1 .7 .5 .3 .1                               ; Pulse 
; ins  strt   dur   amp  frq   atk  rel  vibrt   vibdpth  vibdel  
waveform(f) 
   i6     0    2       86   8.00 .03  .7   6         9              .8          1 
   i6     3    2       86   8.02 .03  .7   6         9              .8          2 
   i6     6    2       86   8.04 .03  .7   6         9              .8          3 
   i6     9    3       86   8.05 .03  .7   6         9              .8          4 
e 
 
Toot 7: Crossfade 
 
Now we will add the ability to do a linear crossfade between any two 
of our four basic waveforms.  We will employ our delayed vibrato 
scheme to regulate the speed of the crossfade. 
 
     instr 7                                          ; toot7.orc 
     ifunc1 = p11                                ; initial waveform 
     ifunc2 = p12                                ; crossfade waveform 
     ifad1 = p3 - (p13 * p3)               ; calculate initial fade 
     ifad2 = p3 - ifad1                        ; calculate remaining dur 
     irel = .01                                     ; set vibrato release 
     idel1 = p3 - (p10 * p3)               ; calculate initial delay 
     isus   = p3 - (idel1- irel)             ; calculate remaining dur 
     iamp = ampdb(p4) 
     iscale = iamp * .166                   ; p4=amp 
     inote = cpspch(p5)                      ; p5=freq 
     k3     linseg    0, idel1, p9, isus, p9, irel, 0   ; p6=attack time 
     k2     oscil     k3, p8, 1                                  ; p7=release time 
     k1     linen     iscale, p6, p3, p7                    ; p8=vib rate 
     a6     oscil     k1, inote*.998+k2, ifunc2       ; p9=vib depth 
     a5     oscil     k1, inote*1.002+k2, ifunc2     ; p10=vib delay (0-1) 
     a4     oscil     k1, inote+k2, ifunc2                ; p11=initial wave 
     a3     oscil     k1, inote*.997+k2, ifunc1       ; p12=cross wave 
     a2     oscil     k1, inote*1.003+k2, ifunc1     ; p13=fade time 
     a1     oscil     k1, inote+k2, ifunc1              
     kfade  linseg 1, ifad1, 0, ifad2, 1 
     afunc1 = kfade * (a1+a2+a3) 
     afunc2 = (1 - kfade) * (a4+a5+a6) 
          out  afunc1 + afunc2 
              endin 
  
   f1 0 2048 10 1                                                      ; Sine 
   f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111      ; Sawtooth 
   f3 0 2048 10 1 0  .3  0   .2  0  .14  0   .111           ; Square 
   f4 0 2048 10 1 1 1 1 .7 .5 .3 .1                             ; Pulse 
;ins str dur amp frq   atk rel vibrt vbdpt vibdel startwav endwav 
crosst 
  i7   0   5   96   8.07 .03 .1    5      6        .99        1            2          .1 
  i7   6   5   96   8.09 .03 .1    5      6        .99        1            3          .1 
  i7 12   8   96   8.07 .03 .1    5      6        .99        1            4          .1 
 
Toot 8: Soundin 
 
Now instead of continuing to enhance the same instrument, let us 
design a totally different one.  We’ll read a soundfile into the 
orchestra, apply an amplitude envelope to it, and add some reverb.  
To do this we will employ Csound’s soundin and reverb generators.  
The first is described as: 
 



 

 

41 

          a1   soundin   ifilcod[, iskiptime][, iformat] 
 
soundin derives its signal from a pre-existing file.  ifilcod is either 
the filename in double quotes, or an integer suffix (.n) to the name 
“soundin”.  Thus the file “soundin.5” could be referenced either by 
the quoted name or by the integer 5.  To read from 500ms into this 
file we might say: 
 
          a1   soundin   “soundin.5”,  .5            
 
The Csound reverb generator is actually composed of four parallel 
comb filters plus two allpass filters in series.  Although we could 
design a variant of our own using these same primitives, the preset 
reverb is convenient, and simulates a natural room response via 
internal parameter values.  Only two arguments are requiredÑthe 
input (asig) and the reverb time (krvt). 
 
          ar   reverb    asig, krvt  
 
The soundfile instrument with artificial envelope and a reverb 
(included directly) is as follows: 
 
    instr  8                       ; toot8.orc 
    idur         =  p3 
    iamp        =  p4 
    iskiptime =  p5    
    iattack     =  p6 
    irelease   =  p7 
    irvbtime  =  p8 
    irvbgain  =  p9                              
                 
    kamp   linen    iamp, iattack, idur, irelease                   
    asig        soundin   “soundin.aiff”, iskiptime 
    arampsig     =    kamp * asig                
    aeffect     reverb    asig, irvbtime 
    arvbreturn   =    aeffect * irvbgain 
         out    arampsig + arvbreturn     
           endin      
 
; ins  strt    dur       amp   skip     atk    rel     rvbtime rvbgain 
   i8     0    1           .3       0        .03    .1        1.5        .2 
   i8     2    1           .3       0          .1    .1        1.3        .2 
   i8     3.5  2.25     .3       0          .5    .1        2.1        .2 
   i8     4.5  2.25     .3       0        .01    .1        1.1        .2 
   i8     5     2.25     .3      .1        .01    .1        1.1        .1 
e 
      
Toot 9: Global Stereo Reverb 
 
In the previous example you may have noticed the soundin source 
being “cut off” at ends of notes, because the reverb was inside the 
instrument itself.  It is better to create a companion instrument, a 
global reverb instrument, to which the source signal can be sent.  
Let’s also make this stereo. 
 
Variables are named cells which store numbers. In Csound, they can 
be either local or global, are available continuously, and can be 
updated at one of four ratesÑsetup, i-rate, k-rate, or a-rate.   
 
Local Variables (which begin with the letters p, i, k, or a) are private 
to a particular instrument.  They cannot be read from, or written to, 
by any other instrument. 
 
Global Variables are cells which are accessible by all instruments.  
Three of the same four variable types are supported (i,  k, and a), but 
these letters are preceded by the letter g to identify them as “global.”   
Global variables are used for “broadcasting” general values, for 
communicating between instruments, and for sending sound from 
one instrument to another.   
 
The reverb instr99 below receives input from instr9 via the global a-
rate variable garvbsig.  Since instr9 adds into this global, several 
copies of instr9 can do this without losing any data.  The addition 
requires garvbsig to be cleared before each k-rate pass through any 
active instruments.  This is accomplished first with an init statement 
in the orchestra header, giving the reverb instrument a higher number 
than any other (instruments are performed in numerical order), and 

then clearing garvbsig within instr99 once its data has been placed 
into the reverb. 
 
          sr          =    18900        ; toot9.orc 
          kr          =    945 
          ksmps   =    20 
          nchnls   =    2                 ; stereo 
          garvbsig  init      0         ; make zero at orch init time 
 
          instr 9 
            idur    =    p3 
            iamp   =    p4 
            iskiptime   =    p5    
            iattack       =    p6 
            irelease     =    p7 
            ibalance    =    p8        ; panning: 1=left, .5=center, 0=right 
            irvbgain    =    p9                                   
            
            kamp   linen    iamp, iattack, idur, irelease   
 
            asig        soundin   “soundin.aiff”, iskiptime 
            arampsig    =         kamp * asig                     
                   outs      arampsig * ibalance,  arampsig * (1 - ibalance) 
            garvbsig    =         garvbsig + arampsig * irvbgain   
                    endin      
      
        instr 99                       ; global reverb 
          irvbtime    =    p4                                   
                 
          asig   reverb    garvbsig,  irvbtime ; put global signal into 
reverb 
                outs asig, asig      
             garvbsig    =    0    ; then clear it 
                endin      
 
In the score we turn the global reverb on at time 0 and keep it on 
until irvbtime after the last note. 
  
; ins     strt dur  rvbtime                  ; toot9.sco 
  i99     0    9.85 2.6 
 
; ins     strt dur    amp  skip  atk   rel  balance(0-1)   rvbsend 
   i9      0     1       .5     0     .02   .1      1                    .2 
   i9      2     2       .5     0     .03   .1      0                    .3 
   i9      3.5  2.25  .5     0     .9     .1     .5                    .1 
   i9      4.5  2.25  .5     0     1.2   .1      0                    .2 
   i9      5     2.25  .5     0     .2     .1      1                    .3 
e 
 
Toot 10: Filtered Noise 
 
The following instrument uses the Csound rand unit to produce 
noise, and a reson unit to filter it.  The bandwidth of reson will be set 
at i-time, but its center frequency will be swept via a line unit 
through a wide range of frequencies during each note.  
We add reverb as above. 
  
     garvbsig  init      0 
 
     instr 10                           ; toot10.orc 
       iattack    =    .01 
       irelease  =    .2 
       iwhite    =    10000 
       idur       =     p3 
       iamp      =     p4 
       isweepstart    =    p5 
       isweepend     =    p6 
       ibandwidth    =    p7 
       ibalance        =    p8     ; pan: 1 = left, .5 = center, 0 = right 
       irvbgain        =    p9                                        
       
       kamp   linen     iamp, iattack, idur, irelease 
       ksweep line isweepstart, idur, isweepend                   
       asig     rand iwhite 
       afilt     reson     asig, ksweep, ibandwidth 
       arampsig    =    kamp * afilt                    
              outs      arampsig * ibalance, arampsig * (1 - ibalance) 



 

 

42 

       garvbsig    =    garvbsig  +  arampsig * irvbgain    
               endin 
 
      instr 100 
      irvbtime    =    p4                                        
                 
      asig        reverb  garvbsig,  irvbtime               
           outs      asig, asig                
        garvbsig    =    0 
             endin 
 
; ins     strt      dur  rvbtime                       ; 
toot10.sco 
   i100   0        15    1.1 
   i100   15      10    5 
 
; ins strt    dur amp  stswp  ndswp bndwth balance(0-1)  rvbsend 
   i10    0    2   .05   5000     500     20           .5                  .1 
   i10    3    1   .05   1500    5000    30           .5                  .1 
   i10    5    2   .05    850     1100    40           .5                  .1 
   i10    8    2   .05  1100     8000    50           .5                  .1 
   i10    8   .5   .05  5000     1000    30           .5                  .2  
   i10    9   .5   .05  1000     8000    40           .5                  .1 
   i10    11 .5   .05    500     2100    50           .4                  .2 
   i10    12 .5   .05  2100    1220     75           .6                  .1 
   i10    13 .5   .05  1700     3500   100          .5                  .2 
   i10    15 .5   .01  8000      800     60           .5                  .15 
e 
 
Toot 11: Carry, Tempo & Sort 
  
We now use a plucked string instrument to explore some of Csound’s 
score preprocessing capabilities.  Since the focus here is on the score, 
the instrument is presented without explanation. 
 
 
     instr 11                                                   
      asig1     pluck     ampdb(p4)/2, p5, p5, 0, 1            
      asig2     pluck     ampdb(p4)/2, p5 * 1.003,  p5 * 1.003, 0, 1 
           out  asig1+asig2 
             endin      
 
The score can be divided into time-ordered sections by the S 
statement.  Prior to performance, each section is  processed by three 
routines: Carry, Tempo, and Sort.  The score toot11.sco has multiple 
sections containing each of the examples below, in both of the forms 
listed. 
 
The Carry feature allows a dot (“.” ) in a p-field to indicate that the 
value is the same as above, provided the instrument is the same.  
Thus the following two examples are identical: 
 
; ins   start  dur amp  freq       |         ; ins  start     dur  amp  freq 
    i11    0   1    90     200       |            i11    0        1     90   200 
    i11    1    .     .       300       |            i11    1        1     90   300 
    i11    2    .     .       400       |            i11    2        1     90   400 
 
A special form of the carry feature applies to p2 only.  A “+” in p2 
will be given the value of p2+p3 from the previous i statement.  The 
“+” can also be carried with a dot:  
 
 ;  ins  start    dur  amp  freq       |        ;  ins   start     dur  amp  freq 
    i11   0         1    90   200        |            i11    0         1      90   200 
    i       +         .     .      300        |            i11    1         1      90   300 
    i       .          .     .      500        |            i11    2         1      90   500 
 
The carrying dot may be omitted when there are no more explicit 
pfields on that line: 
 
;  ins    start dur  amp  freq     |         ;  ins    start     dur       amp  freq  
   i11    0      1      90   200     |            i11    0          1           90   200 
   i11    +      2                        |            i11    1          2           90   200 
   i11                                      |            i11    3          2           90   200 
  
A variant of the carry feature is Ramping, which substitutes a 
sequence of linearly interpolated values for a ramp symbol ( < ) 
spanning any two values of a pfield.  Ramps work only on 

consecutive calls to the same instrument, and they cannot be applied 
to the first three p-fields. 
 
 
; ins   start    dur  amp  freq         |         ; ins     start    dur  amp  freq 
  i11     0        1    90    200         |           i11     0         1     90    200 
  i .       +        .     <      <            |           i11     1         1     85    300 
  i .       .         .     <     400          |          i11     2         1     80    400 
  i .       .         .     <     <              |          i11     3         1     75    300 
  i .       .        4    70    200          |           i11     4         4    70     200 
 
Tempo.  The unit of time in a Csound score is the beatÑnormally one 
beat per second.  This can be modified by a Tempo Statement, which 
enables the score to be arbitrarily time-warped. Beats are converted 
to their equivalent in seconds during score pre-processing of each 
Section.  In the absence of a Tempo statement in any Section, the 
following tempo statement is inserted: 
 
          t   0   60 
 
It means that at beat 0 the tempo of the Csound beat is 60 (1 beat per 
second).  To hear the Section at twice the speed, we have two 
options:  1) cut all p2 and p3 in half and adjust the start times, or 2) 
insert the statement  t  0  120  within the Section.   
 
The Tempo statement can also be used to move between different 
tempi during the score, thus enabling ritardandi and accelerandi.  
Changes are linear by beat size (see the Csound manual).  The 
following statement will cause the score to begin at tempo 120, slow 
to tempo 80 by beat 4, then accelerate to 220 by beat 7: 
 
          t    0   120   4   80    7   220 
 
The following will produce identical soundfiles: 
t  0  120       ; Double-time via Tempo 
; ins     start   dur  amp  freq      |         ; ins    start    dur  amp  freq 
  i11     0        .5    90    200      |           i11     0        1     90     200 
  i .       +         .     <      <         |           i .       +         .       <       < 
  i .        .         .     <     400       |          i .        .          .      <      400 
  i .        .         .     <      <         |           i .        .          .      <       < 
  i .        .         2    70   200       |           i .       .          4    70     200 
 
The following includes an accelerando and ritard.  It should be noted, 
however, that the ramping feature is applied after time-warping, and 
is thus proportional to elapsed chronological time.  While this is 
perfect for amplitude ramps, frequency ramps will not result in 
harmonically related pitches during tempo changes.  The frequencies 
needed here are thus made explicit. 
 
          t     0   60   4    400  8    60   ; Time-warping via 
Tempo 
     ;    ins  start   dur  amp  freq 
          i11  0       1      70    200 
          i .    +        .      <     500 
          i .    .         .      90    800 
          i .    .         .      <     500 
          i .    .         .      70   200 
          i .    .         .      90   1000 
          i .    .         .      <     600 
          i .    .         .      70   200 
          i .    .        8      90   100 
 
Three additional score features are extremely useful in Csound.   
The s statement was used above to divide a score into Sections for 
individual pre-processing.  Since each s statement establishes a new 
relative time of 0, and all actions within a section are relative to that, 
it is convenient to develop the score one section at a time, then link 
the sections into a whole later. 
 
Suppose we wish to combine the six above examples (call them 
toot11a - toot11f) into one score.  One way is to start with 
toot11a.sco, calculate its total duration and add that value to every 
starting time of toot11b.sco, then add the composite duration to the 
start times of toot11c.sco, etc.  Alternatively, we could insert an s 
statement between each of the sections and run the entire score.  The 
file toot11.sco, which contains a sequence of all of the above score 
examples, did just that. 



 

 

43 

 
The f0 statement, which creates an “action time” with no associated 
action, is useful in extending the duration of a section.  Two seconds 
of silence are added to the first two sections below. 
 
;    ins  start   dur  amp  freq           ; toot11g.sco 
     i11  0        2     90    100 
     f 0   4                                        ; The f0 Statement 
     s                                               ; The Section Statement 
     i11  0       1      90    800  
     i .    +       .        .     400 
     i .    .        .        .     100 
     f 0  5 
     s 
     i11  0      4      90    50 
     e 
 
Sort.  During preprocessing of a score section, all action-time 
statements are sorted into chronological order by p2 value.  This 
means that notes can be entered in any order, that you can merge 
files, or work on instruments as temporarily separate sections, then 
have them sorted automatically when you run Csound on the file.   
 
The file below contains excerpts from this section of the rehearsal 
chapter and from instr6 of the tutorial, and combines them as 
follows:  
   
        ; ins  start  dur  amp  freq           ; toot11h.sco 
          i11    0     1     70    100           ; Score Sorting 
          i .      +     .      <      < 
          i .       .     .      <      < 
          i .       .     .      90    800 
          i .       .     .      <      < 
          i .       .     .      <      < 
          i .       .     .      70   100 
          i .       .     .      90   1000 
          i .       .     .      <      < 
          i .       .     .      <      < 
          i .       .     .      <      < 
          i .       .     .      70    < 
          i .       .    8      90   50 
  
   f1 0 2048 10 1                                                  ; Sine 
   f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111  ; Sawtooth 
   f3 0 2048 10 1 0  .3  0   .2  0 .14  0   .111        ; Square 
   f4 0 2048 10 1 1 1 1 .7 .5 .3 .1                         ; Pulse 
 
; ins strt  dur  amp   frq      atk   rel  vibrt   vibdpth  vibdel waveform 
   i6   0     2     86    9.00   .03   .1     6         5             .4            1 
   i6   2     2     86    9.02   .03   .1     6         5             .4            2 
   i6   4     2     86    9.04   .03   .1     6         5             .4            3 
   i6   6     4     86    9.05   .05   .1     6         5             .4            4 
 
Toot 12: Tables & Labels 
 
This is by far our most complex instrument.  In it we have designed 
the ability to store pitches in a table and then index them in three 
different ways:  1) directly, 2) via an lfo,  and 3) randomly.  As a 
means of switching between these three methods, we will use 
Csound’s program control statements and logical and conditional 
operations.   
 
          instr 12 
             iseed       =  p8 
             iamp        =  ampdb(p4) 
             kdirect     =  p5 
             imeth       =  p6 
             ilforate    = p7             ; lfo and random index rate 
             itab          =  2 
             itablesize =  8 
 
                    if (imeth == 1)   igoto direct 
                    if (imeth == 2)   kgoto lfo 
                    if (imeth == 3)   kgoto random  
 
     direct:     kpitch    table      kdirect, itab         ; index “f2” via p5 
                    kgoto    contin  

           
     lfo:   kindex    phasor  ilforate 
             kpitch     table     kindex  *  itablesize, itab 
             kgoto      contin 
 
             random: kindex    randh   int(7), ilforate, iseed 
            kpitch     table     abs(kindex), itab 
 
  contin:   kamp      linseg   0, p3 * .1, iamp, p3 * .9, 0  ; amp 
envelope 
                asig         oscil     kamp, cpspch(kpitch), 1    ; audio osc    
                    out       asig                    
                       endin 
 
f1 0 2048 10 1                                                         ; Sine 
f2 0 8 -2  8.00 8.02 8.04 8.05 8.07 8.09 8.11 9.00 ;cpspch C major   
                                                                                ;scale 
 
; method 1 - direct index of table values 
; ins  start   dur  amp  index  method  lforate   rndseed 
  i12     0    .5      86     7           1            0           0 
  i12     .5   .5      86     6           1            0 
  i12     1    .5      86     5           1            0 
  i12    1.5  .5      86     4           1            0 
  i12     2    .5      86     3           1            0 
  i12    2.5  .5      86     2           1            0 
  i12     3    .5      86     1           1            0 
  i12    3.5  .5      86     0           1            0 
  i12     4    .5      86     0           1            0 
  i12    4.5  .5      86     2           1            0 
  i12     5    .5      86     4           1            0 
  i12    5.5  2.5    86     7           1            0 
s   
 
; method 2 - lfo index of table values 
; ins     start     dur  amp  index   method lforate   rndseed 
  i12     0            2    86   0            2           1             0 
  i12     3            2    86   0            2           2 
  i12     6            2    86   0            2           4 
  i12     9            2    86   0            2           8 
  i12     12          2    86   0            2          16 
s 
 
; method 3 - random index of table values 
; ins     start     dur  amp  index  method  rndrate  rndseed 
  i12     0           2    86       0       3             2           .1 
  i12     3           2    86       0       3             3           .2 
  i12     6           2    86       0       3             4           .3 
  i12     9           2    86       0       3             7           .4 
  i12     12         2    86       0       3            11          .5 
  i12     15         2    86       0       3            18          .6 
  i12     18         2    86       0       3            29          .7 
  i12     21         2    86       0       3            47          .8 
  i12     24         2    86       0       3            76          .9 
  i12     27         2    86       0       3           123         .9 
  i12     30         5    86       0       3           199         .1 
 
Toot 13: Spectral Fusion 
 
For our final instrument, we will employ three unique synthesis 
methodsÑPhysical Modeling, Formant-Wave Synthesis, and Non-
linear Distortion.  Three of Csound’s most powerful unit 
generatorsÑpluck,  fof, and foscil, make this complex task a fairly 
simple one.  The Reference Manual describes these as follows: 
 
     a1    pluck   kamp, kcps, icps, ifn, imeth [, iparm1, iparm2] 
 
pluck simulates the sound of naturally decaying plucked strings by 
filling a cyclic decay buffer with noise and then smoothing it over 
time according to one of several methods.  The unit is based on the  
Karplus-Strong algorithm. 
 
     a2    fof    xamp, xfund, xform, koct, kband, kris, kdur kdec, 
               iolaps, ifna, ifnb, itotdur[, iphs][, ifmode] 
 
fof simulates the sound of the male voice by producing a set of 
harmonically related partials (a formant region) whose spectral 



 

 

44 

envelope can be controlled over time.  It is a special form of granular 
synthesis, based on the CHANT program from IRCAM by Xavier 
Rodet et al. 
 
     a1    foscil   xamp, kcps, kcar, kmod, kndx, ifn [, iphs] 
 
foscil is a composite unit which banks two oscillators in a simple FM 
configuration, wherein the audio-rate output of one (the “modulator”) 
is used to modulate the frequency input of another (the “carrier.”)  
 
The plan for our instrument is to have the plucked string attack 
dissolve into an FM sustain which transforms into a vocal release.  
The orchestra and score are as follows: 
 
        instr 13     ; toot13.orc 
        iamp         = ampdb(p4) / 2  ; amplitude, scaled for two sources 
        ipluckamp= p6                     ; % of total amp, 1=dB amp as in p4 
        ipluckdur  = p7*p3              ; % of total dur, 1=entire dur of note 
        ipluckoff   = p3 - ipluckdur 
        ifmamp      =  p8                 ; % of total amp, 1=dB amp as in p4 
        ifmrise      = p9*p3            ; % of total dur, 1=entire dur of note 
        ifmdec       = p10*p3          ; % of total duration 
        ifmoff        = p3 - (ifmrise + ifmdec) 
        index         = p11 
        ivibdepth  = p12 
        ivibrate     = p13 
        iformantamp   = p14              ; % of total amp, 1=dB amp as in 
p4 
        iformantrise   = p15*p3        ; % of total dur, 1=entire dur of 
note 
        iformantdec    = p3 - iformantrise 
 
         kpluck      linseg    ipluckamp, ipluckdur, 0, ipluckoff, 0 
        apluck1     pluck     iamp, p5, p5, 0, 1 
        apluck2     pluck     iamp, p5*1.003, p5*1.003, 0, 1 
        apluck  =   kpluck * (apluck1+apluck2) 
 
        kfm    linseg    0, ifmrise, ifmamp, ifmdec, 0, ifmoff, 0 
        kndx   =    kfm * index 
        afm1   foscil    iamp, p5, 1, 2, kndx, 1 
        afm2   foscil    iamp, p5*1.003, 1.003, 2.003, kndx, 1 
        afm         =    kfm * (afm1+afm2) 
 
        kfrmnt   linseg  0, iformantrise, iformantamp, iformantdec, 0 
        kvib      oscil    ivibdepth,ivibrate,1 
        afrmnt1 fof       iamp, p5+kvib, 650, 0, 40, .003, .017, .007, 4, 1,    
                                 2, p3 
        afrmnt2 fof       iamp, (p5*1.001)+kvib*.009, 650, 0, 40,    
                                 .003,.017,.007, 10,1,2,p3 
        aformnt     =    kfrmnt * (afrmnt1+afrmnt2) 
               out  apluck + afm + aformnt 
                 endin 
 
f1  0  8192  10  1                           ; sine wave 
f2  0  2048   19  .5  1  270  1         ; sigmoid rise  
 
;ins st dr mp frq plkmp plkdr fmp fmris fmdec indx vbdp vbrt frmp 
fris 
 i13 0  5   80 200 .8      .3       .7   .2      .35       8      1       5      3     .5 
 i13 +  8   80 100  .       .4       .7   .35    .35       7      1       6      3     .7 
 i13 .   13 80   50   .      .3       .7   .2       .4        6      1        4     3     .6 
 
When Things Sound Wrong 
 
When you design your own Csound instruments you may 
occasionally 
be surprised by the results.  There will be times when you’ve 
computed a file for hours and your playback is just silence, while at 
other times you may get error messages which prevent the score from 
running, or you may hang the computer and nothing happens at all. 
 
In general, Csound has a comprehensive error-checking facility that 
reports to your console at various stages of your run: at score sorting, 
orchestra translation, initializing each call of every instrument, and 
during performance.  However, if your error was syntactically 
permissable, or it generated only a warning message, Csound could 

faithfully give you results you don’t expect. Here is a list of the 
things you might check in your score and orchestra files: 
 
          1.  You typed the letter l instead of the number 1 
 
          2.  You forgot to precede your comment with a semi-colon 
 
          3.  You forgot an opcode or a required parameter 
 
          4.  Your amplitudes are not loud enough or they are too loud 
 
       5.  Your frequencies are not in the audio range - 20Hz to 20kHz 
 
       6.  You placed the value of one parameter in the p-field of 
another 
 
       7.  You left out some crucial information like a function 
definition 
 
       8.  You didn’t meet the Gen specifications 
 
 
Suggestions for Further Study 
 
Csound is such a powerful tool that we have touched on only a few 
of its many features and uses.  You are encouraged to take apart the 
instruments in this chapter, rebuild them, modify them, and integrate 
the features of one into the design of another.  To understand their 
capabilities you should compose short etudes with each.  You may be 
surprised to find yourself merging these little studies into the fabric 
of your first Csound compositions.  
 
The directory ‘morefiles’ contains examples of the classical designs 
of Risset and Chowning.  Detailed discussions of these instruments 
can be found in Charles Dodge’s and Thomas Jerse’s Computer 
Music textbook.  This text is the key to getting the most out of these 
instrumental models and their innovative approaches to signal 
processing.  Also recommended are the designs of Russell Pinkston.  
They demonstrate techniques for legato phrasing, portamento, 
random vibrato, and random sequence generation.  His instrument 
representing Dx7 OpCodeª Editor/Librarian patches is a model for 
bringing many wonderful sounds into your orchestra. 
 
Nothing will increase your understanding more than actually Making 
Music with Csound.   The best way to discover the full capability of 
these tools is to create your own music with them.  
As you negotiate the new and uncharted terrain you will make many 
discoveries.  It is my hope that through Csound you discover as much 
about music as I have, and that this experience brings you great 
personal satisfaction and joy. 
 
Richard Boulanger - March 1991 -  Boston, Massachusetts - USA 
 

Appendix 4: An FOF Synthesis Tutorial 
by 
J.M.Clarke 
University of Huddersfield 
 
The fof synthesis generator in Csound has more parameter fields than 
other modules.  To help the user become familiar with these 
parameters this tutorial will take a simple orchestra file using just one 
fof unit-generator and demonstrate the effect of each parameter in 
turn.  To produce a good vocal imitation, or a sound of similar 
sophistication, an orchestra containing five or more fof generators is 
required and other refinements (use of random variation of pitch etc.) 
must be made.  The sounds produced in these initial explorations will 
be much simpler and consequently less interesting but they will help 
to show clearly the basic elements of fof synthesis.  This tutorial 
assumes a basic working knowledge of Csound itself.  The 
specification of the fof unit-generator (as found in the main Csound 
manual) is: 
 
ar  fof  xamp  xfund  xform  koct  kband  kris  kdur  kdec iolaps  ifna   
            ifnb  itotdur [iphs] [ifmode] 
 
where  xamp, xfund, xform      can receive any rate (constant, control  
                                                or audio) 



 

 

45 

koct, kband, kdris, kdur, kdec  can receive only constants or control  
                                                rates 
iolaps, ifna, ifnb, itotdur          must be given a fixed value at  
                                                initialization 
[iphs][ifmode]                         are optional, defaulting to 0. 
 
The following orchestra contains a simple instrument we will use for 
exploring each parameter in turn.  On the faster machines 
(DECstation, SparcStation, SGI Indigo) it will run in real time. 
 
     sr = 22050 
     kr = 441 
     ksmps = 50 
 
     instr     1 
a1   fof  15000, 200, 650, 0, 40, .003, .02, .007, 5, 1, 2, p3  
       out  a1 
        endin 
 
It should be run with the following score:  
 
f1  0  4096  10  1 
f2  0  1024  19  .5  .5  270  .5 
i1  0  3 
e 
 
The result is very basic.  This is not surprising since we have created 
only one formant region (a vocal imitation would need at least five) 
and have no vibrato or random variation of the parameters.   By 
varying one parameter at a time we will help the reader learn how the 
unit-generator works.   Each of the following “variations” starts from 
the model.  Parameters not specified remain as given.  
 
xamp = amplitude 
 
The first input parameter controls the amplitude of the generator.  At 
present our model uses a constant amplitude, this can be changed so 
that the amplitude varies according to a line function: 
 
a2   linseg    0,  p3*.3,  20000,  p3*.4,  15000,  p3*.3,  0  
a1   fof  a2, ......(as before)...  
 
The amplitude of a fof generator needs care.  xamp does not 
necessarily indicate the maximum output, which can also depend on 
the rise pattern, bandwidth, and the presence of any  “overlaps”.  
 
xfund = fundamental frequency 
 
This parameter controls the pitch of the fundamental of the unit 
generator.  Starting again from the original model this example 
demonstrates an exaggerated vibrato: 
 
a2   oscil     20,  5,  1 
a1   fof  15000,  200+a2,  etc........ 
 
fof synthesis produces a  rapid succession of (normally) overlapping 
excitations or granules.  The fundamental is in fact the speed at 
which new excitations are formed and if the fundamental is very low 
these excitations are heard as separate granules.  In this case the 
fundamental is not so much a pitch as a pulse speed.  The possibility 
of moving between pitch and pulse, between timbre and granular 
texture is one of the most interesting aspects of fof.  For a simple 
demonstration try the following variation.  It will be especially clear 
if the score note is lengthened to about 10 seconds. 
 
a2   expseg  5,  p3*.8,  200,  p3*.2,  150 
a1   fof   15000,  a2  etc........ 
 
koct = octaviation coefficient 
 
Skipping a parameter, we come to an unusual means of controlling 
the fundamental: octaviation.  This parameter is normally set to 0.  
For each unit increase in koct the fundamental pitch will drop by one 
octave.  The change of pitch is not by the normal means of glissando, 
but by gradually fading out alternate excitations (leaving half the 
original number).  Try the following (again with the longer note 
duration): 

 
k1   linseg    0,  p3*.1,  0,  p3*.8,  6,  p3*.1,  6 
a1   fof  15000,  200,  650,  k1  etc......... 
 
This produces a drop of six octaves;  if the note is sufficiently long 
you should be able to hear the fading out of alternate excitations 
towards the end. 
 
xform = formant frequency;  ifmode = formant mode (0 = striated, 
non-0 = smooth) 
 
The spectral output of a fof unit-generator resembles that of an 
impulse generator filtered by a band pass filter.  It is a set of partials 
above a fundamental xfund with a spectral peak at the formant 
frequency xform.  Motion of the formant can be implemented in two 
ways.  If ifmode = 0, 
data sent to xform has effect only at the start of a new excitation.  
That is, each excitation gets the current value of this parameter at the 
time of creation and holds it until the excitation ends.  Successive 
overlapping excitations can have different formant frequencies, 
creating a richly varied sound.  
This is the mode of the original CHANT program.  If ifmode is non-
zero, the frequency of each excitation varies continuously with 
xform.  This allows glissandi of the formant frequency.  To 
demonstrate these differences we take a very low fundamental so  
that the granules can be heard separately and the formant frequency 
is audible not as the center frequency of a “band” but as a pitch in its 
own right.  Compare the following in which only ifmode is changed: 
 
a2   line 400,  p3,  800 
a1   fof  15000,  5,  a2,  0,  1,  .003,  .5,  .1,  3,  1,  2,  
p3,  0,  0 
 
a2   line 400,  p3,  800 
a1   fof  15000,  5,  a2,  0,  1,  .003,  .5,  .1,  3,  1,  2,  
p3,  0,  1 
 
In the first case the formant frequency moves by step at the  start of 
each excitation, whereas in the second it changes smoothly.  A more 
subtle difference is perceived with higher fundamental frequencies.  
(Note that the later fof parameters were changed in this example to 
lengthen the excitations so that their pitch could be heard easily.) 
 
xform also permits frequency modulation of the formant frequency.  
Applying FM to an already complex sound can lead to strange 
results, but here is a simple example: 
 
acarr     line 400,  p3,  800 
index     =    2.0 
imodfr  =     400 
idev =    index * imodfr 
amodsig oscil  idev, imodfr, 1 
a1   fof  15000,  5,  acarr+amodsig,  0,  1,  .003,  .5,  .1,  3,  
1,  2,  p3,  0,  1  
 
kband = formant bandwidth 
kris, kdur, kdec = risetime, duration and decaytime (in seconds) of 
the excitation envelope 
 
These parameters control the shape and length of the fof granules.  
They are shaped in three segments:  a rise, a middle decay, and a 
terminating decay.  For very low fundamentals these are perceived as 
an amplitude envelope, but with higher fundamentals (above 30 Hz) 
the granules merge together and these parameters effect the timbre of 
the sound.  Note that these four parameters influence a new granule 
only at the time of its initialization and are fixed for its duration;  
later changes will affect only subsequent granules.  We begin our 
examination with low frequencies. 
 
k1   line .003,  p3,  .1        ; kris 
a1   fof  15000,  2,  300,  0,  0,  k1,  .5,  .1,  2,  1,  2,  p3  
 
Run this with a note length of 10 seconds.  Notice how the attack of 
the envelope of the granules lengthens.  The shape of this attack is 
determined by the forward shape of ifnb (here a sigmoid). 
 
Now try changing kband: 



 

 

46 

 
k1   linseg    0,  p3,  10                             ; kband 
a1   fof  15000,  2,  300,  0,  k1,  .003,  .5,  .1,  2,  1,  2,  
p3 
 
Following its rise, an excitation has a built-in exponential decay and 
kband determines its rate.  The bigger kband the steeper the decay;  
zero means no decay.  In the above example the successive granules 
had increasingly fast decays.   
 
k1   linseg    .3,  p3,  .003 
a1   fof  15000,  2,  300,  0,  0,  .003,  .4,  k1,  2,  1,  2, p3  
 
This demonstrates the operation of kdec.  Because an exponential 
decay never reaches zero it must be terminated gracefully.  Kdur is 
the overall duration (in seconds from the start of the excitation), and 
kdec is the length of the terminating decay.  In the above example the 
terminating decay starts very early in the first granules and then 
becomes progressively later.  Note that kband is set to zero so that 
only the terminating decay is evident. 
 
In the next example the start time of the termination remains 
constant, but its length gets shorter: 
 
k1   expon     .3,  p3,  .003 
a1   fof  15000,  2,  300,  0,  0,  .003,  .01 + k1,  k1,  2,  1, 2,  p3 
 
It may be surprising to find that for higher fundamentals the local 
envelope determines the spectral shape of the sound.  
Electronic and computer music has often shown how features of 
music we normally consider independent (such as pitch, timbre, 
rhythm) are in fact different aspects of the same thing.  In general, 
the longer the local envelope segment the narrower the band of 
partials around that frequency.  kband determines the bandwidth of 
the formant region at -6dB, and kris  controls the skirtwidth at -40dB.  
Increasing kband increases the local envelope’s exponential decay 
rate, thus shortening it and increasing the -6dbB spectral region.  
Increasing kris  (the 
envelope attack time) inversely makes the -40dB spectral region 
smaller. 
 
The next example changes first the bandwidth then the skirtwidth.  
You should be able to hear the difference. 
 
k1   linseg    100,   p3/4,   0,      p3/4,  100,  p3/2,  100              ; 
kband 
k2   linseg    .003,  p3/2,  .003,  p3/4,  .01,   p3/4,  .003             ; kris 
a1   fof  15000,  100,  440,  0,  k1,  k2,  .02,  .007,  3,  1, 2,  p3  
 
[In the first half of the note kris  remains constant while kband 
broadens then narrows again.  In the second half, kband is fixed 
while kris lengthens (narrowing the spectrum) then returns again.] 
 
Note that kdur and kdec don’t really shape the spectrum, they simply 
tidy up the decay so as to prevent unwanted discontinuities which 
would distort the sound.  For vocal imitations these parameters are 
typically set at .017 and .007 and left unchanged.  With high 
(“soprano”) fundamentals it is possible to shorten these values and 
save computation time (reduce overlaps). 
 
iolaps  = number of overlap spaces 
 
Granules are created at the rate of the fundamental frequency, and 
new granules are often created before earlier ones have finished, 
resulting in overlaps.  The number of overlaps at any one time is 
given by xfund * kdur.  For a typical bass note the calculation might 
be 200 * .018 = 3.6, and for a soprano note 660 * .015 = 9.9.  fof 
needs at least this number (rounded up) of spaces in which to 
operate.  The number can be over-estimated at no computation cost, 
and at only a small space cost.   If there are insufficient overlap 
spaces during operation, the note will terminate. 
 
ifna, ifnb  = stored function tables 
 
Identification numbers of two function tables (see the fof entry in the 
manual proper). 
 

itotdur  = total duration within which all granules in a note must be  
               completed 
  
So that incomplete granules are not cut off at the end of a note fof 
will not create new granules if they will not be completed by the time 
specified.  Normally given the value “p3” (the note length), this 
parameter can be changed for special effect;  fof will output zero 
after time itotdur. 
 
iphs  = initial phase (optional, defaulting to 0). 
 
Specifies the initial phase of the fundamental.  Normally zero, but 
giving different fof generators different initial phases can be helpful 
in avoiding “zeros” in the spectrum. 
 
 

Appendix 5: Csound for the Macintosh 
by 
Bill Gardner 
MIT Media Lab 
 
Introduction 
 
This document describes the Macintosh verson of the Csound 
program and assumes the reader is already familiar with the Csound 
program as described in the Csound Users Manual.  Csound is 
primarily intended for the UNIX operating system and hence its 
operation is specified through command line arguments.  The 
Macintosh version of Csound surrounds this mechanism with the 
standard Macintosh user interface primitives, e.g. menus and dialog 
boxes.  After the user specifies the Csound input files and options 
using the Macintosh user interface, Macintosh Csound creates the 
UNIX command line and invokes Csound appropriately.  
All subsequent Csound output is directed to a console window (or 
optionally to a listing file).  Output sound files are created in 
Digidesign’s Sound Designer II format or optionally in AIFF format.  
 
Orchestra and Score file selection dialog 
 
When Csound is launched, it automatically brings up the main file 
selection dialog. This dialog has fields for the required input 
orchestra and score files, the output sample file, and optionally a 
MIDI file and output listing file. Only the output file name may be 
explicitly typed in, the other fields must be filled by clicking on the 
corresponding Select button, which will bring up a standard 
Macintosh file selection dialog.  Because the orchestra and score file 
names usually differ only in the filename extension (“.orc” for 
orchestra files and “.sco” for score files), Csound only requires that 
you select one of the two; the other file name will be automatically 
formed by changing the extension appropriately.  If an output file is 
selected (in the Options dialog), then the output file name is similarly 
created with the extension “.snd”. 
Users familiar with Csound will recall that Csound expects all sound 
files to live in a single directory called the SFDir (for sound file 
directory).  On UNIX, this directory is specified via a UNIX shell 
environment variable.  On the Macintosh, the user must select this 
directory.  This can be done by clicking on the SFDir button next to 
the output file text item.  This brings up the Sound File Directory 
selection dialog which shows the current sound file directory.  When 
shipped, this will be blank.  The sound file directory must be set up 
properly in order that output files may be created.  Clicking on the 
Select button brings up a standard file selection dialog.  Navigate to 
the directory you want to use for sound files, and then click on the 
Save button.  
Finally, click on the Save Settings button so that Csound will 
remember this directory when it is run in the future. 
 
If an input MIDI file is desired, click on the MIDI file checkbox.  
This brings up a file selection dialog which can be used to select a 
MIDI file. 
 
If a listing file is desired, click on the listing file checkbox.  
This bring up a file selection dialog which can be used to specify an 
output listing file.  If a listing file is selected, Csound will route 
almost all output to the listing file.  Certain messages will still appear 
in the console window. 
 



 

 

47 

The Smp Fmt and Options buttons bring up other dialogs for setting 
the Csound output sample format and options, respectively.  These 
are described later in this document. 
 
After all the files and options have been set up, click on the OK 
button to run Csound.  If the files and options are incorrectly set up, 
Csound will report an error by printing an appropriate message to the 
console window.  After the score file has been processed, Csound 
will display the message “*** PRESS MOUSE BUTTON TO EXIT 
***”.  Pressing the mouse button will cause Csound to exit back to 
the Macintosh Finder.  It is not possible to process multiple files 
without relaunching Csound. 
 
Clicking on the Cancel button causes the file selection dialog to 
disappear.  The dialog can be brought back by selecting the Choose 
Orchestra and Score menu item in the Csound menu.  Note that 
cancelling the dialog does not cause Csound to forget the settings of 
the various options.  This is particularly useful if you want to select 
extra options explicity by using the “Enter command line...” menu 
item. 
 
Csound menu 
 
This section describes the menu items available in the Csound menu.  
To access the menu items the file selection dialog must be cancelled 
as described above. 
 
Choose Orchestra and Score... 
 
Selecting this menu item brings up the main file selection dialog 
described above. 
 
Options... 
 
Selecting this menu item brings up the options dialog containing 
checkboxes for each Csound option.  These are each described 
below: 
 
Note amplitudes 
 
When checked, causes information regarding note amplitudes to be 
displayed. Corresponds to the -m1 option in UNIX Csound. 
 
Samples out of range 
 
When checked, causes information regarding out of range samples to 
be displayed.  Corresponds to the -m2 option in UNIX Csound. 
 
Warnings 
 
When checked, causes information regarding out of range samples to 
be displayed.  Corresponds to the -m4 option in UNIX Csound. 
 
No table graphics 
 
When checked, suppresses the display of Csound wavetables.  
Corresponds to the -d option in UNIX Csound. 
 
Diagnostic messages 
 
When checked, causes diagnostic messages to be displayed.  
Corresponds to the -v option in UNIX Csound. 
 
Initialize processing only 
 
When checked, causes Csound to only perform initialization of 
orchestras and no other processing.  Corresponds to the -I option in 
UNIX Csound. 
 
No sound output 
 
When checked, suppresses the output of a sound file.  Corresponds to 
the -n option in UNIX Csound. 
 
Change file types 
 

When checked, Csound will change the file creator field of the 
selected orchestra and score files.  This lets the Macintosh Finder 
know that the files are associated with the Csound application.  Thus, 
if you subsequently double-click on one of these files from the 
Finder, Csound will be executed using the selected file as input. 
 
Output Sample Format... 
 
Selecting this menu item brings up the output sample format dialog 
which controls the format of the output sample file.  All sound files 
are created as Digidesign Sound Designer II format files, unless the -
A option is specified in the command line, which causes Csound to 
create AIFF (Audio Interchange File Format) files.  The radio 
buttons select the sample format and default to 16-bit integer.  The 8-
bit integer, 8-bit a-law, 8-bit µ-law, 16-bit integer, 32-bit integer, and 
32-bit float formats correspond to the -c, -a, -u, -s, -l, and -f options, 
respectively, in UNIX Csound.  Note that 8-bit a-law format is not 
supported.  If the no header checkbox is checked, this suppresses the 
output of a sound file header; only the raw samples are output.  This 
corresponds to the -h option in UNIX Csound.  The blocksize 
controls how many samples are accumulated before writing to the 
output sample file.  This corresponds to the -b option in UNIX 
Csound.  Note that all input files must be either Digidesign Sound 
Designer II format, AIFF format or raw16-bit samples. 
 
Sound File Directory... 
 
Selecting this menu item brings up the sound file directory dialog.  
This dialog is described above in the file selection dialog section.  
 
Sampled Sound Directory... 
 
Selecting this menu item brings up the sampled sound directory 
dialog.  This dialog allows the user to specify the directory where 
Csound will look for sampled sound files to be loaded into function 
tables.  This corresponds to the SSDir shell environment variable in 
UNIX Csound.  If no directory is specified, Csound will look for 
sampled sounds in the sound file directory, described earlier. 
 
Enter Command Line... 
 
Selecting this menu item brings up the command line dialog.  The 
command line dialog is used for directly entering a UNIX command 
line to invoke Csound.  This is useful for specifying obscure 
arguments to Csound which are not otherwise supported in the 
Macintosh interface.  (The AIFF file option -A is one such option).  
The dialog comes up with a command line that corresponds to all 
currently selected files and options.  The command line appears in a 
Macintosh text edit field for editing.  
When specifying file name arguments that contain spaces, enclose 
the argument in double-quotes.  Click on OK to invoke Csound with 
the specified arguments, or click on Cancel to exit the dialog without 
executing Csound. 
 
 
Save Settings 
 
Selecting this menu item causes all option settings to be remembered 
for the next time Csound is executed. 
 
Quit 
 
Selecting this menu item causes Csound to exit to the Macintosh 
Finder. 
 
This documentation written on February 10, 1992 by Bill Gardner, 
MIT Media Laboratory, Music and Cognition Group, 20 Ames 
Street, Cambridge MA 02139.   
internet: billg@media-lab.media.mit.edu 
 
 

Appendix 6:  Adding your own Cmodules to 
Csound 
 
If the existing Csound generators do not suit your needs, you can 
write your own modules in C and add them to the run-time system.  



 

 

48 

When you invoke Csound on an orchestra and score file, the 
orchestra is first read by a table-driven translator ‘otran’ and the 
instrument blocks converted to coded templates ready for loading 
into memory by ‘oload’ on request by the score reader.  
To use your own C-modules within a standard orchestra you need 
only add an entry in otran’s table and relink Csound with your own 
code. 
 
The translator, loader, and run-time monitor will treat your module 
just like any other provided you follow some conventions.  
You need a structure defining the inputs, outputs and workspace, plus 
some initialization code and some perf-time code.  Let’s put an 
example of these in two new files, newgen.h and newgen.c:  
 
     typedef struct {                   /*  newgen.h  -  define a structure */ 
          OPDS      h;                  /* required header */ 
          float          *result, *istrt, *incr, *itime, *icontin; /* addr outarg, 
inargs   */ 
          float          curval, vincr;           /* private dataspace */ 
          long          countdown;                    /* ditto       */ 
     }  RMP; 
 
     #include “cs.h”                    /*  newgen.c  -  init and perf code */ 
     #include “newgen.h” 
 
     void rampset(p)                    /* at note initialization:     */ 
       register  RMP  *p; 
     { 
          if  (*p->icontin == 0.) 
          p->curval = *p->istrt;   /* optionally get new start value */ 
          p->vincr = *p->incr / esr;    /* set s-rate increment per sec.   */ 
          p->countdown = *p->itime * esr; /* counter for itime seconds     
*/ 
     } 
 
     void ramp(p)                            /* during note performance:   */ 
       register  RMP  *p; 
     { 
          register float *rsltp = p->result;  /* init an output array pointer  
*/ 
          register int nn = ksmps;               /* array size from orchestra */ 
          do { 
               *rsltp++ = p->curval;            /* copy current value to ouput 
*/ 
               if (--p->countdown >= 0)      /* for the first itime seconds, 
*/ 
                    p ->curval += p->vincr;    /*   ramp the value  */ 
          } while (--nn); 
     } 
Now we add this module to the translator table entry.c, under the 
opcode name rampt: 
 
     #include “newgen.h” 
     void rampset(), ramp(); 
 
     /*   opcode    dspace    thread    outarg    inargs      isub       ksub     
asub    */ 
     { “rampt”,     S(RMP),   5,   “a”, “iiio”,     rampset,  NULL,     
ramp  }, 
 
Finally we relink Csound to include the new module.  Under Unix 
this means changing the Makefile in three places: 
 
     1.  Add the name newgen.o to the variable OBJS. 
     2.  Add the name newgen.h as a dependency for entry.o  
     3.  Create a new dependency,  newgen.o: newgen.h 
 
Now run ‘make csound’.   If your host is a Macintosh, simply add 
newgen.h and newgen.c to one of the Csound segments and invoke 
the C compiler. 
 
The above actions have added a new generator to the Csound 
language.  It is an audio-rate linear ramp function which modifies an 
input value at a user-defined slope for some period.  
A ramp can optionally continue from the previous note’s last value.  
The Csound manual entry would look like: 
 

          ar   rampt     istart,  islope, itime [,  icontin] 
 
istart - beginning value of an audio-rate linear ramp.  
Optionally overridden by a continue flag. 
 
islope - slope of ramp, expressed as the y-interval change per second. 
 
itime - ramp time in seconds, after which the value is held for the 
remainder of the note. 
 
icontin (optional) - continue flag.  If zero, ramping will proceed from 
input istart .  If non-zero, ramping will proceed from the last value of 
the previous note.  The default value is zero. 
 
The file newgen.h includes a one-line list of output and input 
parameters.  These are the ports through which the new generator  
will communicate with the other generators in an instrument.  
Communication is by address, not value, and this is a list of pointers 
to floats.  There are no restrictions on names, but the input-output 
argument types are further defined by character strings in entry.c 
(inargs, outargs).   Inarg types are commonly x, a, k, and i, in the 
normal Csound manual conventions;  also available are o (optional, 
defaulting to 0), p (optional, defaulting to 1).  Outarg types include a, 
k, i and s (asig or ksig).  It is important that all listed argument names 
be assigned a corresponding argument type in entry.c.  Also, i-type 
args are valid only at initialization time, and other-type args are 
available only at perf time.  Subsequent lines in the RMP structure 
declare the work space needed to keep the code re-entrant.  These 
enable the module to be used multiple times in multiple instrument 
copies while preserving all data. 
 
The file newgen.c contains two subroutines, each called with a 
pointer to the uniquely allocated RMP structure and its data.  
The subroutines can be of three types: note initialization, k-rate 
signal generation, a-rate signal generation.  A module normally 
requires two of theseÑinitialization, and either k-rate or a-rate 
subroutinesÑwhich become inserted in various threaded lists of 
runnable tasks when an instrument is activated.  The thread-types 
appear in entry.c in two forms:  isub, ksub and asub names;  and a 
threading index which is the sum of isub=1, ksub=2, asub=4.  The 
code itself may reference global variables defined in cs.h and oload.c, 
the most useful of which are: 
          float     esr         user-defined sampling rate 
          float     ekr        user-defined control rate 
          float     ensmps  user-defined ksmps 
          int  ksmps          user-defined ksmps 
          int  nchnls          user-defined nchnls 
          int  odebug        command-line -v flag 
          int  initonly       command-line -I flag 
          int  msglevel     command-line -m level 
          float     pi, twopi obvious constants 
          float     tpidsr         twopi / esr 
          float     sstrcod   special code for string arguments 
 
Function tables 
 
To access stored function tables, special help is available.  The newly 
defined structure should include a pointer 
 
                    FUNC        *ftp; 
 
initialized by the statement 
 
                    ftp = ftpfind(p->ifuncno); 
 
where float *ifuncno is an i-type input argument containing the ftable 
number.  The stored table is then at ftp->ftable, and other data such 
as length, phase masks, cps-to-incr converters, are also accessed from 
this pointer.  See the FUNC structure in cs.h, the ftfind() code in 
fgens.c, and the code for oscset() and koscil() in ugens2.c.  
 
Additional space 
 
Sometimes the space requirement of a module is too large to be part 
of a structure (upper limit 65535 bytes), or it is dependent on an i-arg 
value which is not known until initialization.  



 

 

49 

Additional space can be dynamically allocated and properly managed 
by including the line 
 
                    AUX CH      auxch; 
 
in the defined structure (*p), then using the following style of code in 
the init module: 
 
               if (p->auxch.auxp == NULL) 
               auxalloc(npoints * sizeof(float), &p->auxch); 
 
The address of this auxilliary space is kept in a chain of such spaces 
belonging to this instrument, and is automatically managed while the 
instrument is being duplicated or garbage-collected during 
performance.  The assignment 
 
               char *auxp = p->auxch.auxp; 
 
will find the allocated space for init-time and perf-time use.  
See the LINSEG structure in ugens1.h and the code for lsgset() and 
klnseg() in ugens1.c. 
 
File sharing 
 
When accessing an external file often, or doing it from multiple 
places, it is often efficient to read the entire file into memory.  This is 
accomplished by including the line 
 
                    MEMFIL    *mfp; 
 
in the defined structure (*p), then using the following style of code in 
the init module: 
 
               if (p->mfp == NULL) 
                    p ->mfp = ldmemfile(filname); 
 
where char *filname is a string name of the file requested.  The data 
read will be found between  
 
     (char *)  p->mfp->beginp;          and       (char *) p->mfp->endp; 
 
Loaded files do not belong to a particular instrument, but are 
automatically shared for multiple access.  See the ADSYN structure 
in ugens3.h and the code for adset() and adsyn() in ugens3.c. 
 
String arguments 
 
To permit a quoted string input argument (float *ifilnam, say) in our 
defined structure (*p), assign it the argtype S in entry.c, include 
another member char *strarg in the structure, insert a line 
 
                    TSTRARG( “rampt”,  RMP)  \ 
 
in the file oload.h, and include the following code in the init module:  
 
               if (*p->ifilnam == sstrcod) 
                    strcpy(filename, unquote(p->strarg)); 
 
See the code for adset() in ugens3.c, lprdset() in ugens5.c, and 
pvset() in ugens8.c. 
 

 
Appendix 7:  A CSOUND QUICK REFERENCE  
 
VALUE CONVERTERS  
               

ftlen(x)  (init-rate args only) 
int(x)  (init- or control-rate args only) 
frac(x)                        “         “ 
dbamp(x)                   “         “ 
i(x)  (control-rate arg; only) 
abs(x)  (no rate restriction) 
exp(x)                         “         “ 
log(x)                        “         “ 
sqrt(x)                       “         “ 
sin(x)                         “         “ 
cos(x)                        “         “ 

ampdb(x)                   “         “ 
 
PITCH CONVERTERS  
               

octpch(pch)  (init- or control-rate args only) 
pchoct(oct)                      “         “ 
cpspch(pch)                    “         “ 
octcps(cps)                      “         “ 
cpsoct(oct)  (no rate restriction) 

 
PROGRAM CONTROL  
                

igoto  label 
tigoto  label 
kgoto  label 
goto  label 
if  ia R ib igoto label 
if  ka R kb kgoto label 
if  ia R ib goto label 
timout  istrt, idur, label 

 
 
 
MIDI CONVERTERS 
         

iamp  ampmid
i  

iscal[, ifn] 

kaft  aftouch    iscal 
kchpr    chpress    iscal 
kbend   pchben

d   
iscal 

ival  midictrl   inum 
kval  midictrl   inum 

 
SIGNAL GENERATORS  
 
kr  line ia, idur1, ib 
ar  line ia, idur1, ib 
kr  expon ia, idur1, ib 
ar  expon ia, idur1, ib 
kr  linseg ia, idur1, ib[, idur2, ic[...]] 
ar  linseg ia, idur1, ib[, idur2, ic[...]] 
kr  expseg ia, idur1, ib[, idur2, ic[...]] 
ar  expseg ia, idur1, ib[, idur2, ic[...]] 
   
kr  phasor kcps[, iphs] 
ar  phasor xcps[, iphs] 
   
ir  table indx, ifn[, ixmode][, ixoff][, iwrap] 
ir  tablei indx, ifn[, ixmode][, ixoff][, iwrap] 
kr  table kndx, ifn[, ixmode][, ixoff][, iwrap] 
kr  tablei kndx, ifn[, ixmode][, ixoff][, iwrap] 
ar  table andx, ifn[, ixmode][, ixoff][, iwrap] 
ar  tablei andx, ifn[, ixmode][, ixoff][, iwrap] 
kr  oscil1 idel, kamp, idur, ifn 
kr  oscil1i idel, kamp, idur, ifn 
   
kr  oscil kamp, kcps, ifn[, iphs] 
kr  oscili kamp, kcps, ifn[, iphs] 
ar  oscil xamp, xcps, ifn[, iphs] 
ar  oscili xamp, xcps, ifn[, iphs] 
ar  foscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs] 
ar  foscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs] 
ar1 [,ar2]  loscil xamp, kcps, ifn[, ibas][, imod1,ibeg1,iend1] 

[,imod2,ibeg2,iend2] 
   
ar  buzz xamp, xcps, knh, ifn[, iphs] 
ar  gbuzz xamp, xcps, knh, kih, kr, ifn[, iphs] 
   
ar  adsyn kamod, kfmod, ksmod, ifilcod 
ar  pvoc ktimpnt, kfmod, ifilcod[, ispecwp] 
   
ar  fof xamp, xfund, xform, koct, kband, kris, kdur, 

kdec, iolaps, ifna, ifnb, itotdur[, iphs][, ifmode] 
ar  pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2] 
   
kr  rand xamp[, iseed] 



 

 

50 

kr  randh kamp, kcps[, iseed] 
kr  randi kamp, kcps[, iseed] 
ar  rand xamp[, iseed] 
ar  randh xamp, xcps[, iseed] 
ar  randi xamp, xcps[, iseed] 
 
SIGNAL MODIFIERS 
         
kr  linen kamp, irise, idur, idec 
ar  linen xamp, irise, idur, idec 
kr  linenr kamp, irise, idec, iatdec 
ar  linenr xamp, irise, idec, iatdec 
kr  envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod] 
ar  envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod] 
    
kr  port ksig, ihtim[, isig] 
ar  tone asig, khp[, istor] 
ar  atone asig, khp[, istor] 
arreson   asig, kcf, kbw[, iscl, istor] 
ar  areson asig, kcf, kbw[, iscl, istor] 
    
  krmsr,   krmso,  

kerr, 
kcpslpread ktimpnt,ifilcod[, inpoles][,ifrmrate] 

ar  lpreson asig 
ar  lpfreson asig, kfrqratio 
    
kr  rms asig[, ihp, istor] 
nr  gain asig, krms[, ihp, istor] 
ar  balance asig, acomp[, ihp, istor] 
kr  downsamp asig[, iwlen] 
ar  upsamp ksig 
ar  interp ksig[, istor] 
kr  integ ksig[, istor] 
ar  integ asig[, istor] 
kr  diff ksig[, istor] 
ar  diff asig[, istor] 
kr  samphold xsig, kgate[, ival, ivstor] 
ar  samphold asig, xgate[, ival, ivstor] 
    
ar  delayr idlt[, istor] 
 delayw asig 
ar  delay asig, idlt[, istor] 
ar  delay1 asig[, istor] 
ar  deltap kdlt 
ar  deltapi xdlt 
    
ar  comb asig, krvt, ilpt[, istor] 
ar  alpass asig, krvt, ilpt[, istor] 
ar  reverb asig, krvt[, istor] 
 
OPERATIONS USING SPECTRAL DATA TYPES 
          

dsig  octdown xsig, iocts, isamps[, idisprd] 
wsig  noctdft dsig, iprd, ifrqs, iq[, ihann, idbout, idsines] 
wsig  specscal wsigin, ifscale, ifthresh 
wsig  specadd

m 
wsig1, wsig2[, imul2] 

wsig  specdiff wsigin 
wsig  specaccm wsigin 
wsig  specfilt wsigin, ifhtim 
 specdisp wsig, iprd[, iwtflg] 
ksu
m  

specsum wsig[, interp] 

 
SENSING & CONTROL 
 

ktemp 
tempest  

kin, iprd, imindur, imemdur, ihp, ithresh, 
ihtim, ixfdbak, istartempo, ifn[, idisprd, 
itweek] 

  
kx, ky xyin  iprd, ixmin, ixmax, iymin, iymax[,ixinit, 

iyinit] 
           tempo  ktempo, istartempo 

 
SOUND INPUT & OUTPUT 
          
a1  in  

a1, a2  ins  
a1, a2, a3, a4  inq  
a1  soundin ifilcod[,iskptim][, iformat] 
a1, a2  soundin ifilcod[,iskptim][, iformat] 
a1, a2, a3, a4  soundin ifilcod[,iskptim][, iformat] 
  out asig 
  outs1 asig 
  outs2 asig 
  outs asig1, asig2 
    
  outq1 asig 
  outq2 asig 
  outq3 asig 
  outq4 asig 
  outq asig1, asig2, asig3, asig4 
    
a1, a2, a3, a4  pan asig, kx, ky, ifn[, imode][,ioffset] 
 
SIGNAL DISPLAY 
                

print  iarg[, iarg,...] 
display  xsig, iprd[, iwtflg] 
dispfft  xsig, iprd, iwsiz[, iwtyp][, idbouti][,iwtflg] 

 
END OF Csound MANUAL 

 
 
Log of changes introduced from 3.15.10  
 
CSOUND for MSDOS 
CSOUND for ATARI ST 
John Fitch 
School of Mathematical Sciences 
University of Bath 
Bath BA2 7AY 
England 
Tel: +44-1225-826820 
FAX: +44-1225-826492 
E-mail: jpff@maths.bath.ac.uk 
or  J.P.Fitch@bath.ac.uk 
        
(also Codemist Ltd, Tel/FAX: +44-1225-837430) 
 
csound_286.zip 
csound_fpt_286.zip 
csound_386.zip 
csound_fpt_386.zip 
csound_486.zip 
csound_src.zip 
 
These files are the executables for CSound for 286/386/486 machines 
running MS-DOS.  There are versions built for a plain machine and 
for a machine with a floating point co-processor.  
 
Also, the files *.ttp are Csound for the Atari ST.  See below for 
ATARI notes. 
 
NOTE: The 486 version does not seem to work on an 486SX, for 
which the 386 version should be used. 
 
Note: I have not tried all these versions myself, as I have a 386 
without co-processor. 
 
There is a mailing list kept for this version; to join send mail to 
pcsound-request@maths.bath.ac.uk.  There is also a Csound mailing 
list for discussion of any aspect of the system, and a WWW page at 
http://www.leeds.ac.uk/music/Man/c_front.html 
 
Local Changes:  
============= 
It attempts to do graphics.  It is supposed to adjust to your graphics 
system.  See below for notes on how to set screen types explicitly.  I 
also have graphics in PVANAL and LPANAL with a -g option.  In 
CSOUND itself there is a pause before and after each graph.  This 
can be turned off if the environment variable CSNOSTOP is set to 
YES. 



 

 

51 

The WAV file format was all new for the PC, but is now in the main 
sources. To ensure you get WAV sound files either use the -W 
option, or set an environment variable SFOUTYP to WAV in your 
AUTOEXEC.BAT 
The system on a 386 or 486 will recognise the output file devaudio as 
an attempt to us a sound card for direct output (SoundBlaster or 
compatible). This is not yet finished, and seems to be limited to less 
than 14KHz sampling, and 8 bit samples in mono.  I am attempting 
to improve that.  On my slow 386 the machine cannot keep up with 
generating in time, so there is a chopping effect.  Your mileage may 
vary. 
 
I have introduced a local version number; currently I have v3.20.10.  
The major number refers to MIT’s current version (3 is the beta), the 
20 is my sequence number for the PC, and the 10 is the version of the 
“real time” support. 
 
There are three new utilities to scale for amplitude, a mixer for 
mixing sound files together, and a mkgraph program to write 
envelopes for these two. 
 
Version 3.20.10: 
A number of changes in the MIDI area.  A number of new generators 
added, including Butterworth filters, vdelay, multitap and reverb2. 
Also granular synthesis generator and stochastic generators.  There is 
an envelope-following generator as well.  See Appendix 7 for details 
of these generators.  These are largely the work of Paris Smaragdis.  
 
Version 3.19.10: 
Not released 
 
Version 3.18.10: 
Not released 
 
Version 3.17.10: 
Created new utility mkgraph which creates envelope files using the 
mouse for drawing.  These files can be used by mixer and scale to 
provide more flexible gain control on sound files. 
New utility ENVEXT for create an envelope file from a sound file. 
 
Version 3.16.10: 
Mixer and scale can take envelope files 
 
Version 3.15.10: 
Experimentally I have attempted to read the device sbmidi as a MIDI 
input for use with the -M option.  I have no idea if this works. 
When using -o devaudio (also can use -o dac or -o sblst) it will force 
the format to be -c or -s. 
The mixer can now take varying numbers of channels as input and 
can 
include some or all channels, and can direct input channel n to output 
channel m.  As the scaling can be negative as well as positive this 
incorporates removal of information as well.  The syntax is not good, 
but inspiration is not with me this weekend.  
 
Copyright: 
========= 
The systems are the product of the MIT Media Laboratory, and this 
is their copyright notice: 
------------------------------------------------------------------------ 
 
Copyright 1986, 1987 by the Massachusetts Institute of Technology. 
All rights reserved. 
 
Developed by Barry L. Vercoe at the Experimental Music Studio, 
Media Laboratory, M.I.T., Cambridge, Massachusetts, with partial 
support from the System Development Foundation, and from NSF 
Grant IRI-8704665. 
 
Permission to use, copy, or modify these programs and their 
documentation for educational and research purposes only and 
without fee is hereby granted, provided that this copyright and 
permission notice appear on all copies and supporting 
documentation.  For any other uses of this software, in original or 
modified form, including but not limited to distribution in whole or 
in part, specific prior permission from M.I.T. must be obtained.  

M.I.T. makes no representations about the suitability of this software 
for any purpose. 
It is provided “as is” without express or implied warranty. 
 
------------------------------------------------------------------------ 
The mixer and SoundBlaster support are probably my copyright, and 
I hereby give permission to use, copy, or modify this code for any 
purpose whatsoever.  I would like my name to remain in there, but I 
do not insist. 
 
Interested parties should note that CSound is a system for creation of 
sound, and is not a MIDI sequencer. 
 
The systems built are described briefly below. 
 
CSOUND EXE 
digital audio processing and sound synthesis 
 
 csound [flags] orchfile scorefile 
 
Csound is an environment in which a “scorefile” or external event 
sequence can invoke arbitrarily complex signal-processing 
“instruments” to produce sound.  Audio may be displayed during its 
creation, and the resulting sound sent to an on-line audio device or to 
an intermediate soundfile for later playback.  Flags include 
-C        use Cscore processing of scorefile 
-I          I-time only orch run 
-n         no sound onto disk 
-i          fnam sound input filename 
-o fnam sound output filename (if fnam is devaudio, dac or sblst use  
                                                 directly) 
-b N        sample frames (or -kprds) per software sound I/O buffer 
-B N       samples per hardware sound I/O buffer 
-A           create an AIFF format output soundfile 
-W          create a WAV format output soundfile 
-h            no header on output soundfile 
-c            8-bit signed_char sound samples 
-a            alaw sound samples 
-u            ulaw sound samples 
-s            short_int sound samples 
-l             long_int sound samples 
-f             float sound samples 
-r N        orchestra srate override 
-v            verbose orch translation 
-m N       tty message level. Sum of: 1=note amps, 2=out-of-range 
msg,        4=warnings, 8=SB mesages 
-d            suppress all displays 
-g            suppress graphics, use ascii displays 
-S            score is in Scot format 
-t N         use uninterpreted beats of the score, initially at tempo N 
-L dnam   read Line-oriented realtime score events from device 
‘dnam’ 
-M dnam  read MIDI realtime events from device ‘dnam’ (must be  
                sbmidi) 
-F fnam    read MIDIfile event stream from file ‘fnam’ 
-P N        MIDI sustain pedal threshold (0 - 128) 
-R            continually rewrite header while writing soundfile  
                (WAV/AIFF) 
-H            print a heartbeat character at each soundfile write 
-N            notify (ring the bell) when score or miditrack is done 
-T            terminate the performance when miditrack is done 
 
flag defaults: csound -s -otest -b1024 -B1024 -m7 -P128 
 
 
CSCORE.LIB 
Cscore is a program for generating and manipulating numeric score 
files. 
It comprises a number of function subprograms, called into operation 
by a user-written main program. 
The function programs augment the C language library functions; 
they can optionally read standard numeric score files, can massage 
and expand the data in various ways, then write the data out as a new 
score file to be read by a Csound orchestra. 
 
EXTRACT.EXE 
Program for extracting parts of a work.  Not tested in PC version 



 

 

52 

 
HETRO.EXE 
 hetrodyne filter analysis for Csound adsyn module 
 hetro [flags] [fundamental] [filename] 
 
hetro takes as input a file containing amplitude samples of some 
sound over time (it is assumed that the samples are evenly spaced in 
time) and decomposes that sound into a set of harmonically related 
sine waves with time varying amplitude and phase. 
 
LPCANAL.EXE 
Paul Lansky’s software for linear predictive analysis and pitch 
tracking, adapted for Csound. 
    
                 lpcanal [-p<n> -i<n> -s<t> -d<t> -o<file> -C<str> -P<frq>  
                               -Q<frq>] soundfile 
 
lpcanal is the new experimental combination of the old anallpc and 
ptrack. It performs linear predictive analysis and pitch tracking on 
monaural 16bit fixed point soundfiles.  If a -g flag is used then a 
graphical display is given of some of the output as it is being 
computed. 
 
PVANAL.EXE 
Fourier analysis module for Csound PVOC unit generator 
  
       pvanal  [-n frame-size] [-o overlap | -i increment] \ 
                    inputSoundFile outputFFTFile 
 
pvanal converts a playable sample (a time-domain representation) 
into 
a series of short-time Fourier transform (STFT) frames centred at 
regular points throughout the file (a frequency-domain 
representation). The output file can then be used as the data for the 
PVOC unit generator in Csound to generate notes based on the 
original sample, but with their timescales and pitches arbitrarily and 
dynamically modified.  If a -g flag is used then a graphical display is 
given of some of the output as it is being computed. 
 
SCOT.EXE         
Scot is a scoring program to prepare input for CSound.  It is rather 
complex and initial testing on the PC suggests that I have not got it 
correct yet. 
 
SCSORT.EXE       
Stand-alone sorting of sound files 
Not tested on PC 
 
SNDINFO.EXE      
Reads the header of a sound file to identify type, duration etc 
 
 sndinfo soundfile 
 
SCALE.EXE 
As well as doing the same as SNDINFO this utility reports on the 
maximum amplitude, and can generate a new soundfile with the 
amplitude scaled by a floating point value. 
 
 scale [-flags] soundfile 
 
Legal flags are: 
-o fnam       sound output filename 
-A               create an AIFF format output soundfile 
-W              create a WAV format output soundfile  
-h                no header on output soundfile 
-c                8-bit signed_char sound samples 
-a                alaw sound samples 
-u                ulaw sound samples 
-s                short_int sound samples 
-l                 long_int sound samples 
-f                 float sound samples 
-F fpnum     amount to scale amplitude 
-F fname     envelope file for scaling 
-R               continually rewrite header while writing soundfile  
                   (WAV/AIFF) 
-H              print a heartbeat character at each soundfile write 
-N              notify (ring the bell) when score or miditrack is done 

 
flag defaults: scale -s -otest -F 0.0 
 
If scale is 0.0 then reports maximum possible scaling; otherwise 
scale 
and generate a new soundfile 
 
MIXER.EXE 
This utility can mix together a number of sound files (up to 20 at 
present) with different starting times and with scaling on each file. 
 
 mixer [-flags] soundfile [-flags] soundfile ... 
 
Legal flags are: 
-o       fnam sound output filename 
-A      create an AIFF format output soundfile 
-W     create a WAV format output soundfile 
-h       no header on output soundfile 
-c       8-bit signed_char sound samples 
-a       alaw sound samples 
-u       ulaw sound samples 
-s       short_int sound samples 
-l                long_int sound samples 
-f                float sound samples 
-F fpnum    amount to scale amplitude of next sound file 
-F fname    an envelope file for scaling 
-R              continually rewrite header while writing soundfile    
                  (WAV/AIFF) 
-H              print a heartbeat character at each soundfile write 
-N              notify (ring the bell) when score or miditrack is done 
-S int          Sample at which to insert next sound file 
-T fpnum    Time at which to insert next sound file 
-1 -2 -3 -4  include named channel 
-^ n m         include channel n and output as channel m 
 
Defaults are: mixer -s -otest -F1.0 -S0 
 
MIXER can also be used for some echo effects. 
 
MKGRAPH.EXE 
A small utility to creat envelope files for MIXER and SCALE.  Type 
? when the program is running to get all the controls. 
 
 mkgraph [-v] [envfile] [-o outname] 
 
Default is mkgraph -o newgraph.  If an envfile is given it is loaded 
and can be editted.  envfile and outname can be the same. 
 
ENVEXT.EXE 
Given a sound file it creates an envelope file with an approximation 
to the envelope of the sound file.  
 
 envext [-w time] [-o file] soundfile 
 
Defaults are 
 
 envext -w 0.25 -o newenv 
 
 
Graphics: 
======== 
 
The graphics is just for the display of waveforms.  The full 
specification of the graphics used says that it tries auto-determining 
the graphics on the machine.  This can sometimes fail, so it reads the 
environment variable FG_DISPLAY, and if set as below it uses that 
kind of graphics. 
 
 Value                                 Type 
 =====                               ==== 
 GCAHIRES                      GCA 640 x 200 x 2 
 GCAMEDRES                  GCA 320 x 200 x 4 
 EGACOLOR                     EGA 640 x 200 x 16 
 EGAECD                          Enhanced EGA 640 x 350 x 16 
 EGALOWRES 
 EGAMONO 
 EVGAHIRES                    Everest EVGA board 



 

 

53 

 HERCFULL                      Hercules 2 pages 2 colour 
 HERCHALF                     Hercules 1 page  2 colour 
 ORCHIDPROHIRES        VGA type 
 PARADISEHIRES            VGA type 
 TOSHIBA                         Toshiba 3100 -- 640 x 400 x 2 
 TRIDENTHIRES              Trident 800 x 600 x 16 
 VEGAVGAHIRES            Video 7 vega VGA board 
 VESA6A                           VESA mode 0x6a 
 VESA2                              VESA mode 0x102 
 VGA11                              IBM VGA mode 0x11 
 VGA12                              IBM VGA mode 0x12 
 VGA13                              IBM VGA mode 0x13 
 8514A                               IBM 8514A display adapter 
 
Virtual Memory: 
============== 
 
The system uses virtual memory on 386/486.  The limits on memory 
size are the minimum of 
 1. Free disk space + code size 
 2. 256 times your extended memory 
 3. 3.5Gbytes (!) 
 
You should set up the environment variable TMP or TEMP to the 
disk to use for swap space.  If this is not set it looks at disks C:, D:, ... 
looking for the largest free space.  That gives the limit of space. 
 
Reporting Bugs: 
============== 
 
Please mail (or possibly FAX) me reports on any bugs and 
shortcomings of the PC version.  I will endeavour to fix or assist, but 
it is only fair to warn you that this is not either of my jobs, and so it 
may be lower in priorities.  But I am interested in widening the 
availability of CSound. 
 
The system has been built with Zortech’s C++ Compiler, with its 
royalty-free DOS extender, x and z modes, and FlashTech’s virtual 
memory and graphics.  We (as Codemist) use this system for a 
commercial product, and it seems satisfactory, and reasonably 
trouble 
free. 
 
 
DOS6: 
==== 
 
It is known that the DOS6 memory manager does not obey the full 
rules, and so interferes with Csound.  I now have a fix for this, and 
the 
corrected version is now on the server, but there do still seem to be 
problems.  The old fix was to ensure that in your AUTOEXEC.BAT 
or 
CONFIG.SYS that if there is a call to 
 
 emm386 -noems 
 
in it that you change this to read 
 
 emm386 
 
This should fix things for now.  Or remove the line!  
 
80286 - version 
=============== 
 
The files in the 286 versions also need the program  ZPM.EXE, 
which is provided, in your search path. 
 
 
John Fitch 
School of Mathematical Sciences         Codemist Ltd 
University of Bath                                 “Alta”, Horsecombe Vale 
Bath BA2 7AY                                      Combe Down, Bath BA2 
5QR 
United Kingdom                                    United Kingdom 
Tel: +44-1225-826820                         Tel: +44-1225-837430 

FAX: +44-1225-826492                       FAX: +44-1225-837430 
 
------------------------------------------------------------------------ 

Appendix 7 : Newest Csound opcodes 
by 
Paris Smaragdis 
Berklee College of Music 
 
This appendix describes recent additions to Csound.  These additions 
include a granular synthesis synthesizer, a new set of filters, a new 
variable delay, a multitap delay, a new reverb, an envelope follower, 
various noise generators, a power function generator and two gen 
routines, GEN20 and GEN21. 
 
1) Granular synthesizer. 
 
ar      grain    xamp, xpitch, xdens, kampoff, kpitchoff, kgdur, igfn,     
                     iwfn, imgdur 
 
Generates granular synthesis textures. 
 
INITIALIZATION 
 
igfn, igdur - igfn is the ftable number of the grain waveform.  This 
can be just a sine wave or a sampled sound of any length.  Each grain 
will start from a random table position and sustain for igdur seconds. 
 
iwfn - Ftable number of the amplitude envelope used for the grains 
(see also GEN20). 
 
imgdur - Maximum grain duration in seconds.  This the biggest value 
to be assigned on kgdur. 
 
 
PERFORMANCE 
 
xamp - Total amplitude of the sound. 
 
xpitch  - Grain frequency in cps. 
 
xdens - Density of grains measured in grains per second.  If this is 
constant then the output is synchronous granular synthesis, very 
similar to fof.  If xdens has a random element (like added noise), then 
the result is more like asynchronous granular synthesis. 
 
kampoff - Maximum amplitude deviation from kamp.  This means 
that the maximum amplitude a grain can have is kamp + kampoff and 
the minimum is kamp.  If kampoff is set to zero then there is no 
random amplitude for each grain. 
 
kpitchoff - Maximum pitch deviation from kpitch in cps.  Similar to 
kampoff. 
 
kgdur - Grain duration in seconds.  The maximum value for this 
should be declared in imgdur.  If kgdur at any point becomes greater 
than imgdur, it will be truncated to imgdur. 
 
 
2) Butterworth filters. 
 
 ar      butterhp        asig, kfreq 
 ar      butterlp         asig, kfreq 
 ar      butterbp        asig, kfreq, kband 
 ar      butterbr        asig, kfreq, kband 
 
Implementations of second-order hipass, lopass, bandpass and 
bandreject Butterworth filters. 
 
PERFORMANCE 
 
These new filters are butterworth second-order IIR filters.  They are 
slightly slower than the original filters in Csound, but they offer an 
almost flat passband and very good precision and stopband 
attenuation. 
 
asig      - Input signal to be filtered. 
 



 

 

54 

kfreq    - Cuttoff or center frequency for each of the filters. 
 
kband  - Bandwidth of the bandpass and bandreject filters. 
 
 
EXAMPLE 
 
asig     rand           10000                 ; White noise signal 
alpf     butterlp      asig, 1000           ; cutting frequencies above1K 
ahpf    butterhp      asig, 500            ; passing frequencies above 
500Hz 
abpf    butterbp      asig, 2000, 100  ; passing only 1950 to 2050 Hz 
abrf    butterbr       asig, 4500, 200  ; cutting only 4400 to 4600 Hz 
 
 
3) Vdelay 
 
 ar    vdelay    asig, adel, imaxdel 
 
This is an interpolating variable time delay, it is not very different 
from the existing implementation (deltapi), it is only easier to use. 
 
 
INITIALIZATION 
 
imaxdel - Maximum value of delay in samples.  If adel gains a value 
greater than imaxdel it is folded around imaxdel.  This should not 
happen. 
 
PERFORMANCE 
 
With this unit generator it is possible to do Doppler effects or 
chorusing and flanging. 
 
asig  - Input signal. 
 
adel - Current value of delay in samples.  Note that linear functions 
have no pitch change effects.  Fast changing values of adel will cause 
discontinuities in the waveform resulting noise. 
 
Example 
 
     f1 0 8192 10 1 
 
    ims = 100                                ; Maximum delay time in msec 
    a1      oscil   10000, 1737, 1   ; Make a signal 
    a2      oscil   ims/2, 1/p3, 1     ; Make an LFO 
    a2  = a2 + ims/2                      ; Offset the LFO so that it is positive 
    a3      vdelay  a1, a2, ims        ; Use the LFO to control delay time 
         out     a3 
 
Two important points here.  First, the delay time must be always 
positive.  And second, even though the delay time can be controlled 
in 
k-rate, it is not advised to do so, since sudden time changes will 
create clicks. 
 
 

4)  Multitap delay 
 
 ar      multitap      asig, itime1, igain1, itime2, igain2 . . .  
 
Multitap delay line implementation. 
 
INITIALIZATION 
 
The arguments itime and igain set the position and gain of each tap. 
The delay line is fed by asig. 
 
Example: 
 
 a1      oscil           1000, 100, 1 
 a2      multitap      a1, 1.2, .5, 1.4, .2 
 out     a2 
 
This results in two delays, one with length of 1.2 and gain of .5, and 
one with length of 1.4 and gain of .2. 

 
 
5) Reverb2 
 
 ar    reverb2   asig, ktime, khdif 
 
This is a reverberator consisting of 6 parallel comb-lowpass filters 
being fed into a series of 5 allpass filters. 
 
 
PERFORMANCE 
 
The input signal asig is reverberated for ktime seconds.  The 
parameter khdif controls the high frequency diffusion amount.  The 
values of khdif should be from 0 to 1.  If khdif is set to 0 the all the 
frequencies decay with the same speed.  If khdif is 1, high 
frequencies decay faster that lower ones. 
 
Example: 
 
 a1      oscil         10000, 100, 1 
 a2      reverb2    a1, 2.5, .3 
 out     a1 + a2 * .2 
 
This results in a 2.5 sec reverb with faster high frequency 
attenuation. 
 
 
 
 
6) Envelope follower 
 
 kr   follow    asig,  idt 
 
Envelope follower unit generator. 
 
 
INITIALIZATION 
 
idt - This is the period, in seconds, that the average amplitude of asig 
is reported.  If the frequency of asig is low then idt must be large 
(more than half the period of asig ). 
 
PERFORMANCE 
asig  - This is the signal from which to extract the envelope. 
 
Example 
 
k1      line      0, p3, 30000    ; Make k1 a simple envelope 
a1      oscil     k1, 1000, 1     ; Make a simple signal using k1 
ak1    follow  a1, .02             ; ak1 is now like k1 
a2      oscil    ak1, 1000, 1    ; Make a simple signal using    ak1 
      out     a2                          ; Both a1 and a2 are the same 
 
To avoid zipper noise, by discontinuities produced from complex 
envelope tracking, a lowpass filter could be used, to smooth the 
estimated envelope. 
 
 
7) Noise generators 
 
All of the following opcodes operate in i-, k- and a-rate.  The output 
rate depends on the first letter of the opcode, a for a-rate, k for k-rate 
and i for i-rate. 
 
xlinrand krange - Linear distribution random number generator.  
Krange is the range of the random numbers [0 - krange).  Outputs 
only 
positive numbers. 
 
xtrirand krange  -  Same as above only ouputs both negative and 
positive numbers. 
 
xexprand krange - Exponential distribution random number 
generator. 
krange is the range of the random numbers [0 - krange).  Outputs 
only positive numbers. 



 

 

55 

xbexprnd krange - Same as above, only extends to negative numbers 
too with an exponential distribution. 
 
xcauchy kalpha - Cauchy distribution random number generator.  
Kalpha controls the spread from zero (big kalpha => big spread).  
Outputs both positive and negative numbers. 
 
xpcauchy  kalpha  -  Same as above,  ouputs positive numbers only. 
 
xpoisson klambda - Poisson distribution random number generator. 
klambda is the mean of the distribution.  Outputs only positive 
numbers. 
 
xgauss krange - Gaussian distribution random number generator.  
Krange is the range of the random numbers (-krange - 0 - krange).  
Outputs both positive and negative numbers. 
 
xweibull ksigma, ktau - Weibull distribution random number 
generator. 
ksigma scales the spread of the distribution and ktau, if greater than 
one numbers near ksigma are favored, if smaller than one small 
values are favored and if t equals 1 the distribution is exponential.  
Outputs only positive numbers. 
 
xbeta krange, kalpha, kbeta - Beta distribution random number 
generator.  krange is the range of the random numbers [0 - krange).  
If kalpha is smaller than one, smaller values favor values near 0.  If 
kbeta is smaller than one, smaller values favor values near krange. 
If both kalpha and kbeta equal one we have uniform distribution.  If 
both kalpha and kbeta are greater than one we have a sort of gaussian 
distribution.  Outputs only positive numbers. 
 
 
For more detailed explanation of these distributions, see: 
 
1. C. Dodge - T.A. Jerse 1985. Computer music.  Schirmer books.  
pp.265 - 286 
 
2. D. Lorrain. “A panoply of stochastic cannons”.  In C. Roads, ed.  
1989. Music machine .  Cambridge, Massachusetts: MIT press, pp. 
351 - 379. 
 
Examples: 
     a1  atrirand  32000               ; Audio noise with triangle 
distribution 
     k1  kcauchy  10000               ; Control noise with Cauchy dist. 
     i1  ibetarand  30000, .5, .5   ; i-time random value, beta dist. 
 
 
8) Power functions 
 
    ir       ipow     iarg, kpow 
    kr      kpow    karg, kpow, [inorm] 
    ar      apow    aarg, kpow, [inorm] 
 
Computes xarg  to the power of kpow  and scales the result by inorm. 
 
INITIALIZATION 
 
inorm - The number to divide the result (default to 1).  This is 
especially useful if you are doing powers of a- or k- signals where 
samples out of range are extremely common! 
 
iarg  - If you are using ipow this is the base. 
 
PERFORMANCE 
 
karg  - If you are using kpow this is the base. 
 
aarg  - If you are using apow this is the base. 
 
EXAMPLES: 
 
1.      i2t2    ipow            2,2                ; Computes 2^2. 
 
2.  kline   line            0, 1, 4  
       kexp    kpow    kline, 2, 4 

This feeds a linear function to kpow and scales that to the line’s 
peak value.  The output will be an exponential curve with the same 
range as the input line. 
 
3.      iamp ipow              10, 2 
         a1   oscil     iamp, 100, 1 
         a2   apow    a1, 2, iamp 
             out a2 
 
This will output a sine with its negative part folded over the amp 
axis.  The peak value will be iamp = 10^2 = 100. 
 
 
9) GEN20 
 
This subroutine generates functions of different windows.  These 
windows are usually used for spectrum analysis or for grain 
envelopes. 
 
 f #     time    size    20      window  max     opt 
 
size  - number of points in the table.  Must be a power of 2 ( + 1). 
 
window  - Type of window to generate. 
  1 - Hamming 
  2 - Hanning 
  3 - Bartlett ( triangle) 
  4 - Blackman ( 3 - term) 
  5 - Blackman - Harris ( 4 - term) 
  6 - Gaussian 
  7 - Kaiser 
  8 - Rectangle 
  9 - Sinc 
 
max - For negative p4 this will be the absolute value at window peak 
point.  If p4 is positive or p4 is negative and p6 is missing the table 
will be post-rescaled to a maximum value of 1. 
 
opt - Optional argument required by the Kaiser window. 
 
Examples: 
 
 f       1       0       1024    20      5 
 
This creates a function which contains a 4 - term Blackman - Harris 
window with maximum value of 1. 
 
 f       1       0       1024    -20     2       456 
This creates a function that contains a Hanning window with a 
maximum  value of 456. 
 
 f       1       0       1024    -20     1 
This creates a function that contains a Hamming window with a 
maximum value of 1. 
 
 f       1       0       1024    20      7       1       2 
This creates a function that contains a Kaiser window with a 
maximum  
value of 1.  The extra argument specifies how `open’ the window is, 
for example a value of 0 results in a rectangular window and a value 
of 10 in a Hamming like window. 
 
 
10) GEN21 
 
This generates tables of different random distributions. (see also 
noise  
generators, above). 
 
 f #     time    size    21      type    lvl arg1 arg2 
 
Time and size are the usual Gen function arguments.  Type defines 
the distribution to be used. 
 
 1   - Uniform 
 2   - Linear 
 3   - Triangular 



 

 

56 

 4   - Exponential 
 5   - Biexponential 
 6   - Gaussian 
 7   - Cauchy 
 8   - Positive Cauchy 
 9   - Beta 
                10  - Weibull 
                11  - Poison 
 
Of all these cases only 9 (Beta) and 10 (Weibull) need extra 
arguments.  Beta needs two arguments and Weibull one. 
 
Examples: 
 
f1 0 1024 21 1             ; Uniform (white noise)  
f1 0 1024 21 6             ; Gaussian 
f1 0 1024 21 9 1 1 2    ; Beta (note that level precedes arguments)  
f1 0 1024 21 10 1 2     ; Weibull 
 
 
All of the above additions were designed by the author between May 
and December 1994, under the supervision of Dr. Richard Boulanger. 
 
This appendix was written on 20 December 1994 by Paris 
Smaragdis, Berklee College of Music. 
Internet:  psmaragdis@aol.com 
------------------------------------------------------------------------ 
 
 
AUTHOR: Greg Sullivan, sullivan@aussie.enet.dec.com 
(Based on algorithm given in ‘Elements Of Computer                   
Music’, by F. Richard Moore). 
 
CVANAL - Impulse Response Fourier Analysis for CONVOLVE     
                   operator 
 
csound -U cvanal [flags] infilename outfilename 
 
cvanal converts a soundfile into a single Fourier transform frame. 
The  
output file can be used by the CONVOLVE operator to perform Fast 
Convolution between an input signal and the original impulse 
response. 
Analysis is conditioned by the flags below. A space is optional 
between the flag and its argument. 
 
-s<rate>   sampling rate of the audio input file. This will over-ride 
                the srate of the soundfile header, which otherwise applies. 
                If neither is present, the default is 10000. 
 
-c<channel>  channel number sought. If omitted, the default is to   
                     process all channels. If a value is given, only the 
                     selected channel will be processed. 
                 
-b<begin>   beginning time (in seconds) of the audio segment to be 
                   analysed. The default is 0.0 
                 
-d<duration>  duration (in seconds) of the audio segment to be       
                       analysed. 
                       The default of 0.0 means to the end of the file. 
                 
EXAMPLE 
 
                cvanal asound cvfile 
 
will analyse the soundfile “asound” to produce the file “cvfile” for 
the 
use with CONVOLVE. 
 
HINT: To use data that is not already contained in a soundfile, a 
soundfile converter that accepts text files may be used to create a 
standard audio file. E.g, the .DAT format for SOX. This is useful for 
implementing FIR filters. 
 
 
 
 

FILES 
 
The output file has a special CONVOLVE header, containing details 
of the source audio file. The analysis data is stored as ‘float’, in 
rectangular (real/imaginary) form.  
 
***NOTE***: The analysis file is NOT system independent! Ensure 
that the original impulse recording/data is retained. If/when required, 
the analysis file can be recreated. 
 
AUTHOR: Greg Sullivan, sullivan@aussie.enet.dec.com 
(Based on algorithm given in ‘Elements Of Computer Music’, by F. 
Richard Moore. 
         
------------------------------------------------------------------------------ 
 
CONVOLVE unit generator: 
 
ar1[,ar2[,ar3[,ar4]]]  convolve  ain,ifilcod,channel 
 
Output is the convolution of signal ain and the impulse response 
contained in ifilcod.  Note that it is considerably more efficient to use 
one instance of the operator when processing a mono input to create 
stereo, or quad, outputs. 
 
INITIALISATION 
 
ifilcod - integer or character-string denoting an impulse response data 
file. An integer denotes the suffix of a file convolve.m; a character 
string (in double quotes) gives a filename, optionally a full pathname.  
If not a fullpath, the file is sought first in the the current directory, 
then in the one given by the environment variable SADIR (if 
defined). 
The data file contains the Fourier transform of an impulse response. 
Memory usage depends on the size of the data file, which is read and 
held entirely in memory during computation, but which is shared by 
multiple calls. 
channel - integer denoting the channel of the impulse response to be 
used for the convolution. 0 (the default) means to use all channels. 
For multi-channel output, the number of channels in the impulse 
response must match the number of output signals. 
 
 
 
PERFORMANCE 
 
convolve implements Fast Convolution. The output of this operator 
is delayed with respect to the input. The following formulas should 
be used to calculate the delay: 
 
For (1/kr) <= IRdur: 
Delay = ceil(IRdur * kr) / kr 
For (1/kr) > IRdur:  
Delay = IRdur * ceil(1/(kr*IRdur)) 
Where: 
kr  = Csound control rate 
IRdur = duration, in seconds, of impulse response 
ceil(n) = smallest integer not smaller than n 
 
One should be careful to also take into account the initial delay, if 
any, of the impulse response. For example, if an impulse response is 
created from a recording, the soundfile may not have the initial delay 
included. Thus, one should either ensure that the soundfile has the 
correct amount of zero padding at the start, or, preferably, 
compensate for this delay in the orchestra. (the latter method is more 
efficient). To compensate for the delay in the orchestra, _subtract_ 
the initial delay from the result calculated using the above 
formula(s), when calculating the required delay to introduce into the 
‘dry’ audio path.  
For typical applications, such as reverb, the delay will be in the order 
of 0.5 to 1.5 seconds, or even longer. This renders the current 
implementation unsuitable for real time applications. 
It could conceivably be used for real time filtering however, if  the 
number of taps is is small enough. 
 
Example: 
- Create frequency domain impulse response file: 



 

 

57 

   c:\> csound -Ucvanal l1_44.wav l1_44.cv  
 
- Determine duration of impulse response. For high accuracy, 
  determine the number of sample frames in the impulse response       
  soundfile, and then compute the duration with: 
  duration = (sample frames)/(sample rate of soundfile) 
 
This is due to the fact that the SNDINFO utility only reports the 
duration to the nearest 10ms. If you have a utility that reports the 
duration to the required accuracy, then you can simply use the 
reported value directly. 
 
  c:\> sndinfo l1_44.wav  
  length = 60822 samples, sample rate = 44100  
  
  Duration = 60822/44100 = 1.379s. 
 
- Determine initial delay, if any, of impulse response.  
  If the impulse response has not had the initial delay removed, then  
you can skip this step. If it has been removed, then the only way you  
will know the initial delay is if the information has been provided 
separately. 
For this example, let’s assume that the initial delay is 60ms. (0.06s) 
 
- Determine the required delay to apply to the dry signal, to align it 
with the convolved signal: 
   
  If kr = 441: 
  1/kr = 0.0023, which is <= IRdur (1.379s), so: 
  Delay1 = ceil(IRdur * kr) / kr 
        = ceil(608.14) / 441 
        = 609/441 
        = 1.38s 
         
  Accounting for the initial delay: 
 
  delay2 = 0.06s 
  Total delay = delay1 - delay2 
                     = 1.38 - 0.06 
                     = 1.32s 
 
- Create .orc file, e.g: 
 
----CUT---- 
 
;Simple demonstration of CONVOLVE operator, to apply reverb. 
        sr = 44100 
        kr = 441 
        ksmps = 100 
        nchnls = 2 
        instr   1 
imix = 0.22 ; Wet/dry mix. Vary as desired. 
              ; NB: ‘Small’ reverbs often require a much higher 
              ; percentage of wet signal to sound interesting. ‘Large’ 
              ; reverbs seem require less. Experiment! The wet/dry mix is 
              ; very important - a small change can make a large 
difference.  
 
ivol = 0.9  ; Overall volume level of reverb. May need to adjust  
                 ; when wet/dry mix is changed, to avoid clipping. 
 
idel = 1.32 ; Required delay to align dry audio with output of           
                  ; convolve. 
                  ; This can be automatically calculated within the orc file,  
                  ; if desired. 
adry           soundin “anechoic.wav”            ; input (dry) audio 
awet1,awet2   convolve adry,”l1_44.cv”    ; stereo convolved (wet)  
                                                                    ; audio 
adrydel     delay  (1-imix)*adry,idel ; Delay dry signal, to align it 
with  
                                          ; convolved signal. Apply level  
                                          ; adjustment here too. 
    outs    ivol*(adrydel+imix*awet1),ivol*(adrydel+imix*awet2)  
                                          ; Mix wet & dry signals, and output 
        endin 
 
 

---CUT---- 
The granule unit generator (Allan Lee) is more complex than grain 
(above), but does add new possibilities.  This is a shorten manual,  
without the pictures, 
NAME 
granule - Granular synthesis unit generator for Csound. 
 
SYNOPSIS 
 
        granule    xamp ivoice iratio imode ithd ifn ipshift igskip 
igskip_os ilength kgap igap_os kgsize igsize_os iatt idec [iseed] 
[ipitch1] [ipitch2] [ipitch3] [ipitch4] [ifnenv] 
 
DESCRIPTION 
granule is a Csound unit generator which employs a wavetable as 
input to produce granularly synthesized audio output. Wavetable data 
may be generated by any of the gen subroutines such as gen01 which 
reads an audio data file into a wavetable.  This enable a sampled 
sound to be used as the source for the grains.  Up to 128 voices are 
implemented internally.The maximum number of voices can be 
increased by redefining the variable MAXVOICE in the grain4.h file.  
granule has a build-in random number generator to handle all the 
random offset parameters. 
Thresholding is also implemented to scan the source function table at 
initialization stage.  This facilitates features such as skipping silence 
passage between sentences. 
The characteristics of the synthesis are controlled by 22 parameters. 
xamp is the amplitude of the output and it can be either audio rate or 
control rate variable. All parameters with prefix i must be valid at 
Init time, parameters with prefix k can be either control or Init 
values. 
 
SUMMARY OF PARAMETERS 
 
xamp - amplitude. 
ivoice - number of voices. 
iratio - ratio of the speed of the gskip pointer relative to output 
audio sample rate. eg. 0.5 will be half speed. 
imode - +1 grain pointer move forward (same direction of the gskip 
pointer), -1 backward (oppose direction to the gskip pointer) or 0 for 
random. 
ithd - threshold, if the sampled signal in the wavetable is smaller 
then ithd, it will be skipped. 
ifn - function table number of sound source. 
ipshift - pitch shift control. If ipshift is 0, pitch will be set randomly 
up and down an octave. If ipshift is 1, 2, 3 or 4, up to four different 
pitches can be set amount the number of voices definded in ivoice. 
The optional parameters ipitch1, ipitch2, ipitch3 and ipitch4 are used 
to quantify the pitch shifts. 
igskip - initial skip from the beginning of the function table in sec. 
igskip_os - gskip pointer random offset in sec, 0 will be no offset. 
ilength - length of the table to be used starting from igskip in sec. 
kgap - gap between grains in sec. 
igap_os - gap random offset in % of the gap size, 0 gives no offset. 
kgsize - grain size in sec. 
igsize_os - grain size random offset in % of grain size, 0 gives no 
offset. 
iatt - attack of the grain envelope in % of grain size. 
idec - decade of the grain envelope in % of grain size.  
[iseed] - optional, seed for the random number generator, default is 
0.5. 
[ipitch1], [ipitch2], [ipitch3], [ipitch4] - optional, pitch shift 
parameter, used when ipshift is set to 1, 2, 3 or 4. Time scaling 
technique is used in pitch shift with linear interpolation between data 
points. Default value is 1, the original pitch. 
 
EXAMPLE 
 
Listing of orchestra file: 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 2 
instr 1 
; 
k1 linseg 0,0.5,1,(p3-p2-1),1,0.5,0 



 

 

58 

a1 granule       
p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19, 
p20,p21,p22,p23,p24 
a2 granule 
p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19, 
p20+0.17,p21,p22,p23,p24 
outs a1,a2  
endin 
 
Listing of score file: 
 
;f statement read sound file sine.aiff in SFDIR directory into f-table 1 
f 1 0 524288 1 “sine.a iff” 1 0 
i1 0 10 2000 64 0.5 0 0 1 4 0 0.005 10 0.01 50 0.02 50 30 30 0.39 1   
1.42 0.29 2 
e 
 
The above example reads a sound file called sine.aiff into wavetable 
number 1 with 524,288 samples. It generates 10 seconds of stereo 
audio output using the wavetable. In the orchestra file, all parameters 
required to control the synthesis are passed from the score file. A 
linseg function generator is used to generate an envelope with 0.5 
second of linear attack and decade. Stereo effect is generated by 
using different seeds for the two granule function calls. In the 
example, 0.17 is added to p20 before passing into the second granule 
call to ensure that all of the random offset events are different from 
the first one. 
In the score file, the parameters are interpreted as: 
p5 (ivoice) the number of voices is set to 64 
p6 (iratio) is set to 0.5, it scan the wavetable at half of the speed 
     of the audio output rate 
p7 (imode) is set to 0, the grain pointer only move forward 
p8 (ithd) is set to 0, skipping the thresholding process 
p9 (ifn) is set to 1, function table number 1 is used 
p10 (ipshift) is set to 4, four different pitches are going to be 
       generated 
p11 (igskip) is set to 0 and p12 (igskip_os) is set to 0.005, no 
       skipping into the wavetable and a 5 mSec random offset is used 
p13 (ilength) is set to 10, 10 seconds of the wavetable is to be used 
p14 (kgap) is set to 0.01 and p15 (igap_os) is set to 50, 10 mSec gap 
       with 50% random offset is to be used 
p16 (kgsize) is set to 0.02 and p17 (igsize_os) is set to 50, 20 mSec 
       grain with 50% random offset is used 
p18 (iatt) and p19 (idec) are set to 30, 30% of linear attack and 
       decade is applied to the grain 
p20 (iseed) seed for the random number generator is set to 0.39 
p21 - p 24 are pitches set to 1 which is the original pitch, 1.42 
                 which is a 5th up, 0.29 which is a 7th down and finally 2       
                 which is an octave up. 
 
Csound is developed by Barry L. Vercoe at the Experimental Music 
Studio, Media Laboratory, M.I.T., Cambridge, Massachusetts. 
------------------------------------------------------------------------ 
 
 
ATARI Csound 
============ 
The files are 
___      csound.ttp 
___      extract.ttp 
___      hetro.ttp 
___      lpanal.ttp 
___      pvanal.ttp 
___      scale.ttp 
___      scsort.ttp 
___      sndinfo.ttp 
 
I do not have any of the standard compression programs for the Atari 
at present, so these are raw binary files. 
This is an initial port of 3.14, with no support for graphics or MIDI.  
The code is not yet optimised, and has only been subjected to limited 
testing.  If there is sufficient interest I will optimise and extend, but 
my Atari is currently failing to boot.  The code does not assume the 
existence of a floating point co- processor, and is built for the 68000 
(lowest common denominator).  Please report any bugs or comments 
to me.  I am using LatticeC and the sources and scripts are available 
from me, assuming I can read the Atari disk... 

There is a better-supported commercially available Atari Csound 
from CDP. 
They also have a large suite of music synthesis programs on Atari 
and PC. 
 
Contact Tom Endrich: 
_tendrich@cix.compulink.co.uk 
_Tel: +44-1904-613299 
_Composers’ Desktop Project_11 Kilburn Road_York YO1 
4DF_England 

 
------------------------------------------------------------------------------ 
 
Release Notes for v3.44 
======================= 
 
Version 3.44 is mainly a collection of new opcodes, together with a 
few small fixes. 
 
Summary 
======= 
 
a) Phase Vocoding Opcodes: 
 ktableseg, ktablexseg, voscili, vpvoc, pvread, pvcross, 
 pvbufread, pvinterp 
 
b) Tuning Opcodes: 
 cps2pch, cpsxpch 
 
c) 3-D Sound Opcode: 
 hrtfer 
 
d) Time Stretching Opcode: 
 sndwarp 
 
e) Non-linear Filter Opcode: 
 nlfilt 
 
f) New format for LPC analysis: 
 Allows for pole stabalisation, and two new opcodes, 
  lpslot, lpinterp 
 for interpolation between different analyses 
 
g) Bug Fixes: 
 Reading of numbers in Event reading fixed 
 Comments allowed after e in scores 
 Obscure bad case in opening files 
 Minor bug in vdelay fixed 
 
h) Permanent Graphs (Fabio Bertolotti): 
 A new option (-G) ensures that the graphs are saved as a 
 PostScript file, with the same name as the soundfile with  
                  .eps as the extention.  This has been in use by teachers for   
                  a while. 
 
h) Code Changes (PC): 
 Improvements in output to Multimedia-implemented DAC 
 Recognise file names starting a: etc 
 Non-stop feature in Windows 
 
and a number of internal code improvements which I doubt you care 
about. 
 
 
 
DOCUMENTATION ON NEW OPCODES 
================================= 
 
a) PVOC related unit generators added by Richard Karpen, 1992-
1996 
 
kfreq, kamp pvread  ktimpnt,  ifile, ibin  
 
    pvbufread ktimpnt, ifile 
ar pvinterp    ktimpnt, kfmod, ifile, kfreqscale1, kfreqscale2,      
                      ampscale1, kampscale2, kfreqinterp, kampinterp 
 



 

 

59 

ar pvcross     ktimpnt, kfmod, ifile, kamp1, kamp2, [ispecwp] 
    tableseg   ifn1, idur1, ifn2[, idur2, ifn3[...]] 
    tablexseg ifn1, idur1, ifn2[, idur2, ifn3[...]] 
ar vpvoc        ktimpnt, kfmod, ifile,   [ispecwp] 
 
DESCRIPTION 
 
pvread reads from a pvoc file and returns the frequency and 
amplitude from a single anaylsis channel or bin. The eturned values 
can be used anywhere else in the csound instrument. For example, 
one can use them as arguments to an oscillator to synthesize a single 
component from an analyzed signal or a bank of pvreads can be used 
to resynthesize the analyzed sound using additive synthesis by 
passing the frequency and magnitude values to a bank of oscillators. 
 
pvbufread reads from a pvoc file and makes the retrieved data 
available to any following pvinterp and pvcross units that appear in 
an instrument before a subsequent pvbufread (just as lpread and 
lpreson work together). The data is passed internally and the unit has 
no output of its own. pvinterp and pvcross allow the interprocessing 
of two phase vocoder analysis files prior to the resynthesis which 
these units do also. Both of these units receive data from one of the 
files from a previously called pvbufread unit. The other file is read 
by the pvinterp and/or pvcross units. Since each of these units has its 
own time-pointer the analysis files can be read at different speeds and 
directions from one another. pvinterp does not allow for the use of 
the ispecwp process as with the pvoc and vpvoc units.  
 
pvinterp interpolates between the amplitudes and frequencies, on a 
bin by bin basis, of two phase vocoder analysis files (one from a 
previously called pvbufread unit and the other from within its own 
argument list), allowing for user defined transitions between 
analyzed sounds. It also allows for general scaling of the amplitudes 
and frequencies of each file separately before the interpolated values 
are calculated and sent to the resynthesis routines. The kfmod 
argument in pvinterp performs its frequency scaling on the frequency 
values after their derivation from the separate scaling and subsequent 
interpolation is performed so that this acts as an overall scaling value 
of the new frequency components. 
 
pvcross applies the amplitudes from one phase vocoder analysis file 
to the data from a second file and then performs the resynthesis. The 
data is passed, as described above, from a previously called 
pvbufread unit. The two k-rate amplitude arguments are used to scale 
the amplitudes of each files separately before they are added together 
and used in the resynthesis (see below for further explanation). The 
frequencies of the first file are not used at all in this process. This 
unit simply allows for cross-synthesis through the application of the 
amplitudes of the spectra of one signal to the frequencies of a second 
signal. Unlike pvinterp, pvcross does allow for the use of the ispecwp 
as in pvoc and vpvoc. 
 
tableseg and tablexseg are like linseg and expseg but interpolate 
between values in a stored function tables. The result is a new 
function table passed internally to any following vpvoc or voscili 
which occurs before a subsequent tableseg or tablexseg (much like 
lpread/lpreson pairs work). The uses of these are described below 
under vpvoc and (see also voscili which allows the use of these units 
in an interpolating oscillator). 
 
vpvoc is identical to pvoc except that it takes the result of a previous 
tableseg or tablexseg and uses the resulting function table (passed 
internally to the vpvoc), as an envelope over the magnitudes of the 
analysis data channels. The result is spectral enveloping. The 
function size used in the tableseg should be framesize/2, where 
framesize is the number of bins in the phase vocoder analysis file that 
is being used by the vpvoc.  Each location in the table will be used to 
scale a single analysis bin. By using different functions for ifn1, ifn2, 
etc.. in the tableseg, the spectral envelope becomes a 
dynamically changing one. 
 
ARGUMENTS 
 
ifile is the pvoc number (n in pvoc.n) or the name in quotes of the 
analysis file made using pvanal. See pvoc documentation in Csound 
manual. 
 

kfreq and kamp are the outputs of the pvread unit. These values, 
retrieved from a phase vocoder analysis file, represent the values of 
frequency and amplitude from a single analysis channel specified in 
the ibin argument. Interpolation between analysis frames is 
performed at k-rate resolution and dependent of course upon the rate 
and direction of ktimpnt. 
 
ktimpnt, kfmod, and ispecwp used in pvread and vpvoc are exactly 
the same as for pvoc (see above description of pvinterp for its special 
use of kfmod). 
 
ibin is the number of the analysis channel from which to return 
frequency in cps and magnitude. 
 
kfreqscale1, kfreqscale2, kampscale1, kampscale2 are used in 
pvinterp to scale the frequencies and amplitudes stored in each frame 
of the phase vocoder analysis file. kfreqscale1 and kampscale1 scale 
the frequencies and amplitudes of the data from the file read by the 
previously called pvbufread (this data is passed internally to the 
pvinterp unit). kfreqscale2 and kampscale2 scale the frequencies and 
amplitudes of the file named by ifile in the pvinterp argument list and 
read within the pvinterp unit. By using these arguments it is possible 
to adjust these values before applying the interpolation. 
For example, if file1 is much louder than file2, it might be desirable 
to scale down the amplitudes of file1 or scale up those of file2 before 
interpolating. Likewise one can adjust the frequencies of each to 
bring them more in accord with one another (or just the opposite of 
course!) before the interpolation is performed. 
 
kfreqinterp and kampinterp, used in pvinterp, determine the 
interpolation distance between the values of one phase vocoder file 
and the values of a second file. When the value of kfreqinterp is 0, 
the frequency values will be entirely those from the first file (read by 
the pvbufread), post scaling by the kfreqscale1 argument. When the 
value of kfreqinterp is 1 the frequency values will be those of the 
second file (read by the pvinterp unit itself), post scaling by 
kfreqscale2. When kfreqinterp is between 0 and 1 the frequency 
values will be calculated, on a bin, by bin basis, as the percentage 
between each pair of frequencies (in other words, kfreqinterp=.5 will 
cause the frequencies values to be half way between the values in the 
set of data from the first file and the set of data from the second file). 
kampinterp1 and kampinterp2 work in the same way upon the 
amplitudes of the two files. Since these are k-rate arguments, the 
percentages can change over time making it possible to create many 
kinds of transitions between sounds. 
 
ifn1, ifn2, ifn3, etc... in tableseg and tablexseg are stored functions, 
created from an f-card in the numeric notelist. ifn1, ifn2, and so on, 
MUST be the same size. 
 
idur1, idur2, etc...in tableseg and tablexseg are the durations during 
which interpolation from one table to the next will take place. 
 
SIMPLE EXAMPLES 
 
The example below shows the use pvread to synthesize a single 
component from a phase vocoder analysis file. It should be noted that 
the kfreq and kamp outputs can be used for any kind of synthesis, 
filtering, processing, and so on. 
 
 
ktime     line 0, p3, 3 kfreq, kamp pvread ktime, “pvoc.file”, 7 ; read  
                                                                  ; data from 7th analysis bin.   
asig       oscili kamp, kfreq, 1                    ; function 1 is a stored sine 
 
The below shows an example using pvbufread with pvinterp to 
interpolate between the sound of an oboe and the sound of a clarinet. 
The value of kinterp returned by a linseg is used to determine the 
timing of the transitions between the two sounds. The interpolation 
of frequencies and amplitudes are controlled by the same factor in 
this example, but for other effects it might be interesting to not have 
them sychnronized in this way. In this example the sound will begin 
as a clarinet, transform into the oboe and then return again to the 
clarinet sound.  The value of kfreqscale2 is 1.065 because the oboe in 
this case is a semitone higher in pitch than the clarinet and this brings 
them approximately to the same pitch. The value of kampscale2 is 
.75 because the analyzed clarinet was somewhat louder than the 



 

 

60 

analyzed oboe. The setting of these two parameters make the 
transition quite smooth in this case, but such adjustments are by no 
means necessary or even advocated. 
 
ktime1       line  0, p3, 3.5 ; used as index in the “oboe.pvoc” data file 
ktime2       line  0, p3, 4.5 ; used as index in the “clar.pvoc” data file 
kinterp      linseg 1, p3*.15, 1, p3*.35, 0, p3*.25, 0, p3*.15, 1, p3*.1, 
1 
pvbufread ktime1, “oboe.pvoc” 
apv  pvinterp  ktime2,1,”clar.pvoc”,1,1.065,1,.75,1-kinterp,1-kinterp 
 
Below is an example using pvbufread with pvcross. In this example 
the amplitudes used in the resynthesis gradually change from those of 
the oboe to those of the clarinet. The frequencies, of course, remain 
those of the clarinet throughout the process since pvcross does not 
use the frequency data from the file read by pvbufread. 
 
ktime1 line 0, p3, 3.5 ; used as index in the “oboe.pvoc” data file 
ktime2 line 0, p3, 4.5 ; used as index in the “clar.pvoc” data file 
kcross        expon .001, p3, 1 
pvbufread ktime1, “oboe.pvoc” 
apv pvcross ktime2, 1, “clar.pvoc”, 1-kcross, kcross 
 
 
In following example using vpvoc shows the use of functions such as 
 f 1 0 256 5 .001 128 1 128 .001 
 f 2 0 256  5 1 128 .001 128 1 
 f 3 0 256  7 1 256 1  
 
to scale the amplitudes of the separate analysis bins.  
 
ktime line 0, p3,3 ; time pointer, in seconds, into data file 
 ktablexseg 1, p3*.5, 2, p3*.5, 3 
apv vpvoc ktime,1, “pvoc.file” 
 
The result would be a time-varying “spectral envelope” applied to the 
phase vocoder analysis data. Since this amplifies or attenuates the 
amount of signal at the frequencies that are paired with the 
amplitudes which are scaled by these functions, it has the effect of 
applying very accurate filters to the signal. In this example the first 
table would have the effect of a band- pass filter , gradually be band-
rejected over half the note’s duration, and then go towards no 
modification of the magnitudes over the second half. 
 
------------------------------------------------------------------------ 
 
 
b) Tuning Opcodes (John Fitch) 
 
  icps cps2pch ipch, iequal 
  icps cpsxpch ipch, iequal, irepeat, ibase 
 
Converts a pitch-class notation into cycles-per-second for equal 
divisions of the octave (for cps2pch) or for equal divisions of any 
interval.  There is a restriction of no more than 100 equal divisions. 
 
INITIALISATION 
 
ipch    - Input number of the form 8ve.pc, indicating an `octave’ and 
which note in the octave. 
 
iequal  - if positive, the number of equal intervals into which the 
`octave’ is divided.  Must be less than or equal to 100, if negative is 
the number of a table of frequency multipliers 
 
irepeat -Number indicating the interval which is the `octave’.  The 
integer 2 corresponds to octave divisions, 3 a twelveth,  4 
is two octaves, and so on.  This need not be an integer, but must be 
positive. 
 
ibase   - The frequency which corresponds to pitch 0.0 
 
Note:  1. The following are essentially the same 
 
ia= cpspch(8.02) 
ib cps2pch  8.02, 12 
ic cpsxpch  8.02, 12, 2, 1.02197503906 

 
2. These are opcodes not functions. 
 
3. Negative values of ipch are allowed, but not negative irepeat, 
iequal or ibase. 
 
EXAMPLES 
 
 
inote cps2pch p5, 19 ; convert oct.pch to cps in 19ET  
inote cpsxpch p5, 12, 3, 261.62561;Pierce scale centered on middle 
A 
inote cpsxpch p5, 21, 4, 16.35160062496 ;10.5ET scale 
 
The use of a table allows exotic scales by mapping frequencies in a 
table 
For example the table 
 
 f2 0 16 -2 1 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 
 
can be used with 
 
 ip          cps2pch p4, -2 
 
to get a 10 note scale of unequal divisions 
------------------------------------------------------------------------ 
 
c) Use of HRTF data 
 
         aLeft, aRight   hrtfer   asig, kAz, kElev, “HRTFcompact”  
 
Output is binaural (headphone) 3D audio.  
 
INITIALIZATION 
kAz - azimuth value in degrees. Positive values represent position on 
the right, negative values are positions on the left.   
kElev - elevation value in degrees. Positive values represent position 
on the right, negative values are positions on the left.  
 
At present, the only file which can be used with hrtferxk is 
HRTFcompact. It must be passed to the u.g. as the last argument 
within qoutes as shown above. 
 
PERFORMANCE 
These unit generators place a mono input signal in a virtual 3D space 
around the listner by convolving the input with the appropriate HRTF 
data specified by the opcode’s azimuth and elevation values. 
Hrtferxk allows these values to be k-values, allowing for dynamic 
spatialization. hrtferi can only place the input at the reqeusted 
position because the HRTF is loaded in at i-time (remember that 
currently, csound has a limit of 20 files it can hold in memory, 
otherwise it causes a segmentation fault). The output will need to be 
scaled either by using balance or by multiplying the output by some 
scaling constant. 
 
Note - the sampling rate of the orchestra must be 44.1kHz. This is 
because 44.1kHz is the sampling rate at which the HRTFs were 
measured. In order to be used at a different rate, the HRTFs need to 
be resampled at the desired rate. 
 
Example: 
 
kaz  linseg 0, p3, -360  ; move the sound in circle 
kel   linseg -40, p3, 45 ; around the listener, changing 
    ;elevation as its turning 
asrc soundin “soundin.1” 
aleft,aright hrtfer asrc, kaz, kel, “HRTFcompact” 
aleftscale = aleft * 200 
arightscale = aright * 200 
 
outs aleftscale, arightscale 
  
 
------------------------------------------------------------------------ 
 
d) Time Stretch -- Written by Richard Karpen, 1992. 
 



 

 

61 

 
ar   sndwarp   xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, 
      irandw, ioverlap, ifn2, [itimemode] 
 
DESCRIPTION 
sndwarp reads sound samples from a table (see under ifn1 for 
information about using this with the NeXT operating system) and 
applies time-stretching and/or pitch modification. Time and 
frequency modification are indepentant from one another. For 
example, a sound can be stretched while raising the pitch. The 
window size and overlap arguments are important to the result and 
should be experimented with. In general they should be as small as 
possible. For example, 
start with iwsize=sr/20 and ioverlap=5. Try irandw=iwsize*.2. The 
algorithm reacts differently depending upon the input sound. 
 
 
ARGUMENTS 
ifn1 is the number of the table holding the sound samples which will 
be subjected to the sndwarp processing. GEN01 is the appropriate 
function generator to use to store the sound samples (a version of 
sndwarp for the NeXT operating system reads soundfiles directly 
instead of using function tables. In the NeXT version there is no 
practical limit to the length of the sound and stereo soundfiles can be 
processed. In this version, the maximum length of input sound is 
limited to the maximum table size allowable and/or to the amount of 
memory available to the program. Only the table-lookup version is 
available with this release).  xamp is the amplitude by which to scale 
the signal (post time and frequency scaling).  xtimewarp determines 
how the input signal will be stretched or shrunk in time. There are 
two ways to use this argument dependent upon the value given for 
itimemode. When the value of itimemode is 0 (or if no value is 
given; 0 is the default), xitimewarp will scale the time of the sound. 
For example, a value of 2 will stretch the sound by 2 times. When 
itimemode is any non-zero value then xtimewarp is used as a time 
pointer in a similar way in which the time pointer works in lpread 
and pvoc. An example below illustrates this. In both cases, the pitch 
will NOT be altered by this process. Pitch shifting is done 
independently using xresample.  xresample is the factor by which to 
change the pitch of the sound. For example, a value of 2 will produce 
a sound one octave higher than the original. The “speed” of the 
sound, however, will NOT be altered.  ibeg is the time in seconds to 
begin reading in the table (or soundfile). When itimemode is non-
zero, the value of itemwarp is offset by ibeg.  iwsize is the window 
size in samples used in the time warping algorithm.  irandw is the 
bandwidth of a random number generator. The random numbers will 
be added to iwsize.  ioverlap determines the density of overlapping 
windows.  ifn2 is a function used to shape the window. It is usually 
something like a half a sine (ie: f1 0 16384 9 .5 1 0). 
 
 
EXAMPLE 
The below example shows a slowing down or stretching of the sound 
stored in the stored table (ifn1). Over the duration of the note, the 
stretching will grow from no change from the original to a sound 
which is ten times “slower” than the original.  At the same time the 
overall pitch will move upward over the duration by an octave. 
 
iwindfun=1 
isampfun=2 
ibeg=0 
iwindsize=2000 
iwindrand=400 
ioverlap=10 
         
awarp line 1, p3, 10 
aresamp line 1, p3, 2 
kenv line 1, p3, .1  
asig   sndwarp kenv, awarp, aresamp, isampfun, ibeg, 
iwindsize,  iwindrand, overlap, iwindfun 
 
Here is an example using xtimewarp as a time pointer 
 
itimemode=1 
atime line 0, p3, 10 
asig   sndwarp kenv, atime, aresamp, sampfun, ibeg, iwindsize, 
         iwindrand, ioverlap, iwindfun, itimemode 

 
In the above, atime advances the time pointer used in the sndwarp 
from 0 to 10 over the duration of the note. If p3 is 20 then the sound 
will be two times slower than the original. Of course you can use a 
more complex function than just a single straight line to control the 
time factor. 
 
------------------------------------------------------------------------ 
 
e) Non-linear filter 
 
ar    nlfilt ain, ka, kb, kd, kL, kC 
 
Implements the filter Y{n} =a Y{n-1} + b Y{n-2} + d Y^2{n-L} + 
X{n} - C described in Dobson and Fitch (ICMC’96). 
 
Examples: 
 
i) Non-linear effect: 
 
With a=b=0 and a delay (L) of 20 samples.  The other parameter 
range 
  
                  d = 0.8, 0.9, 0.7 
 C = 0.4, 0.5, 0.6 
 
This affects the lower register most but there are audible effects over 
the whole range.  We suggest that it may be useful for colouring 
drums, and for adding arbitrary highlights to notes 
 
ii) Low Pass with non-linear: 
 
a = 0.4 
b = 0.2 
d = 0.7  
C = 0.11 
L = 20, ... 200 
 
There are instability problems with this variant but the effect is more 
pronounced of the lower register, but is otherwise much like the pure 
comb.  Short values of $L$ can add attack to a sound. 
 
iii) High Pass with non-linear: 
 
The range of parameters are 
a = 0.35 
b = -0.3 
d = 0.95 
C = 0,2, ... 0.4 
L = 200 
 
 
iv) High Pass with non-linear: 
 
The range of parameters are 
a = 0.7  
b = -0.2, ... 0.5 
d = 0.9  
C = 0.12, ... 0.24 
L = 500, 10 
 
The high pass version is less likely to oscillate.  It adds scintillation 
to medium-high registers.  With a large delay $L$ it is a little like a 
reverberation, while with small values there appear to be formant-
like regions.  There are arbitrary colour changes and resonances as 
the pitch changes.  Works well with individual notes. 
 
Warning:  The “useful” ranges of parameters are not yet mapped. 
------------------------------------------------------------------------ 
 
 
g) Chanhes to Linear Predictive Coding 
 
1) LPC Pole stabilization. 
 
It is done through a new option in the analysis stage. 
 



 

 

62 

csound -U lpanal -a [other options] 
The -a flag [alternate storage] asks lpanal to write a file with filter 
poles values rather than the usual filter coefficient files. 
 
When lpread / lpreson are used with pole files, automatic 
stabilization is performed and the filter should not get wild anymore. 
I’ve implemented only one stabilization algorithm, more tune could 
be implemented later. 
 
(This is the default in the Windows GUI) 
 
2) LPC Interpolation. 
 
Two new opcodes are available to perform interpolation between 
pole files of two analysis. 
 
-------------------------- 
 lpslot islot 
 
islot: number of slot to be selected [0<islot<20] 
 
lpslot selects the slot to be use by further lp opcodes. This is the way 
to load and reference several analysis at the same time. 
 
-------------------------- 
 
 lpinterpol islot1,islot2,kmix 
 
islot1: slot where the first analysis was stored 
islot2: slot where the second analysis was stored 
kmix  : mix value between the two analysis. Should be between 0 and 
1. 0 means analysis 1 only. 1 means analysis 2 only. Any value 
inbetween will produce interpolation between the filters.  
 
lpinterpol computes a new set of poles from the interpolation 
between two analysis. The poles will be stored in the current lpslot 
and used by the next lpreson opcode. 
 
--------------------------- 
 
Here is a typical orc using the opcodes: 
 
sr=44100 
kr=4410 
nchnls=1 
 
instr 1 
; Define sound generator 
ipower  init    50000 
ifreq      init    440  
asrc       buzz  ipower,ifreq,10,1                      ; Define time line 
ktime     line   0,p3,p3                                      ; Read square data 
poles 
lpslot  0 
krmsr,krmso,kerr,kcps lpread   ktime,”square.pol” ; Read 
triangle data                                                                                                               
                                                                               ; poles 
lpslot  1 
krmsr,krmso,kerr,kcps lpread   ktime,”triangle.pol” ; 
Compute result of          
                                                                    ; mixing and balance 
power 
kmix      line   0,p3,1 
lpinterp 0,1,kmix 
 
ares lpreson asrc 
aout balance ares,asrc 
        out  aout 
          endin 
 
--------------------------------------------------------- 
 
 
 
 
 
 

Release Notes for v3.45 
======================= 
 
Version 3.45 is a small collection of corrections and additions 
following the large changes of 3.44 
 
Summary 
======= 
 
a) An additional optional argument has been added to all the 
Butterworth filters, vdelay, and reverb2, which ifnon-zero 
skips the initialisation stage. 
 
b) Return code corrected after no graphics 
 
c) Allow arguments like -m6W 
 
d) Added new opcodes uniform to complete the random generators 
 
e) Added fof2 opcode 
 
f) New command option -z to give a list of opcodes.  -z0 or -z 
   prints a list; -z1 prints a list with answer/argument 
   descriptions.  
 
g) Adjust writing of scores to allow longer tables (as described 
    by Richard Karpen). 
 
h) Adjusted sndwarp to give (optional) stereo, and new opcode 
    sndwarpst (Described below) 
 
 
DOCUMENTATION ON NEW/REVISED OPCODES 
==================================== 
 
_SNDWARP (Written by Richard Karpen, 1992. Most recent 
revision, 1997) 
 
asig [, acmp] sndwarp xamp, xtimewarp, xresample, ifn1, ibeg, 
iwsize, irandw, ioverlap, ifn2, itimemode 
 
asig1, asig2 [, acmp1, acmp2] sndwarpst xamp, xtimewarp, 
xresample, ifn1, ibeg, iwsize, irandw, ioverlap, ifn2, timemode 
 
DESCRIPTION 
sndwarp reads sound samples from a table and applies time-
stretching and/or pitch modification.  Time and frequency 
modification are indepentant from one another. For example, a sound 
can be stretched in time while raising the pitch! The window size and 
overlap arguments are important to the result and should be 
experimented with. In general they should be as small as possible. 
For example, start with iwsize=sr/10 and ioverlap=15. Try 
irandw=iwsize*.2. If you can get away with less overlaps, the 
program will be faster. But too few may cause an audible flutter in 
the amplitude. The algorithm reacts differently depending upon the 
input sound and there are no fixed rules for the best use in all 
circumstances. But with proper tuning, excellent results can be 
achieved. 
OUTPUTS 
asig is the single channel of output from the sndwarp unit generator 
while asig1 and asig2 are the stereo (left and right) outputs from 
sndwarpst. sndwarp assumes that the function table holding the 
sampled signal is a mono one while sndwarpst assumes that it is 
stereo. This simply means that sndwarp will index the table by 
single-sample frame increments and sndwarpst will index the table 
by a two-sample frame increment. The user must be aware then that 
if a mono signal is used with sndwarst or a stereo one with sndwarp, 
time and pitch will be altered accordingly.  
 
acmp in sndwarp and acmp1, acmp2 in sndwarpst, are single layer 
(no overlaps), unwindowed versions of the time and/or pitch altered 
signal. They are supplied in order to be able to balance the amplitude 
of the signal output, which typically contains many overlapping and 
windowed versions of the signal, with a clean version of the time-
scaled and pitch-shifted signal. The sndwarp process can cause 
noticeable changes in amplitude, (up and down), due to a time 
differential between the overlaps when time-shifting is being done. 



 

 

63 

When used with a balance unit, acmp, acmp1, acmp2 can greatly 
enhance the quality of sound. They are optional, but note that in 
sndwarpst they must both be present in the syntax (use both or 
neither). An example of how to use this is given below.  
 
 
INPUT ARGUMENTS 
ifn1 is the number of the table holding the sound samples which will 
be subjected to the sndwarp processing. GEN01 is the appropriate 
function generator to use to store the sound samples from a pre-
existing soundfile. 
 
xamp is the value by which to scale the amplitude (see note on the 
use of this when using acmp, acmp1, amcp2). 
 
xtimewarp determines how the input signal will be stretched or 
shrunk in time. There are two ways to use this argument depending 
upon the value given for itimemode. When the value of itimemode is 
0, xitimewarp will scale the time of the sound. For example, a value 
of 2 will stretch the sound by 2 times. When itimemode is any non-
zero value then xtimewarp is used as a time pointer in a similar way 
in which the time pointer works in lpread and pvoc. An example 
below illustrates this. In both cases, the pitch will NOT be altered by 
this process. Pitch shifting is done independently using xresample. 
 
xresample is the factor by which to change the pitch of the sound. 
For example, a value of 2 will produce a sound one octave higher 
than the original. The timing of the sound, however, will NOT be 
altered. 
 
ibeg is the time in seconds to begin reading in the table (or 
soundfile). When itimemode is non- zero, the value of itimewarp is 
offset by ibeg. 
 
iwsize is the window size in samples used in the time scaling 
algorithm. 
 
irandw is the bandwidth of a random number generator. The random 
numbers will be added to iwsize. 
 
ioverlap determines the density of overlapping windows. 
 
ifn2 is a function used to shape the window. It is usually used to 
create a ramp of some kind from zero at the beginning and back 
down to zero at the end of each window.  Try using a half a sine (ie: 
f1 0 16384 9 .5 1 0) which works quite well. Other shapes can also 
be used. 
 
 
EXAMPLES 
 
The below example shows a slowing down or stretching of the sound 
stored in the stored table (ifn1). Over the duration of the note, the 
stretching will grow from no change from the original to a sound 
which is ten times “slower” than the original.  At the same time the 
overall pitch will move upward over the duration by an octave. 
 
iwindfun=1 
isampfun=2_ibeg=0_iwindsize=2000_iwindrand=400_ioverlap=10 
 
awarp line 1, p3, 1 
aresamp line 1, p3, 2 
kenv line 1, p3, .1 
 
asig  sndwarp 
kenv,awarp,aresamp,isampfun,ibeg,iwindsize,iwindrand, 
ioverlap,iwindfun,0 
 
Now, here’s an example using xtimewarp as a time pointer and using 
stereo 
 
itimemode=1 
atime line 0, p3, 10 
asig1, asig2  sndwarpst kenv, atime, aresamp, sampfun, ibeg, 
iwindsize, iwindrand, ioverlap, iwindfun, itimemode 
 

In the above, atime advances the time pointer used in the sndwarp 
from 0 to 10 over the duration of the note. If p3 is 20 then the sound 
will be two times slower than the original. Of course you can use a 
more complex function than just a single straight line to control the 
time factor. 
 
Now the same as above but using the balance function with the 
optional outputs: 
 
asig,acmp sndwarp 
1,awarp,aresamp,isampfun,ibeg,iwindsize,iwindrand, 
ioverlap,iwindfun,itimemode 
 
abal balance asig, acmp 
 
asig1,asig2,acmp1,acmp2             sndwarpst 1, atime, aresamp,   
sampfun, ibeg, iwindsize, iwindrand, ioverlap, iwindfun,  itimemode 
 
abal1 balance asig1, acmp1 
abal2 balance asig2, acmp2 
 
In the above two examples notice the use of the balance unit. The 
output of balance can then be scaled, enveloped, sent to an out or 
outs, and so on. Notice that the amplitude arguments to sndwarp and 
sndwarpst are “1” in these examples. By scaling the signal after the 
sndwarp process, abal, abal1, and abal2 should contain signals that 
have nearly the same amplitude as the original input signal to the 
sndwarp process. This makes it much easier to predict the levels and 
avoid samples out of range or sample values that are too small.  
 
More advice: Only use the stereo version when you really need to be 
processing a stereo file. It is someone slower than the mono version 
and if you use the balance function it is slower again. There is 
nothing wrong with using a mono sndwarp in a stereo orchestra and 
sending the result to one or both channels of the stereo output! 
 
------------------------------------------------------------------------ 
 
 
FOF2 
 
DESCRIPTION: 
 
Get rid of the last argument to fof, “ifmode”. Instead we’ll have 
“kgliss”, internal grain glissandi. (This is certainly not as generally 
useful as kphs, but it does brighten up any fof instrument, allowing 
more spectral variation.) 
 
Usage: 
kgliss - sets the end pitch of each grain relative to the initial pitch, in 
octaves. Thus kgliss = 2 means that the grain ends two octaves above 
its initial pitch, while kgliss = -5/3 has the grain ending a perfect 
major sixth below. 
 
Rationale: 
The toggle switch “ifmode” always struck me as of rather limited 
use. When zero (default), the initial pitch of a grain (given by kform 
at the inception of a new grain) is kept steady throughout its lifetime, 
if one, every grain’s pitch follows kform. This may certainly be good 
for vocal synthesis, but for granular synthesis i’d like more control 
over the internal grain pitch. Eg grain glissandi. 
------------------------------------------------------------------------ 
There have been requests for a way of telling what opcodes are 
available in a given version.  To assist with that there is a new 
command line option 
 
-z Give a list of opcodes and exit 
-z0 The same 
-z1 Give a list of opcodes, together with answer and argument 
 types; then exit 
 
------------------------------------------------------------------------ 
Butterworth filters (Revised) 
 
ar butterhp asig, kfreq[, iskip] 
ar butterlp asig, kfreq[, iskip] 
ar butterbp asig, kfreq, kband[, iskip] 



 

 

64 

ar butterbr asig, kfreq, kband[, iskip] 
 
Implementations of second-order hipass, lopass, bandpass and 
bandreject Butterworth filters. 
 
 
PERFORMANCE 
 
These new filters are butterworth second-order IIR filters.  They are 
slightly slower than the original filters in Csound, but they offer an 
almost flat passband and very good precision and stopband 
attenuation. 
 
asig  - Input signal to be filtered. 
 
kfreq  - Cuttoff or center frequency for each of the filters. 
 
kband  - Bandwidth of the bandpass and bandreject filters. 
 
iskip  - Skip initialisation if present and non zero 
 
EXAMPLE 
 
asigrand        10000                 ; White noise signal 
alpf    butterlp   asig, 1000          ; cutting frequencies above1K 
ahpf    butterhp  asig, 500            ; passing frequencies above 500Hz 
abpf    butterbp  asig, 2000, 100  ; passing only 1950 to 2050 Hz  
abrf    butterbr   asig, 4500, 200  ; cutting only 4400 to 4600 Hz 
 
------------------------------------------------------------------------ 
Vdelay (revised) 
 
               ar   vdelay asig, adel, imaxdel[, iskip] 
 
This is an interpolating variable time delay, it is not very different 
from the existing implementation (deltapi), it is only easier to use. 
 
INITIALIZATION 
 
imaxdel - Maximum value of delay in samples.  If adel gains a value 
greater than imaxdel it is folded around imaxdel.  This should not 
happen. 
 
iskip - Skip initialisation if present and non zero 
 
PERFORMANCE 
 
With this unit generator it is possible to do Doppler effects or 
chorusing and flanging. 
 
asig  - Input signal. 
 
adel - Current value of delay in samples.  Note that linear functions 
have no pitch change effects.  Fast changing values of adel will cause 
discontinuities in the waveform resulting noise. 
 
Example 
 
f1 0 8192 10 1 
ims = 100   ; Maximum delay time in msec 
a1    oscil 10000, 1737, 1 ; Make a signal 
a2    oscil ims/2, 1/p3, 1 ; Make an LFO 
a2 = a2 + ims/2            ; Offset the LFO so that it is 
positive 
a3    vdelay a1, a2, ims ; Use the LFO to control delay time 
         out    a3 
 
Two important points here.  First, the delay time must be always 
positive.  And second, even though the delay time can be controlled 
in k-rate, it is not advised to do so, since sudden time changes will 
create clicks. 
 
------------------------------------------------------------------------ 
Reverb2 (Revised) 
 
ar reverb2 asig, ktime, khdif[, iskip] 
 

This is a reverberator consisting of 6 parallel comb-lowpass filters 
being fed into a series of 5 allpass filters. 
 
iskip - Skip initialisation if present and non zero 
 
 
PERFORMANCE 
 
The input signal asig is reverberated for ktime seconds.  The 
parameter khdif controls the high frequency diffusion amount.  The 
values of khdif should be from 0 to 1.  If khdif is set to 0 the all the 
frequencies decay with the same speed.  If khdif is 1, high 
frequencies decay faster that lower ones. 
 
Example: 
 
a1 oscil 10000, 100, 1 
a2 reverb2 a1, 2.5, .3 
out a1 + a2 * .2 
 
This results in a 2.5 sec reverb with faster high frequency 
attenuation. 
------------------------------------------------------------------------ 
Noise Generator 
 
xuniform krange - Uniform distribution random number generator.  
Krange is the range of the random numbers [0 - krange). 
 
------------------------------------------------------------------------ 
 
 
Release Notes for v3.46 
======================= 
 
Version 3.46 is a large collection of corrections, and some additions 
including the Whittle table opcodes, FOG and a more flexible 
version of soundin. 
 
Summary 
======= 
 
a) Changes in a number of MIDI opcodes (ipchmidib, ioctmidib, 
icpsmidib, kpchmidib, koctmidib, kcpsmidib, imidictrl, kmidictrl) to 
add additional optional argument, mainly for scaled pitchbend; new 
opcode midisetb (Mike Berry) 
 
b) Large number of bug fixes; mainly minor and to do with igoto 
(many people).  Corrected writing to log file on PC (mega dyslexia!)  
 
c) Negative p3 in score nolonger confuses other references to that 
note in the score (JPff/RWD) 
 
d) Attempt to fix LINUX precision problem in large table sizes etc 
 
e) Correction of my fiasco in opcode listing 
 
f) Correction of HRTF code on PCs and other machines with that 
byte 
order. 
 
g) New opcode, diskin.  Like soundin except allows variable rate of 
reading sound file. (Mike Berry) 
 
h) Fixes to -o dac on Windows95 
 
i) Improved pvoc with optional last argument (Richard Karpen) 
 
j) Defaults for sr/kr/ksmps such that one can omit one.  Defaults if all 
omitted made CD level. 
 
k) Robin Whittle’s table reading opcodes included 
 
l) Missing endin now noticed 
 
m) New opcode fog from Michael Clarke (still needs a little 
weaking) 
 



 

 

65 

n) Fixed cscore main program for dribble files 
 
o) Number of tables is no longer fixed, but expands as required. 
 
 
 
DOCUMENTATION ON NEW/REVISED OPCODES 
==================================== 
 
MIDI CONVERTERS 
 
ival notnum  
ival veloc  
icps cpsmidi  
icps cpsmidib 
kcps cpsmidib [irange]  
ioct octmidi  
ioct octmidib 
koct octmidib [irange] 
ipch pchmidi  
ipch pchmidib 
kpch pchmidib [irange]  
iamp ampmidi iscal[, ifn] 
kaft aftouch iscal  
kchpr chpress iscal 
kbend pchbend iscal  
ival midictrl inum[, initial] 
kval midictrl inum[, initial]  
kval midictrlsc inum[,iscal] [, ioffset] [, initial] 
 
Get a value from the MIDI event that activated this instrument, or 
from a continuous MIDI controller, and convert it to a locally useful 
format. 
 
INITIALIZATION 
 
iscal - I-time scaling factor. 
 
ifn (optional) - function table number of a normalized translation 
table, by which the incoming value is first interpreted.  The default 
value is 0, denoting no translation. 
 
inum - MIDI controller number. 
 
initial - the initial value of the controller. 
 
irange - the pitch bend range in semitones. 
 
PERFORMANCE 
 
notnum, veloc - get the MIDI byte value (0 - 127) denoting the note 
number or velocity of the current event. 
 
cpsmidi, octmidi, pchmidi - get the note number of the current MIDI 
event, expressed in cps, oct, or pch units for local processing. 
 
cpsmidib, octmidib, pchmidib - get the note number of the current 
MIDI event, modify it by the current pitch-bend value, and express 
the 
result in cps, oct, or pch units.  Available as an I-time value or as a 
continuous ksig value. 
 
ampmidi - get the velocity of the current MIDI event, optionally pass 
it through a normalized translation table, and return an amplitude 
value in the range 0 - iscal. 
 
aftouch, chpress, pchbend - get the current after-touch, channel 
pressure, or pitch-bend value for this channel, rescaled to the range 0 
- iscal.  Note that this access to pitch-bend data is independent of the 
MIDI pitch, enabling the value here to be used for any arbitrary 
purpose. 
 
midictrl - get the current value (0 - 127) of a specified MIDI 
controller. 
 
midictrlsc - get a scaled and offset value of a controller. 
 

SIGNAL INPUT & OUTPUT 
  
a1  in  
a1, a2  ins  
a1, a2, a3, a4  inq  
a1  soundin ifilcod[,iskptim][, iformat] 
a1, a2  soundin ifilcod[,iskptim][, iformat] 
a1, a2, a3, a4  soundin ifilcod[,iskptim][, iformat] 
a1[,a2[,a3,a4] diskin ifilcod, kpitch[,iskiptim][, iwraparound] 

[,iformat] 
  out asig 
  outs1 asig 
  outs2 asig 
  outs asig1, asig2 
    
  outq1 asig 
  outq2 asig 
  outq3 asig 
  outq4 asig 
  outq asig1, asig2, asig3, asig4 
  
 
 
These units read/write audio data from/to an external device or 
stream. 
 
INITIALIZATION 
 
filcod - integer or character-string denoting the source soundfile 
name.  An integer denotes the file soundin.filcod ; a character-string 
(in double quotes, spaces permitted) gives the filename itself, 
optionally a full pathname.  If not a full path, the named file is sought 
first in the current directory, then in that given by the environment 
variable SSDIR (if defined) then by SFDIR.  See also GEN01. 
 
iskptim (optional) - time in seconds of input sound to be skipped. 
The default value is 0. 
 
iformat (optional) - specifies the audio data file format: 1 = 8-bit 
signed char (high-order 8 bits of a 16-bit integer), 2 = 8-bit A-law 
bytes, 3 = 8-bit U-law bytes, 4 = 16-bit short integers, 5 = 32-bit 
long integers, 6 = 32-bit floats).  If iformat = 0 it is taken from the 
soundfile header, and if no header from the csound -o command flag.  
The default value is 0. 
 
kpitch - can be any real number. a negative number signifies 
backwards playback.  The given number is a pitch ratio, where: 1= 
norm pitch, 2=oct higher, 3=12th higher,etc; .5= oct lower, .25=2oct 
lowr, etc; -1= norm pitch backwards,-2=oct higher backwrds,etc.. 
 
iwraparound - 1=on, 0=off (wraps around to end of file either 
direction) 
 
PERFORMANCE 
 
in, ins, inq - copy the current values from the standard audio input 
buffer.  If the command-line flag -i is set, sound is read continuously 
from the audio input stream (e.g. stdin or a soundfile) into an internal 
buffer.  Any number of these units can read freely from this buffer. 
 
soundin is functionally an audio generator that derives its signal from 
a pre-existing file.  The number of channels read in is controlled by 
the number of result cells, a1, a2, etc., which must match that of the 
input file.  A soundin unit opens this file whenever the host 
instrument is initialized, then closes it again each time the instrument 
is turned off.  There can be any number of soundin units within a 
single instrument or orchestra; also, two or more of them can read 
simultaneously from the same external file. 
 
diskin is identical to soundin, except that it can alter the pitch of the 
sound that is being read. 
 
out, outs, outq send audio samples to an accumulating output buffer 
(created at the beginning of performance) which serves to collect the 
output of all active instruments before the sound is written to disk.  
There can be any number of these output units in an instrument.  The 
type (mono, stereo, or quad) must agree with nchnls, but units can be 



 

 

66 

chosen to direct sound to any particular channel: outs1 sends to 
stereo channel 1, outq3 to quad channel 3, etc. 
 
------------------------------------------------------------------------ 
 
ar    fog xamp, xdens, xtrans, xspd, koct, kband, kris, kdur, kdec,  
                  iolaps, ifna, ifnb, itotdur[, iphs][, itmode] 
 
Audio output is a succession of grains derived from data in a stored 
function table ifna.  The local envelope of these grains and their 
timing is based on the model of fof synthesis and permits detailed 
control of the granular synthesis. 
 
INITIALIZATION 
 
iolaps - number of pre-located spaces needed to hold overlapping 
rain 
data.  Overlaps are density dependent, and the space required 
depends on the maximum value of xdens* kdur.  Can be over-
estimated at no computation cost.  Uses less than 50 bytes of memory 
per iolaps. 
 
ifna, ifnb - table numbers of two stored functions.  The first is the 
data used for granulation, usually from a soundfile (GEN01).  The 
second is a rise shape, used forwards and backwards to shape the 
grain rise and decay; this is normally a sigmoid (GEN19) but may be 
linear (GEN07). 
 
itotdur - total time during which this fog will be active.  Normally set 
to p3.  No new grain is created if it cannot complete its kdur within 
the remaining itotdur. 
 
iphs (optional) - initial phase of the fundamental, expressed as a 
fraction of a cycle (0 to 1).  The default value is 0. 
 
itmode (optional) - transposition mode.  If zero, each grain keeps the 
xtrans value it was launched with.  if non-zero, each is influenced by 
xtrans continuously.  The default value is 0. 
 
PERFORMANCE 
 
xamp - amplitude factor.  Amplitude is also dependent on the number 
of overlapping grains, the interaction of the rise shape (ifnb) and the 
exponential decay (kband), and the scaling of the grain waveform 
(ifna).  The actual amplitude may therefore exceed xamp. 
 
xdens - density.  The frequency of grains per second. 
 
xtrans - transposition factor.  The rate at which data from the stored 
function table ifna is read within each grain.  This has the effect of 
transposing the original material.  A value of 1 produces the original 
pitch. Higher values transpose upwards, lower values downwards. 
Negative values result in the function table being read backwards. 
 
xspd - speed.  The rate at which successive grains advance through 
the stored function table ifna.  xspd is in the form of an index (0 to 1) 
to ifna.  This determines the movement of a pointer used as the 
starting point for reading data within each grain. (xtrans determines 
the rate at which data is read starting from this pointer.) 
 
koct - octaviation index.  The operation of this parameter is identical 
to that in fof. 
 
kband, kris, kdur, kdec - grain envelope shape.  These parameters 
determine the exponential decay (kband), and the rise (kris), overall 
duration (kdur,) and decay (kdec ) times of the grain envelope.  Their 
operation is identical to that of the local envelope parameters in fof.  
 
The Csound fog generator is by Michael Clarke, extending his earlier 
work based on IRCAM’s fof algorithm. 
 
Example: 
;p4 = transposition factor 
;p5 = speed factor 
;p6 = function table for grain data 
i1  =  sr/ftlen(p6) ;scaling to reflect sample rate and 
table length 

a1  phasor i1*p5   ;index for speed 
a2  fog  5000, 100, p4, a1, 0, 0, ,.01, .02, .01, 2, p6, 1, 
p3, 0, 1 
 
------------------------------------------------------------------------ 
>>> 1 - TABLE WRITE 
=================== 
 
This works on existing function tables, changing their contents.  
There could be all sorts of uses for this.  Assuming that users (.orc  
and .sco programmers) know what they are doing, then there should 
be no more trouble than the use of global variables.  
 
As when using global variables, the user must consider how the code 
is run.   
 
In each k cycle, instruments are executed, in order of instrument  
number, and within instruments, in order of the instances of the 
instrument.  I presume the instance order depends on their starting 
time. 
 
As execution proceeds, each ugen is run once at k time.  For k type 
ugens, they do their job once.  For a rate ugens, they process one or 
more arrays of a rate variables.  For instance a table read at a rate, 
with ksmps = 7, uses a 7 long array of indexes to read into a table, 
retrieving 7 different values and writing them to a 7 long array for 
the output. 
 
So  
 
ablah table azot, 5 
 
will read from table 5, a set of values pointed to by an array of 
indexes pointed to by azot, and write them to an array pointed to by 
ablah. 
 
We may conceive of an idea of writing successive a rate values to a 
single table location, and subsequently reading them from that 
location.  This would not work with ksmps = 7 - only the last written 
value would remain by the time execution passed to the next ugen. 
 
So table write is a means of patching i or k rate signals to particular 
locations in function tables, where they can be read by table read 
ugens.  However this does not work for a rate signals, unless you 
conspire to use a range of the table, and organise your indexes very 
carefully. 
 
Patching of i, k and a rate signals under .orc program control is best 
achieved with arrays - which do not yet exist.  See the zak system for 
a next best solution with ugens. 
 
So the main purpose of a table write ugen is to refashion function 
tables on the fly under program control.  tablemix, tablecopy, tablera 
and tablewa can also be used for such purposes. 
 
Applications are diverse.  One is to generate a waveshaping table 
with  .orc code.   A loop could be created and an instrument could 
spend some time with k rate operations looping to address each table 
location - rewriting the table, before letting performance proceed.  
This would probably be too slow to work with real-time music 
production. 
 
Another application is to continuously sculpt tables while they are 
being used.  Each k or a cycle, one or a few locations are changed a 
little. 
 
With these applications in mind, lets look at the tablew and itablew  
code.   
 
Firstly , itabelw is just the same as k rate tablew, except it only 
happens once at the initialisation of the ugen.  (I must investigate 
what happens if an i rate ugen is executed first, via an if goto, some 
time after the instrument is initialised.) 
 
The Csound orchestra loader decides whether this is k or a rate 
operation, and fires up the appropriate subroutine in the unit 
generator code. 



 

 

67 

 
There is no output variable. 
 
itablew, tablew and tablewkt 
---------------------------- 
 
        itablew isig, indx, ifn [,ixmode] [,ixoff] [,iwgmode] 
 
 
Use itablew when all inputs are init time variables or constants and 
you only want to run it at the initialisation of the instrument.  
 
tablew is for writing at k or at a rates, with the table number being 
specified at init time. 
 
tablewkt is the same, but uses a k rate variable for selecting the table 
number.  The valid combinations of variable types are shown by the 
first letter of the variable names: 
  

itablew    isig, indx, ifn [,ixmode] [,ixoff] [,iwgmode] 
  
tablew  ksig, kndx, ifn [,ixmode] [,ixoff] [,iwgmode] 
tablew  asig, andx, ifn [,ixmode] [,ixoff] [,iwgmode] 
  
tablewkt  ksig, kndx, kfn [,ixmode] [,ixoff] [,iwgmode] 
tablewkt  asig, andx, kfn [,ixmode] [,ixoff] [,iwgmode] 

 
  isig, ksig,   The value to be written into the table. 
  asig           
 
  indx, kndx,   Index into table, either a positive number range 
  andx             matching the table length (ixmode = 0) or a 0 to 1  
                       range (ixmode != 0) 
  ifn, kfn      Table number. Must be >= 1. Floats are rounded down to  
                   an integer.  If a table number does not point to a  
                   valid table, or the table has not yet been loaded  
                   (gen01) then an error will result and the instrument  
                   will be de-activated. 
 
  ixmode      Default 0  ==0  xndx and ixoff ranges match the length  
                    of the table. 
 
                           !=0  xndx and ixoff have a 0 to 1 range. 
 
 
  ixoff         Default 0  ==0  Total index is controlled directly by 
                   xndx.  ie. the indexing starts from the 
                   start of the table. 
  
                        !=0  Start indexing from somewhere else in  
                                the table. Value must be positive and 
                                less than the table length (ixmode = 0)  
                                or less than 1 (ixmode !=0 
  
  iwgmode       Default 0  ==0  Limit mode      } See below 
                           ==1  Wrap mode       }  
                           ==2  Guardpoint mode }        
  
0 = Limit mode 
-------------- 
         
Limit the total index (ndx + ixoff) to between 0 and the guard point. 
  
For a table of length 5, this means that locations 0 to 3 and location 4 
(the guard point) can be written.  A negative total index writes to 
location 0.  Total indexes > 4 write to location 4.       
 
1 = Wrap mode 
------------- 
 
Wrap total index value into locations 0 to E, where E is one less than 
either the table length or the factor of 2 number which is one less 
than the table length. For example, wrap into a 0 to 3 range - so that 
total index 6 writes to location 2. 
 
 
2 = Guardpoint mode 

------------------- 
 
The guardpoint is written at the same time as location 0 is written - 
with the same value.   
 
This facilitates writing to tables which are intended to be read with 
interpolation for producing smooth cyclic waveforms. In addition, 
before it is used, the total index is incremented by half the range 
between one location and the next, before being rounded down to the 
integer address of a table location. 
 
Normally (igwmode = 0 or 1) for a table of length 5 - which has 
locations 0 to 3 as the main table and location 4 as the guard point, a 
total index in the range of 0 to 0.999 will write to location 0.  
(“0.999” means just less than 1.0.)  1.0 to 1.999 will write to location 
1 etc.  
  
A similar pattern holds for all total indexes 0 to 4.999 (igwmode = 0) 
or to 3.999 (igwmode = 1). igwmode = 0 enables locations 0 to 4 to 
be written - with the guardpoint (4) being written with a potentially 
different value from location 0. 
 
With a table of length 5 and the iwgmode = 2, then when the total 
index is in the range 0 to 0.499, it will write to locations 0 and 4. 
Range 0.5 to 1.499 will write to location 1 etc. 3.5 to 4.0 will _also_ 
write to locations 0 and 4.   
 
This way, the writing operation most closely approximates the results 
of interpolated reading. Guard point mode should only be used with 
tables that have a guardpoint. 
 
Guardpoint mode is accomplished by adding 0.5 to the total index, 
rounding to the next lowest integer, wrapping it modulo the factor of 
two which is one less than the table length, writing the the table 
(locations 0 to 3 in our example) and then writing to the guard point 
if index == 0. 
 
tablew has no output value.  The last three parameters are optional 
and 
have default values of 0. 
 
 
Caution with k rate table numbers 
--------------------------------- 
 
The following notes also apply to the tablekt and tableikt ugens 
which  
can now have their table number changed at k rate. 
 
At k rate or a rate, if a table number of < 1 is given, or the table 
number points to a non-existent table, or to one which has a length of 
0 (it is to be loaded from a file later) then an error will result and the 
instrument will be deactivated. 
 
 
>>> 2 - tablegpw, tableleng, tablemix and tablecopy 
=================================================
== 
 
tableleng 
--------- 
 
ir      itableng ifn     
kr     tableng  kfn 
 
  ifn   i rate number of function table 
  kfn   k rate number of function table 
  
These return the length of the specified table.  This will be a power 
of two number in most circumstances - it will not show whether a 
table has a guardpoint or not - it seems this information is not 
available in the table’s data structure. If table is not found, then 0 will 
be returned. 
 
Likely to be useful for setting up code for table manipulation 
operations, such as tablemix and tablecopy. 
 



 

 

68 

 
tablgpw 
------- 
 
        itablegpw ifn 
        tablegpw  kfn 
 
For writing the table’s guard point, with the value which is in 
location 0.  Does nothing if table does not exist. 
 
Likely to be useful after manipulating a table with tablemix or 
tablecopy. 
 
 
tablemix 
-------- 
 
    tablemix  kdft, kdoff, klen, ks1ft, ks1off, ks1g, ks2ft, ks2off, ks2g 
    itablemix idft, idoff, ilen, is1ft, is1off, is1g, is2ft, is2off, is2g 
 
This ugen mixes from two tables, with separate gains into the 
destination table.  Writing is done for klen locations, usually stepping 
forward through the table - if klen is positive. 
If it is negative, then the writing and reading order is backwards - 
towards lower indexes in the tables.  This bidirectional option makes 
it easy to shift the contents of a table sideways by reading from it and 
writing back to it with a different offset. 
 
If klen is 0, no writing occurs. Note that the internal integer value of 
klen is derived from the ANSI C floor() function - which returns the 
next most negative integer.  Hence a fractional negative klen value of 
-2.3 would create an internal length of 3, and cause the copying to 
start from the offset locations and proceed for two locations to the 
left. 
 
The total index for table reading and writing is calculated from the 
starting offset for each table, plus the index value, which starts at 0 
and then increments (or decrements) by 1 as mixing proceeds. 
 
These total indexes can potentially be very large, since there is no 
restriction on the offset or the klen. However each total index for 
each table is ANDed with a length mask (such as 0000 0111 for a 
table of length 8) to form a final index which is actually used for 
reading or writing.  So no reading or writing can occur outside the 
tables.  
         
This is the same as “wrap” mode in table read and write. These ugens 
do not read or write the guardpoint. 
  
If a table has been rewritten with one of these, then if it has a 
guardpoint which is supposed to contain the same value as the 
location 0, then call tablegpw afterwards. 
 
The indexes and offsets are all in table steps - they are not 
normalised to 0 - 1.  So for a table of length 256, klen should be set 
to 256 if all the table was to be read or written.   
 
The tables do not need to be the same length - wrapping occurs 
individually for each table. 
 
  kdft          Destination function table. 
  
  kdoff         Offset to start writing from. Can be negative. 
  
  klen           Number of write operations to perform. Negative means 
                   work backwards. 
  
  ks1ft ks2ft   Source function tables. These can be the same as the 
                     destination table, if care is exercised about direction 
                     of copying data.   
  
  ks1off ks2off  Offsets to start reading from in source tables. 
  
  ks1g ks2g       Gains to apply when reading from the source tables.                 
                         The results are added and the sum is written to the            
                         destination table. 
         

tablecopy 
---------  
 
        tablecopy  kdft, ksft    
        itablecopy idft, isft 
 
Simple, fast table copy ugens.  Takes the table length from the 
destination table, and reads from the start of the source table. For 
speed reasons, does not check the source length - just 
copiesregardless - in “wrap” mode.  This may read through the 
source table several times.  A source table with length 1 will causeall 
values in the destination table to be written to its value.  
 
Table copy cannot read or write the guardpoint.  To read it use table 
read, with ndx = the table length.  Likewise use table write to write it. 
 
To write the guardpoint to the value in location 0, use tablegpw. 
 
This is primarily to change function tables quickly in a real-time 
situation. 
 
  kdft          Number of destination function table. 
  
  ksft          Number of source function table. 
 
 
 
>>> 3 - tablera and tablewa 
=========================== 
 
These ugens read and write tables in sequential locations to and from  
an a rate variable.  Some thought is required before using them.  
They  
have at least two major, and quite different, applications which are  
discussed below.   
 
 
ar        tablera  kfn, kstart, koff 
 
kstart  tablewa  kfn, asig, koff         
 
 
  ar           a rate distination for reading ksmps values from a  
                table. 
 
  kfn         i or k rate number of the table to read or write. 
  
  kstart     Where in table to read or write. 
  
  asig        a rate signal to read from when writing to the table.    
  
  koff        i or k rate offset into table. Range unlimited - see  
                explanation at end of this section. 
  
In one application, these are intended to be used in pairs, or with 
several tablera ugens before a tablewa - all sharing the same kstart 
variable. 
 
These read from and write to sequential locations in a table at 
audiorates, with ksmps floats being written and read each cycle. 
 
tablera starts reading from location kstart.   
tablewa starts writing to location kstart, and then writes to kstart with 
the number of the location one more than the one it last wrote. 
(Note that for tablewa, kstart is both an input and output variable.) 
If the writing index reaches the end of the table, then no further 
writing occurs and zero is written to kstart. 
 
For instance, if the table’s length was 16 (locations 0 to 15), and 
ksmps was 5. Then the following steps would occur with repetitive 
runs of the tablewa ugen, assuming that kstart started at 0. 
 
Run no. Initial Final   locations written   
                       kstart   kstart   
                 
1              0         5      0    1    2    3    4 
 



 

 

69 

2              5       10      5    6    7    8    9 
 
3             10      15     10  11  12  13   14        
 
4             15       0      15 
 
This is to facilitate processing table data using standard a rate 
orchestra code between the tablera and tablewa ugens: 
 
;-------------------------------- 
                                ; 
   kstart = 0              ; 
                                ; Read 5 values from table into an  
                                ; a rate variable. 
                                 
lab1:   atemp  tablera ktabsource, kstart, 0  ; Process the values using 
a    
                                                                    ; rate code. 
atemp = log(atemp)  ; 
                                ; Write it back to the table 
 
kstart  tablewa ktabdest, atemp, 0   ; Loop until all table locations 
have  
                                                       ; been processed. 
if ktemp > 0 goto lab1                     ; 
                                                        ; 
;-------------------------------- 
  
The above example shows a processing loop, which runs every k 
cycle, reading each location in the table ktabsource, and writing the 
log of those values into the same locations of table ktabdest. 
 
This enables whole tables, parts of tables (with offsets and different 
control loops) and data from several tables at once to be manipulated 
with a rate code and written back to another (or to the same) table. 
This is a bit of a fudge, but it is faster than doing it with k rate table  
read and write code. 
 
Another application is: 
 
;-------------------------------- 
                                      ; 
kzero = 0                       ; 
kloop = 0                       ; 
                                      ;        
kzero tablewa 23, asignal, 0    ; ksmps a rate samples written into  
                                                 ; locations 0 to (ksmps -1) of table 23. 
                                                 ; 
lab1: ktemp table kloop, 23     ; Start a loop which runs ksmps times,  
                                                 ; in which each cycle processes one of  
  [ Some code to manipulate ]   ; table 23’s values with k rate 
orchestra  
  [ the value of ktemp.     ]         ; code. 
                                ;  
                                ;        
        tablew ktemp, kloop, 23 ; Write the processed value to the table. 
                                ; 
kloop = kloop + 1               ; Increment the kloop, which is both the 
                                           ; pointer into the table and the loop  
if kloop < ksmps goto lab1      ; counter.  Keep looping until all 
values 
                                                ; in the table have been processed. 
                                                ; 
asignal tablera 23, 0, 0        ; Copy the table contents back to an a rate      
                                            ; variable. 
;-------------------------------- 
                                                                 
 
  koff  This is an offset which is added to the sum of kstart and the 
internal index variable which steps through the table.  The result is 
then ANDed with the lengthmask (000 0111 for a table of length 8 - 
or         9 with guardpoint) and that final index is used to read or 
write to the table.  koff can be any value.  It is converted into a long 
using the ANSI floor() function so that -4.3 becomes -5.  This is what 
we would want when using offsets which range above and below 
zero. 
  

Ideally this would be an optional variable, defaulting to 0, however 
with the existing Csount orchestra read code, such default parameters 
must be init time only.  We want k rate here, so we cannot have a 
default. 
  
 
Notes on tablera and tablewa 
----------------------------     
 
These are a fudge, but they allow all Csounds k rate operators to be 
used (with caution) on a rate variables - something that would only 
be possible otherwise by ksmps = 1, downsamp and upsamp.    
                                                                         
        Several cautions: 
         
1 -   The k rate code in the processing loop is really running at a  
        rate, so time dependant functions like port and oscil work 
        faster than normal - their code is expecting to be running at  
        k rate. 
 
2 -   This system will produce undesirable results unless the ksmps 
        fits within the table length.  For instance a table of length  
        16 will accomodate 1 to 16 samples, so this example will work  
        with ksmps = 1 to 16. 
   
        Both these ugens generate an error and deactivate the  
        instrument if a table with length < ksmps is selected.  
        Likewise an error occurs if kstart is below 0 or greater than  
        the highest entry in the table - if kstart >= table length. 
  
3 -    kstart is intended to contain integer values between 0 and  
        (table length - 1).  Fractional values above this should not  
        affect operation but do not achieve anything useful. 
  
4 -   These ugens do not do interpolation and the kstart and koff  
        parameters always have a range of 0 to (table length - 1) -  
        not 0 to 1 as is available in other table read/write ugens.   
        koff can be outside this range but it is wrapped around by the  
        final AND operation.   
  
5 -   These ugens are permanently in wrap mode.  When koff is 0, no  
        wrapping needs to occur, since the kstart++ index will always  
        be within the table’s normal range.  koff != 0 can lead to  
        wrapping.  
  
6 -   The offset does not affect the number of read/write cycles  
        performed, or the value written to kstart by tablewa. 
  
7 -   These ugens cannot read or write the guardpoint.  Use tablegpw  
        to write the guardpoint after manipulations have been done  
        with tablewa. 
  
 
 
>>> 4 - The “zak” system for patching signals 
============================================= 
 
“zak” means a or k rate patching, (i rate too), with a z at the start of 
the names of the ugens. 
 
This is a fudge to do the work until arrays are implemented.  I want 
to use such facilities and will use zak for the time being. 
 
The zak system uses one area of memory as a global i or k rate 
patching area, and another for audio rate patching.  
 
These are establised by a ugen which must be called once only: 
 
        zakinit isizea, isizek 
 
isizea  The number of audio rate “locations” for a rate patching. 
           Each “location” is actually an array which is ksmps long. 
 
isizek  The number of locations we want to reserve for floats  
            in the zk space.  These can be written and read at i and  
            k rates. 
  



 

 

70 

eg. zakinit 10 30 reserves memory for locations 0 to 30 of zk space 
and for locations 0 to 10 of a rate za space. With ksmps = 8, this 
would take 31 floats for zk and 80 floats for za space. 
         
At least one location is always allocated for both za and zk spaces. 
There is nothing wrong with having za and zk ranges thousands or 
tens  
of thousands, but most pieces probably only need a few dozen to 
patch  
their signals around.  
  
These patching locations can be referred to by number with the 
following ugens.   
 
The easiest way to run zakinit just once is to put it outside any  
instrument definition.  Typically this would be at the start of the 
orchestra file, with the sr etc. definitions.  All code outside the 
instrument definitions is treated as instrument one and is given an init 
run at time = 0. 
 
 
 
zir, zkr, zkw 
------------- 
 
There are two short, simple, fast opcodes which read a location in zk 
space, at either i time or at the k rate. 
 
ir      zir     indx                     
kr     zkr     kndx                     
 
Likewise, two write to a location in zk space at i time or at the k rate.  
 
        ziw     isig, indx               
        zkw    ksig, kndx               
 
These are fast and always check that the index is within the range of 
zk space.  If it is out of range, an error is reported and 0 is returned, 
or no writing takes place. 
 
  isig          i rate      } Value to write to the zk   
  ksig         i or k rate } location. 
         
  indx          i rate      } Which zk location to write it to.  
  kndx         i or k rate } 
 
For instance, 
 
        zkw     kzoom, p8 
 
can be used so that parameter 8 of the instrument’s command line 
could control where in zk space the output is written. 
 
        zkw     kzoom, 7 
                 
This will always write it to zk location 7. 
 
kxxx    phasor 1 
 
kdest   = 40 + kxxx * 16 
        zkw     kzoom, kdest 
 
This will write kzoom to locations 40 to 55 on a one second scan 
cycle.           
 
 
zar, zaw 
-------- 
 
For a rate reading and writing, we use similar opcodes: 
 
 
ar      zar     kndx                             
 
Reads number kndx array of floats which are the ksmps number of 
audio rate floats to be processed in a k cycle. 
 

 
        zaw     asig, kndx                       
 
Writes into the array specified by kndx. 
 
In both cases, the ugen figures out where the array is and auto 
indexes through it to get each of the ksmps number of samples. 
 
The za space is separate from the zk space.   
 
These are the basic zk and za read and write ugens. However there 
are  
a number of luxuriant variants: 
 
 
 
ziwm, zkwm 
---------- 
 
        ziwm    isig, indx [,imix]               
        zkwm   ksig, kndx [,imix]               
 
Like ziw and zkw above, except that they can mix - add the sig to the 
current value of the variable.  If no imix is specified, they mix, but if 
imix is used, then 0 will cause writing (like ziw and zkw) any other 
value will cause mixing. 
 
 
zkmod 
----- 
 
kr      zkmod   ksig, kzkmod 
 
zkmod is a unit generator intended to facilitate the modulation of one 
signal by another, where the modulating signal comes from a zk 
variable.  Either additive or mulitiplicative modulation is provided. 
 
ksig    is the input signal, to be modulated and sent to the output of  
           the zkmod unit generator. 
 
kzkmod controls which zk variable is used for modulation.  A 
positive  
             value means additive modulation, a negative value means  
             multiplicative modulation.  A value of 0 means no change to  
             ksig - it is transferred directly to the output. 
 
For instance kzkmod = 23 will read from zk variable 23, and add the 
value it finds there to ksig.  If kzkmod = -402, then ksig is multiplied 
by the value read from zk location 402.  
 
kskmod  can be an i or a k rate value. 
 
 
zkcl 
---- 
  
        zkcl    kfirst, klast 
  
This will clear to zero one or more variables in the zk space. Useful 
for those variables which are accumulators for mixing things during 
the processing for each cycle, but which must be cleared to zero 
before the next set of calculations. 
 
 
 
zar, zarg, zaw, zawm 
-------------------- 
 
For a rate reading and writing, in the za space, we use similar 
opcodes: 
 
ar      zar     kndx                             
 
  kndx  Points to which za variable to read.   
 
This reads the number kndx array of floats in za space which are the 
ksmps number of audio rate floats to be processed in a k cycle. 



 

 

71 

 
 
ar      zarg    kndx, kgain                              
 
Similar to zar, but multiplies the a rate signal by a k rate value kgain. 
 
 
        zaw     asig, kndx                       
  
Writes asig into the za variable specified by kndx. 
 
 
        zawm    asig, kndx [,imix]               
 
Like zaw above, except that it can mix - add the asig to the current 
value of the destination za variable.  If no imix is specified, it mixes, 
but if imix is used, then 0 will cause a simple write (like zaw) and 
any other value will cause mixing.  
 
zamod 
----- 
 
        zamod   asig, kzamod 
  
Modulation of one audio rate signal by a second one - which comes 
from a za variable.  The location of the modulating variable is 
controlled by the i or k rate variable kzamod.  This is the audio rate 
version of zkmod described above.   
 
zacl 
---- 
 
        zacl    kfirst, klast 
 
This will clear to zero one or more variables in the za space. Useful 
for those variables which are accumulators for mixing things during 
the processing for each cycle, but which must be cleared to zero 
before the next set of calculations. 
 
 
Summary of zak ugens 
-------------------- 
 
What types of input variables are used?  
 
                                           Runs at time 
ir     zir     indx                        i 
kr    zkr     kndx                                 k 
 
       ziw     isig, indx               i 
       zkw     ksig, kndx                        k 
 
       ziwm    isig, indx, imix        i 
       zkwm    ksig, kndx, kmix             k 
 
       zkcl    kfirst, klast                        k 
 
ar    zar     kndx                                   k but does arrays 
ar    zarg    kndx, kgain                        k but does arrays 
  
        zaw     asig, kndx                        k but does arrays 
 
        zawm    asig, kndx, kmix             k but does arrays 
 
        zacl    kfirst, klast                       k but does arrays 
 
 
isig    } 
indx    } Known at init time 
imix    } 
 
ksig    } 
kndx    } 
kmix    } k rate variables  
kfirst  } 
klast   } 
kgain   } 

 
asig    } a rate variable - an array of floats. 
 
 
Known bugs in zak system 
------------------------ 
 
When using the mix function of zkwm or zawm, care must be taken 
that  
the variables mixed to are zeroed at the end (or start) of each k cycle.  
The same applies to any variables to which signals are mixed.   
If you keep adding signals to them, their values can drift to 
astronomical figures - which is probably not what you want. 
 
My intention is to have certain ranges of za and zk variables used for 
mixing - I use zkcl and zacl in the last instrument to clear those 
ranges. 
 
 
>>> 5 - Six simple time reading ugens 
===================================== 
 
timek, timek, times, itimes 
--------------------------- 
 
These read absolute time since the start of the performance - in two 
formats. 
 
One is timek or itimek for time in krate cycles.  So with: 
 
        sr = 44100 
        kr = 6300 
        ksmps = 7 
 
then after half a second, the timek or itimek ugen would report 3150.  
It will always report an integer. 
 
Time in seconds is available with times or itimes. 
 
These would return 0.5 after half a second.      
 
 
kr      timek 
kr      times 
 
Both the above expect a k rate variable for output. 
 
There are no input parameters. 
 
 
For similar ugens which only operate at the start of the instance of 
the instrument: 
         
ir      itimek 
ir      itimes 
 
Both these expect an i rate variable (starting with i or gi) as their 
output. 
 
 
instimek, instimes 
------------------ 
 
kr      instimek 
kr      instimes 
 
These are similar to timek and times, except they return the time 
since the start of this instance of the instrument.  
 
 
 
6 - Printing k rate variables on the screen as numbers 
================================================= 
 
I hate debugging - these ugens are intended to facilitate the 
debugging of orchestra code. 
 



 

 

72 

 
printk 
------ 
 
printk prints one k rate value on every k cycle, every second or at 
intervals specified.  First the instrument number is printed, then the 
absolute time in seconds, then a specified number of spaces, then the 
value.  The variable number of spaces enables different values to be 
spaced out across the screen - so they are easier to view.  
 
 
        printk  kval, ispace [, itime] 
 
kval    The number to be printed.  
 
ispace  How many spaces to insert before it is printed.  (Max 130.)  
 
itime   How much time in seconds is to elapse between printings.   
        (Default 1 second.)  
  
The first print is on the first k cycle of the instance of the instrument.  
This may not be 0.000 seconds, but the first k cycle afterwards.  I 
want to investigate this - I thought that k rate code should run from 
time 0. 
 
 
 
printks 
------- 
 
printks is a completely different ugen - similar to printf() in C. 
 
It is highly flexible, and if used together with cursor positioning 
codes, could be used to write specific values to locations in the 
screen as the Csound processing proceeds.  With MSDOS, a colour 
screen and ANSI.SYS, it would be possible to have multiple colours, 
flashing displays - looking like NASA mission control, with k rate 
variables controlling the values displayed, the location on the screen 
where they are displayed, their colour etc. 
 
There is also a special mode where a float variable is rounded to the 
next lowest integer, and ANDed with 0 1111 1111 to produce a 
character between 0 and 255 to be sent to be printed. 
 
This elaborate use is a bit over the top - a hacker’s paradise. But 
printks can be used simply, just to print variables for debugging. 
 
 
printks prints numbers and text, with up to four printable numbers - 
which can be i or k rate values. 
 
printks    “txtstring”, itime, kval1, kval2, kval3, kval4 
 
txtstring   Text to be printed first - can be up to 130 characters  
                at least.  _Must_ be in double quotes. 
                 
                The string is printed as is, but standard printf %f  
                etc. codes are interpreted to print the four parameters. 
         
                However (at least with DJGPP) the \n style of  
                character codes are not interpreted by printf.   
                This ugen therefore provides certain specific codes  
                which are expanded: 
 
                \n or \N        Newline 
 
                \t or \T        Tab 
 
                ^               Escape character 
 
                ^^               ̂
 
                ~               Escape and ‘[‘ These are the lead in  
                                codes for MSDOS ANSI.SYS screen  
                                control characters. 
 
                ~~              ~ 

 
                An init error is generated if the first parameter is  
                not a string of length > 0 enclosed in double quotes. 
 
                [For some reason (at least with the DJGPP version, the 
                program crashes if a null string - ““ - is given.   
                This seems not to be due to this ugen.  This should be  
                tidied up sometime.] 
 
 
                A special mode of operation allows this ugen to convert  
                kval1 input parameter into a 0 to 255 value and to use  
                it as the first character to be printed.   
 
                This enables a Csound program to send arbitrary  
                characters to the console - albeit with a little  
                awkwardness.   
 
                [printf() does not have a format specifier to read a  
                float and turn it into a byte for direct output.  
                We could add extra code to do this if we really wanted  
                to put arbitrary characters out with ease.] 
 
                To acheive this, make the first character of the string a 
                # and then, if desired continue with normal text and format 
                specifiers.  Three more format specifers may be used - they 
                access kval2, kval3 and kval4.  
                 
  itime      How much time in seconds is to elapse between  
                printings.  (Default 1 second.)  
 
  kvalx     The k rate values to be printed. Use 0 for those which  
                are not used.    
 
For instance: 
 
        printks “Volume = %6.2f  Freq = %8.3f\n”, 0.1, kvol, kfreq, 0, 0 
 
This would print: 
 
Volume = 1234.56 Freq = 12345.678        
 
 
        printks “#x\\y = %6.2\n”, 0.1, kxy, 0, 0, 0 
 
This would print a tab character followed by: 
 
x\y = 1234.56    
 
 
Discussion 
---------- 
 
Both these printing ugens can be made to run on every k cycle - or at 
least every k cycle they are run in the instrument.  Conditional goto 
statements can be used to run them only at certain times or when 
something goes wrong.  To make them run on every k cycle like this, 
set itime to 0. 
 
 
When itime is not 0, then (if the orchestra code runs the ugen on 
every k cycle) then the ugen will decide when to print.  It will always 
print on the first k cycle it is called.  This means that if you set one of 
these to print only every 10 seconds, and conditional code in the 
instrument causes it to be run for the very first time at 3 seconds, 
then it will print at 3 seconds. 
 
Subsequent runs of the ugen at between 3 and 9.999 seconds would 
not  
cause it to print.  This could be very useful - set the time to longer 
than the piece and conditional code in the instrument can be used to 
report a bug just once, on its first occurrence.  You almost certainly 
do not want a print operation happening every k cycle - it slows the 
program down too much. 
 
Staying with the 10 second cycle example, if such a printk or printks 
ugen was called every k cycle, then it would print at 0 seconds 



 

 

73 

(actually the first k cycle after 0), at 10.0 seconds, at 20.0 seconds 
etc. 
 
 
The time cycles start from the time the ugen is initialized -  typically 
the initialisation of the instrument.  
  
 
Damien Miller pointed out an interesting application of these ugens - 
get the output of the program and sort the lines with a line sorter.   
The result would be the printed lines sorted first by instrument 
number, and then by time - for printk. However printks can be made 
to produce almost anything.  The instrument is available as p1 and 
the time can easily be found and made available as a printks 
parameter. 
 
One option I have considered but not implemented is for these 
printed lines to be written to a file as well as to the screen.  Let me 
know if you like this idea, or have any other ideas about debugging. 
 
 
printf() style %f formatting 
---------------------------- 
 
One of the less enjoyable parts of C programming is trying to figure 
out what magic incantations to offer to printf() 
 
All the parameters are floats, so this reduces our decisions to two 
main issues: 
 
1 -   How many decimal points of precision do we want?  (0 means 
        no decimal point.) 
 
2 -   How many digits (or spaces) do we want printed in total -  
        _including_ those after the decimal point? 
 
 
%f        Just prints with full precision - 123.123456 
 
%6.2f   Prints 1234.12 
 
%5.0f   Prints 12345 
 
There is more to the printf() codes than this - see an ANSI C library 
reference.  Instead of ‘f’, you can use ‘e’ to get scientific notation. 
Using any other format specifiers than f, e, g, E and G will cause 
unpredictable results, because the parameters are always floating 
point numbers.  
 
 
 
 
>>> 7 - Why arrays or “zak” are so important for some applications 
=================================================
= 
 
A major theme of my approach to making music is to set up 
processes  
and let them interact and be affected by random occurrences.  This 
can  
be expensive in analog hardware - but a load of fun too. 
 
Setting up a garden of interacting processes and then tweaking them 
to  
whatever state of control or chaos I like is my idea of fun! 
 
Lets say I want to set up a musical cellular automata - with 100 
similar cells. 
 
Each one produces sound and has various internal states stored as i, k 
or a rate variables.  The behaviour of each cell is at least partially 
dependant on that of its neighbours.  Typically, each cell would make 
some of its own internal state - including sound output - _readable_ 
by its neigbours or other things. 
 

There could be a global matron function who tries to control the 
cells’ level of friskiness if they individually or collectively incur her 
wrath by becoming too obstreperous. 
 
So I have a 10 x 10 array of cells, and their internal state is made 
available as global variables - with different names for the same 
variable in different cells. 
 
This could be done with 100 carefully written instruments, but life is 
too short. 
The only alternative is to use one instrument and have each instance 
decide where its interal states are written to for others to read.   
It should decide which of the 99 other instances it will read the states 
of. 
 
The ideal way is if we could write global variables as:  
 
gahuey[p7] = afoo * abar 
 
or  
 
gahuey[kdest] = afoo * abar 
 
In either case, one element of an array huey[] of a rate variables is 
written.  (Actually each variable is an array of ksmps floats.) 
 
[ Interlude 1 - from what are the popular C variables foo and bar  
[ derived?  See the end of the file.   
 
Likewise we want to be able to write these array specifications in the  
right hand of equations. 
 
gaduey[kdest] = huey[ksource] * (ablah + p4) 
 
So that is the first thing about arrays - make them easy and direct to 
use with i or k rate indexing. 
 
Secondly, make them multidimensional: 
  
galouey[4, 10]  
Is a two dimensional array of global audio rate variables. 
 
gkblah[2, 4, 10]  
Is a three dimensional array of global k rate variables. 
 
Thirdly, we want them to be either global or local to the instance of 
the instrument. 
 
This is quite a tall order, since the core of Csound is not perfect and 
is largely devoid of comments. Such facilities are obviously beyond 
what Csound was originally conceived to do, but now that CPUs are 
so much faster, many people will be writing more sophisticated 
programs.  Since PCs with dual Pentiums exist today, and in a year 
or two will be available with up to four P6 processors, lets think big! 
 
 
In principle, the global aspect of arrays can be acheived with the zak 
system, but it is trickier. 
 
zak ugens do not go on the left or right of equations, they have their 
own line.  They must write to normal variables and be fed by normal 
variables.  Arrays, and multi dimensional arrays can all be done with 
offsets and multiplications to arrive at the final number of the 
location in za or zk space - but it this involves bulky, hard do debug 
and understand .orc code, and there is no prospect for building 
mnemonic names into the way these variables are accessed. 
 
I intend to do some cellular automatata or use multiple reverb and 
sound source instruments with varying delay times between them, all 
mixed with my binaural model - with the instruments, reverb points 
(and hence their connecting time delays) potentially moving around. 
 
There are great prospects for many hours of programming work, 
bogging down the CPU, and probably horrible results - but I am 
intrigued. 
 
 



 

 

74 

 
Release Notes for 3.47 
====================== 
 
These are the release notes for version 3.47. 
Many internal changes made to remove compiler warnings.  Mainly 
declarations and prototypes.  Anyone who works at source level 
should beware as structures have new fields, fields have been 
removed and so on.  Some variables have type changed. 
The Windows GUI has been revised as well. 
 
Language Changes: 
 
1.  Comments allowed in score in more places 
2.  Treat \ at end of line as continuation in orchestra 
3.  Maximum number of an instrument is dynamic, and expands as  
needed. 
4.  Removed limit on number of labels 
5.  Introduced ^ syntax into score files 
6.  Two new GENs, numbered 25 and 27 
7.  No limit to number of partials in hetro/adsyn 
 
Opcode Fixes 
 
1.  Some fixes in fog 
2.  Internal tidying in granule 
3.  Bug fix in cpsxpch 
4.  Fix problem with tables 300, 600, 900,...  
 
New Opcodes 
 
The following have been added.   
 
acos asin atan birrnd 
chanctrl cosh cross2 ctlinit 
ctrl14 ctrl21 ctrl7 dam 
expsegr filter2 ftgen ftlptim 
harmon ictrl14 ictrl21 ictrl7 
imidic14 imidic21 imidic7 initc14 
initc21 initc7 ioff ion 
iondur iondur2 ioutat ioutc 
ioutc14 ioutpat ioutpb ioutpc 
ipchbend kfilter2 kon koutat 
koutc koutc14 koutpat koutpb 
koutpc kpchbend linsegr massign 
mclock midic14 midic21 midic7 
moscil mrtmsg osciln release 
repluck rnd sinh tanh 
turnon wgpluck wgpuck2 xtratim 
 
and the modelled opcodes (following Perry Cook) 
        
wgclar wgflute wgbow wgbrass 
marimba vibes agogobel shaker 
fmbell fmrhode fmwurlie fmmetal 
fmb3 fmvoice fmpercfl moog 
mandol voice   
 
Revised Opcodes: 
 
The opcodes here have had their specification changed, generally in a 
compatible way. Usually to add scale factors and the like 
 
imidictrl kmidictrl linseg pchbend 
printks veloc   
 
 
Other Changes: 
 
Revised realtime audio on Windows (again!) 
Additional features on Windows GUI to includes access to orchestra 
and score editing and post-calculation soundfile editing. 
Emacs orchestra mode expanded for new opcodes, and fixed a little 
ksmps constrained to be integer. 
 
 
 

Details on Opcodes 
================== 
 
atan(x), acos(x), asin(x), tanh(x), sinh(x), cosh(x) 
---------------------------------------------------- 
Functions to calculate the arctangent, etc.  Available in i, k and a 
forms. 
  (Author JPff) 
 
irnd(x), krnd(x), ibirnd(x), kbirnd() 
------------------------------------- 
Functions, return random values in the range [0,x) or (-x,x) 
 
chanctrl 
-------- 
ival  chanctrl  ichnl, ictlno[,ilow,ihigh] 
kval  chanctrl  ichnl, ictlno[,ilow,ihigh] 
 
Get the current value of a controller and optionally map it onto 
specified range.  ichnl is the MIDI channel and ictlno is the MIDI 
controller number. 
  (Author BV) 
 
cross2 
------ 
asig  cross2    ain1, ain2, ilen, iovl, iwin, kbias 
 
Cross synthesis between the two audio signals 
  (Author PS) 
 
ctrtlinit 
--------- 
 
  ctrlinit ichnkm, ictlno1, ival1[, ictlno2, ival2[, ictlno3, 
ival3[,..ival32]] 
 
Sets initial values for a set of MIDI controllers. 
  (Author BV) 
 
dam 
--- 
 
Dynamic amplitude modifier 
  ar   dam  ain, kthresh, icomp1, icomp2, irtme, iftme  
 
  (Author MR) 
 
 
filter, kfilter, zfilter 
------------------------ 
 
a1 filter2    asig, iM, iN, ib0, ib1, ..., ibM, ia1, ia2, ..., 
iaN 
k1 kfilter2   ksig, iM, iN, ib0, ib1, ..., ibM, ia1, ia2, ..., iaN 
a1 zfilter2   asig, kdamp, kfreq, iM, iN, ib0, ib1,..,ibM, ia1, 
ia2, .,iaN 
 
General purpose custom filter with time-varying pole control. The 
filter coefficients implement the following difference equation: 
 
 
 (1)*y(n) = b0*x[n] + b1*x[n-1] + ... + bM*x[n-M] - a1*y[n-1] - ... - 
aN*y[n-N] 
 
 
the system function for which is represented by: 
 
                                      -1              -M  
                   B(Z)      b0 +  b1*Z   + ... + bM*Z 
      H(Z) =     ----  =  --------------------------------- 
                                       -1              -N 
                   A(Z)       1  + a1*Z    + ... + aN*Z 
 
 
INITIALIZATION 
 



 

 

75 

At initialization the number of zeros and poles of the filter are 
specified along with the corresponding zero and pole coefficients. 
The coefficients must be obtained by an external filter-design 
application such as Matlab and specified directly or loaded into a 
table via gen01. With zfilter2, the roots of the characteristic 
polynomials are solved at initialization so that the pole-control 
operations can be implemented efficiently. 
 
 
PERFORMANCE 
 
The filter2 and kfilter2 opcodes perform filtering using a transposed 
form-II digital filter lattice with no time-varying control. zfilter2 uses 
the additional operations of radial pole-shearing and angular pole-
warping in the Z plane. 
 
Pole shearing increases the magnitude of poles along radial lines in 
the Z-plane. This has the affect of altering filter ring times. The k-
rate variable kdamp is the damping parameter. Positive values (0.01 
to 0.99) increase the ring-time of the filter (hi-Q), negative values (-
0.01 to -0.99) decrease the ring-time of the filter, (lo-Q). 
 
Pole warping changes the frequency of poles by moving them along 
angular paths in the Z plane. This operation leaves the shape of the 
magnitude response unchanged but alters the frequencies by a 
constant factor (preserving 0 and p). The k-rate variable k-freq 
determines the frequency warp factor. Positive values (0.01 to 0.99) 
increase frequencies toward p and negative values (-0.01 to -0.99) 
decrease frequencies toward 0. 
 
Since filter2 implements generalized recursive filters, it can be used 
to specify a large range of general DSP algorithms. For example, a 
digital waveguide can be implemented for musical instrument 
modeling using a pair of delayr and delayw opcodes in conjunction 
with the filter2 opcode. 
 
Examples: 
 
A first-order linear-phase lowpass linear-phase FIR filter operating 
on a k-rate signal: 
 
  k1   kfilter2   ksig, 2, 0, 0.5, 0.5 ;; k-rate FIR filter 
 
A controllable second-order IIR filter operating on an a-rate signal: 
 
  a1   zfilter2   asig, kdamp, kfreq, 1, 2, 1, ia1, ia2 ;; controllable IIR 
 
  (Author MKC) 
 
ftgen 
----- 
 
iafno   ftgen   ifno,itime,isize, igen, iarga[,...iargz] 
 
iafno is either a requested or automatically assigned table number 
above 100.  If ifno is zero the number is assigned automatically and 
the value placed in iafno,  Any other value is used as the table.  itime 
is ignored, but otherwise this is as the table generation in the score 
with the f statement. 
  (Author BV) 
 
ftlptim 
------- 
 
Function.  Returns the loop segment start-time in seconds of a stored 
table. 
  (Author BV) 
 
harmon 
------ 
 
ar  harmon  asig,kestfrq,kmaxvar, kgenfrq1, kgenfrq2, imode, 
iminfrq, iprd 
 
Analyse an audio input and generate harmonising voices in 
synchrony. 
 

imode=0 is to treat the 2 generated frequencies as ratios=1 they are 
cps iminfrq is the lowest expects frequency in cps 
iprd is the period of analysis 
 
kestfrq is an estimate of the input frequency, and kmaxvar is a ratio 
to limit the search. 
Only one voice may be higher that the the signal,  and a zero 
frequency silences the sound 
 
  (Author BV) 
 
ictrl7, ictrl21, ictrl14, ctrl7, ctrl21, ctrl14 
imidic7, imidic14, imidic21, midic7, midic14, midic21 
----------------------------------------------------- 
 
idest imidic7 ictlno, imin, imax [, ifn] 
kdest midic7 ictlno, kmin, kmax [, ifn] 
                                   
idest imidic14 ictlno1, ictlno2, imin, imax [, ifn] 
kdest midic14 ictlno1, ictlno2, kmin, kmax [, ifn] 
   
idest imidic21 ictlno1, ictlno2, ictlno3, imin, imax [, ifn] 
kdest midic21 ictlno1, ictlno2, ictlno3, kmin, kmax [, ifn] 
 
 
idest     ictrl7  ichan, ictlno, imin, imax [,ifn] 
kdest     ctrl7   ichan, ictlno, kmin, kmax [,ifn] 
 
idest     ictrl14  ichan, ictlno1, ictlno2, imin, imax [,ifn] 
kdest     ctrl14   ichan, ictlno1, ictlno2, kmin, kmax [,ifn] 
 
idest     ictrl21  ichan, ictlno1, ictlno2, ictlno3, imin, imax [,ifn] 
kdest     ctrl21  ichan, ictlno1, ictlno2, ictlno3, kmin, kmax [,ifn] 
 
DESCRIPTION 
Allow precise MIDI input controller signal. 
 
INITIALIZATION 
idest - output signal 
ichan - MIDI channel (in (i)ctrl14 and (i)ctrl21 all the controllers 
used  in an opcode instance must be of the same channel) 
 
ictlno - midi controller number (1-127) 
ictlno1 - most-significant byte controller number (1-127) 
ictlno2 - in midic14: less-significant byte controller number (1-127);   
in midic21: mid-significant byte controller number (1-127)  
ictlno3 - less-significant byte controller number (1-127) 
imi - user-defined minimum floating-point value of output 
imax - user-defined maximum floating-point value of output 
ifn (optional) - table to be read when indexing is required. Table 
must be normalized. Output is scaled according to max and min val. 
 
PERFORMANCE 
kdest - output signal 
kmin - user-defined minimum floating-point value of output 
kmax - user-defined maximum floating-point value of output 
 
imidic7 and midic7 (i and k rate 7 bit midi control) allow floating 
point 7 bit midi signal scaled with a minimum and a maximum range.  
They also allow optional non-interpolated table indexing.  
In midic7 minimum and maximum values can be varied at krate. 
 
imidic14 and midic14 (i and k-rate 14 bit midi control) do the  
same as the above with 14 bit precision. 
 
imidic21 and midic21 (i and k rate 21 bit midi control) do the  
same as the above with 21 bit precision. 
 
imidic14, midic14, imidic21 and midic21 can use optional 
interpolated table indexing.  They require two or three midi 
controllers as input. 
 
Warning! Don’t use (i)midicXX opcodes within a sco-activated i-
statement or Csound will crash. Instruments containing (i)midicXX 
opcodes can be only activated by a MIDI note-on message. Use 
(i)ctrlXX opcodes if you need to include them in a sco-oriented 
instrument instead. 



 

 

76 

ictrl7, ctrl7, ictrl14, ctrl14, ictrl21, ctrl21 are very similar to 
(i)midicXX opcodes the only differences are: 
 
   1) (i)ctrlXX UGs can be included in sco-oriented instruments 
without Csound crashes. 
   2) They need the additional parameter ichan containing the MIDI 
channel of the controller. MIDI channel is the same for all the 
controller used in a single (i)ctrl14 or (i)ctrl21 opcode. 
 
 
 
initc7, initc14, initc21 
------------------------ 
initc7 ichan, ictlno, ivalue   
initc14 ichan, ictlno1, ictlno2, ivalue  
initc21 ichan, ictlno1, ictlno2, ictlno3, ivalue  
 
DESCRIPTION 
Initializes MIDI controller ictlno with ivalue 
 
INITIALIZATION 
ichan - midi channel 
ictlno - controller number (initc7) 
ictlno1 - MSB controller number 
ictlno2 - in initc14 LSB controller number; in initc21 Medium 
Significant Byte controller number 
ictlno3 - LSB controller number 
ivalue - floating point value (must be within 0 to 1) 
 
initc7, initc14, initc21 can be used together with both (i)midicXX 
and  
(i)ctrlXX opcodes for initializing the first controllers’ value.  
Ivalue argument must be set with a number within 0 to 1. An error 
occurs if it is not.  
Use the following formula to set ivalue according with (i)midicXX 
and (i)ctrlXX  min and max range: 
 
        ivalue = (initial_value - min) / (max - min) 
 
ion, ioff, iondur, iondur2 
-------------------------- 
ion ichn, inum, ivel 
ioff ichn, inum, ivel 
iondur ichn, inum, ivel, idur 
iondur2 ichn, inum, ivel, idur 
 
DESCRIPTION 
send note-on and  note-off messages to the MIDI OUT port. 
 
INITIALIZATION 
 
ichn - MIDI channel number (0-15) 
inum - note number (0-127) 
ivel - velocity  (0-127) 
 
PERFORMANCE 
 
ion (i-rate note on) and ioff (i-rate note off) are the simplest MIDI 
OUT opcodes.   
ion sends a MIDI noteon message to MIDI OUT port, and ioff sends 
a 
noteoff message.   
A ion opcode must always  be followed by an ioff with the same 
channel and number inside the same instrument, otherwise the note 
will play endlessly. 
These ion and ioff are useful only when introducing a timout 
statement to play a non zero duration MIDI note.  
For most purposes it is better to use iondur and iondur2. 
 
iondur and iondur2 (i-rate note on with duration) send a noteon and a 
noteoff MIDI message both with the same channel, number and 
velocity. Noteoff message is sent after idur seconds are elapsed by 
the time iondur was activated.  
 
iondur differs from iondur2 in that iondur truncates note duration 
when current instrument is deactivated by score or by realtime 
playing, while iondur2 will extend performance time of current 

instrument until idur seconds have elapsed.  In realtime playing it is 
suggested to use iondur also for undefined durations, giving a large 
idur value. 
 
Any number of iondur or iondur2 opcodes can appear in the same 
Csound instrument, allowing chords to be played by a single instr. 
 
ioutc, ioutc14, koutc, koutc14, ioutpb, koutpb, ioutat, koutat,  
ioutpc, koutpc, ioutpat, koutpat 
-------------------------------- 
 ioutc ichn, inum, ivalue, imin, imax 
 koutc kchn, knum, kvalue, kmin, kmax 
 ioutc14 ichn, imsb, ilsb, ivalue, imin, imax 
 koutc14     kchn, kmsb, klsb, kvalue, kmin, kmax 
 
 ioutpb ichn, ivalue, imin, imax 
 koutpb kchn, kvalue, kmin, kmax 
 ioutat ichn, ivalue, imin, imax 
 koutat kchn, kvalue, kmin, kmax 
 ioutpc ichn, iprog, imin, imax 
 koutpc kchn, kprog, kmin, kmax 
 
 ioutpat         ichn, inotenum, ivalue, imin, imax 
 koutpat         kchn, knotenum, kvalue, kmin, kmax 
 
DESCRIPTION 
Send a single Channel message to the MIDI OUT port. 
 
INITIALIZATION AND PERFORMANCE 
 
ichn, kchn - MIDI channel number (0-15) 
inum, knum - controller number (0-127 for example. 1 = ModWheel; 
2 = BreathControl etc.)  
ivalue, kvalue - floating point value  
imin, kmin - minimum floating point value (converted in midi integer 
value 0) 
imax, kmax - maximum floating point value (converted in midi 
integer value 127 (7 bit) or 16383 (14 bit)) 
imsb, kmsb - most significant byte controller number when using 14 
bit parameters  
ilsb, klsb - less significant byte controller number when using 14 bit    
parameters 
iprog, kprog - program change number in floating point 
inotenum, knotenum - MIDI note number (used in polyphonic 
aftertouch messages) 
 
 
ioutc and koutc (i and k-rate midi controller output) send controller 
messages to MIDI OUT device. 
 
iout14 and kout14 (i and k-rate midi 14 bit controller output) send a 
pair of controller messages. These opcodes can drive 14 bit 
parameters on MIDI instruments that recognize them. The first 
control message contains the most significant byte of i(k)value 
argument while the second message contains the less significant byte.  
i(k)msb and i(k)lsb are the number of the most and less significant 
controller. 
 
ioutpb and koutpb (i and k-rate pitch bend output) send pitch bend 
messages.  
ioutat and koutat (i and k-rate aftertouch output) send aftertouch 
messages. 
ioutat and koutat (i and k-rate aftertouch output) send aftertouch 
messages. 
ioutpc and koutpc (i and k-rate program change output) send program 
change messages. 
 
ioutpat and koutpat (i and k-rate polyphonic aftertouch output) send 
polyphonic aftertouch messages. These opcodes can drive a different 
value of a parameter for each note currently active. They work only 
with MIDI instruments which recognize them. 
 
N.B.  All these opcodes can scale the i(k)value floating-point 
argument according with i(k)max and i(k)min values. For example, 
setting i(k)min = 1.0 and i(k)max = 2.0, when i(k)value argument 
receives a 2.0 value, the opcode will send a 127 value to MIDI OUT 



 

 

77 

device, while when receiving a 1.0 it will send a 0 value.  I-rate 
opcodes send their message once during instrument initialization.  
K-rate opcodes send a message each time the MIDI converted value 
of 
argument i(k)value changes. 
 
ipchbend, kpchbend 
------------------ 
 
ibend  ipchbend  [ilow, ihigh] 
kbend  kpchbend  [ilow, ihigh] 
 
Get the current pitchbend value from a MIDI channel, and map it to 
the specified range 
  (Author BV) 
 
 
kon, moscil 
----------- 
moscil kchn, knum, kvel, kdur, kpause 
kon kchn, knum, kvel 
 
DESCRIPTION 
Send stream of note-on and note-off  messages to the MIDI OUT 
port. 
 
INITIALIZATION 
 
PERFORMANCE 
kchn - MIDI channel number (0-15) 
knum - note number (0-127) 
kvel - velocity  (0-127) 
kdur - note duration in seconds 
kpause - pause duration after each noteoff and before new note in 
seconds 
 
moscil and kon are the most powerful MIDI OUT opcodes. 
moscil (midi oscil) plays a stream of notes of kdur duration. Channel, 
pitch, velocity, duration and pause can be controlled at k-rate, 
allowing very complex algorithmically generated melodic lines.  
When current instrument is deactivated, the note played by current 
instance of moscil is forcely truncated. 
 
kon (k-rate note on) plays MIDI notes with current kchn, knum and 
kvel.  
These arguments can be varied at k-rate. Each time the MIDI 
converted value of any of these arguments changes, last MIDI note 
played by current instance of kon is immediately turned off and a 
new note with the new argument values is activated.  
 
This opcode, as well as moscil, can generate very complex melodic 
textures if controlled by complex k-rate signals. 
 
Any number of moscil or kon opcodes can appear in the same 
Csound instrument, allowing a counterpoint-style polyphony within a 
single instrument. 
 
  (Author GM) 
 
linsegr,expsegr 
--------------- 
 
kr    linsegr  ia, idur1, ib[,idur2, ic[..]]. irel, iz 
ar    linsegr  ia, idur1, ib[,idur2, ic[..]]. irel, iz 
kr    expsegr  ia, idur1, ib[,idur2, ic[..]]. irel, iz 
akr  expsegr  ia, idur1, ib[,idur2, ic[..]]. irel, iz 
 
Like linseg except that on a MIDI note off event the release sectin is 
used, extending the performance by irel seconds, during which the 
value of the opcode changes to iz. 
  (Author BV) 
 
 
massign 
------- 
 
massign  ichnl, insno 

Assign MIDI channel to a Csound instrument.  This is an orchestral 
header statement 
  (Author BV) 
 
mclock, mrtmsg 
-------------- 
mclock ifreq 
mrtmsg imsgtype 
 
DESCRIPTION 
Send System Realtime messages to the MIDI OUT port.  
 
INITIALIZATION 
 
ifreq - clock message frequency rate in Hz 
imsgtype - type of real-time message:  
           1 sends a START message (0xFA);   
           2 sends a CONTINUE message (0xFB);   
           0 sends a STOP message (0xFC);  
          -1 sends a SYSTEM RESET message (0xFF);  
          -2 sends an ACTIVE SENSING message (0xFE) 
 
PERFORMANCE 
 
mclock (midi clock) sends a MIDI CLOCK message (0xF8) every 
1/ifreq seconds.  So ifreq is the frequency rate of CLOCK message in 
Hz. 
mrtmsg (midi realtime message) sends a realtime message once, in 
init stage of current instrument. imsgtype parameter is a flag to 
indicate the message type (see above, in ARGUMENTS description). 
 
  (Author GM) 
 
osciln 
------ 
 
ar  osciln  kamp, ifrq, ifn, itimes 
 
Like oscil1, but makes a total of itimes passes over the data, after 
which it is silent 
  (Author BV) 
 
repluck, wgpluck2 
----------------- 
 
wgpluck2 is an implementation of the physical model of the plucked 
string, with control over the pluck point, the pickup point and the 
filter.  repluck is the same operation, but with an additional audio 
signal used to excite the ‘string’ 
 
  ar    wgpluck2   iplk, xam, icps, kpick, krefl 
  ar    repluck    iplk, xam, icps, kpick, krefl, axcite 
 
The string plays at icps pitch.  The point of pluck is iplk, which is a 
fraction of the way up the string (0 to 1).  A pluck point of zero 
means no initial pluck.  xamp is the gain. and kpick is what 
proportion of the way along the string to sample the output.  The 
relection at the bridge is contrlled by the refleaction coefficient, 
where 1 means total reflection and 0 is totally dead. 
 
  (Author JPff) 
 
turnon 
------ 
 
    turnon   insno[,itime] 
 
Activate an instrument, for an indefinite time, after a delay of itime 
seconds. 
  (Author BV) 
 
wgpluck 
------- 
 
  (Author MKC) 
 
 



 

 

78 

xtratim, release 
---------------- 
 xtratim  iextradur 
kflag release   
 
DESCRIPTION 
Extend the duration of realtime generated events and handle their 
extra life.  
 
INITIALIZATION 
 
iextradur - additional duration of current instrument instance. 
 
PERFORMANCE 
 
xtratim exetends current MIDI-activated note duration of iextradur 
seconds after the corresponding note-off message has deactivated 
current note itself.  This opcode has no output arguments.  
 
release outputs current note state. If current note is in the release 
stage (i.e. if its duration has been exetended with xtratim opcode and 
if it has only just deactivated), kflag output argument is set to 1, else 
(in sustain stage of current note) is set to 0. 
 
These two opcodes are useful for implementing complex release-
oriented envelopes. 
 
Example: 
instr 1     ;allows complex ADSR envelope with MIDI events 
inum notnum 
icps cpsmidi 
iamp ampmidi 4000 
; 
;############## complex envelope section ############## 
 xtratim 1 ;extra-time, i.e. release dur 
krel init 0 
krel release ;outputs release-stage flag (0 or 1 values) 
if  (krel > .5) kgoto  rel ;if in relase-stage goto relase section 
; 
;************ attack and sustain section *********** 
kmp1 linseg 0,.03,1,.05,1,.07,0,.08,.5,4,1,50,1  
kmp = kmp1*iamp 
 kgoto done 
; 
;************ release section ********************** 
rel: 
kmp2 linseg 1,.3,.2,.7,0  
kmp = kmp1*kmp2*iamp 
done: 
;################################################### 
; 
a1 oscili kmp, icps, 1 
 out a1 
 endin 
 
ar wgclar kamp, kfreq, kstiff, iatt, idetk, kngain, kvibf, kvamp, ifn[, 
iminfreq] 
 
Audio output is a tone similar to a clarinet, using a physical model 
developed from Perry Cook, but re-coded for Csound. 
 
Initialisation 
 
iatt - time in seconds to reach full blowing pressure.  0.1 seems to    
correspond to reasonable playing.  A longer time gives a definite     
initial wind sound. 
 
idetk - time in seconds taken to stop blowing.  0.1 is a smooth ending 
 
ifn - table of shape of vibrato, usually a sine table, created by a    
function  
 
iminfreq - lowest frequency at which the instrument will play.  If it is 
omitted it is taken to be the same as the initial kfreq.  
 
 
 

 
Performance 
 
A note is played on a clarinet-like instrument, with the arguments as    
below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played.  While it can be varied in 
performance,  I have not tried it.  
 
kstiff - a stiffness parameter for the reed.  Values should be    
negative, and about -0.3.  The useful range is approximately -0.44 to  
-0.18. 
 
kngain - amplitude of the noise component, about 0 to 0.5 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12 
 
kvamp - amplitude of the vibrato 
 
Example: 
 
a1        wgclar      31129.60, 440, -0.3, 0.1, 0.1, 0.2, 5.735, 0.1, 1 
            out         a1 
 
------------------------------------------------------------------------ 
ar wgflute kamp, kfreq, kjet, iatt, idetk, kngain, kvibf, kvamp, ifn[, 
iminfreq] 
 
Audio output is a tone similar to a flute, using a physical model 
developed from Perry Cook, but re-coded for Csound. 
 
Initialisation 
 
iatt - time in seconds to reach full blowing pressure.  0.1 seems to    
correspond to reasonable playing. 
 
idetk - time in seconds taken to stop blowing.  0.1 is a smooth 
ending. 
 
ifn - table of shape of vibrato, usually a sine table, created by a    
function. 
 
iminfreq - lowest frequency at which the instrument will play.  If it is 
omitted it is taken to be the same as the initial kfreq.  
 
 
Performance 
 
A note is played on a flute-like instrument, with the arguments as    
below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played.  While it can be varied in    
performance,  I have not tried it. 
 
kjet - a parameter controlling the air jet.  Values should be positive, 
and about 0.3.  The useful range is approximately 0.08 to 0.56. 
 
kngain - amplitude of the noise component, about 0 to 0.5 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12 
 
kvamp - amplitude of the vibrato. 
 
Example: 
 
a1        wgflute     31129.60, 440, 0.32, 0.1, 0.1, 0.15, 5.925, 0.05, 1 
            out         a1 
 
------------------------------------------------------------------------ 
ar wgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn[, iminfreq] 
 
Audio output is a tone similar to a bowed string, using a physical 
model developed from Perry Cook, but re-coded for Csound. 



 

 

79 

 
Initialisation 
 
ifn - table of shape of vibrato, usually a sine table, created by a    
function. 
 
iminfreq - lowest frequency at which the instrument will play.  If it is 
omitted it is taken to be the same as the initial kfreq.  
 
 
Performance 
 
A note is played on a bowed string-like instrument, with the 
arguments as below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played.  While it can be varied in    
performance,  I have not tried it. 
 
kpres - a parameter controlling the pressure of the bow on the string.    
Values should be about 3.  The useful range is approximately 1 to 5. 
 
kratio - the position of the bow along the string.  Usual playing is 
about 0.127236.  The suggested range is 0.025 to 0.23. 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12. 
 
kvamp - amplitude of the vibrato. 
 
Example: 
  A bowing with vibrato setting in after a short time. 
 
kv    linseg      0, 0.5, 0, 1, 1, p3-0.5, 1 
a1    wgbowed     31129.60, 440, 3.0, 0.127236, 6.12723, kv*0.01, 1 
         out         a1 
 
------------------------------------------------------------------------ 
ar wgbrass kamp, kfreq, klipt, idatt, kvibf, kvamp, ifn[, iminfreq] 
 
Audio output is a tone related to a brass instrument, using a physical 
model developed from Perry Cook, but re-coded for Csound. 
[NOTE:  This is rather poor, and at present uncontrolled. Needs 
revision, and possibly more parameters] 
 
Initialisation 
 
 
idatt -- time taken to stop blowing. 
 
ifn - table of shape of vibrato, usually a sine table, created by a    
function. 
 
iminfreq - lowest frequency at which the instrument will play.  If it is 
omitted it is taken to be the same as the initial kfreq.  
 
 
Performance 
 
A note is played on a bowed string-like instrument, with the 
arguments as below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played.  While it can be varied in    
performance,  I have not tried it. 
 
klibt - tension of lips, in range 0 to 1. 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12. 
 
kvamp - amplitude of the vibrato. 
 
Example: 
a1     wgbrass     31129.60, 440, 0.4, 0.1, 6.137, 0.05, 1 
 
------------------------------------------------------------------------ 

ar marimba kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec 
ar vibes       kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec 
 
Audio output is a tone related to the striking of a wooden or metal 
block as found in a marimba or vibraphone.  The method is a 
physical model developed from Perry Cook, but re-coded for 
Csound.  
 
Initialisation 
 
ihrd -- the hardness of the stick used in the strike.  A range of 0 to 1 
is used.  0.5 is a suitable value. 
 
ipos -- where the block is hit, in the range 0 to 1. 
 
imp - a table of the strike impulses.  The file "marmstk1.wav" is a    
suitable function from measurements, and can be loaded with a 
GEN1 table. 
 
ivfn - shape of vibrato, usually a sine table, created by a function. 
 
idec - time before end of note when damping is introduced. 
 
 
Performance 
 
A note is played on a marimba-like instrument, with the arguments as 
below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played.  While it can be varied in 
performance,  I have not tried it. 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12. 
 
kvamp - amplitude of the vibrato. 
 
Example: 
a1      marimba 31129.60, 440, 0.5, 0.561, 2, 6.0, 0.05, 1, 0.1 
a2      vibes       31129.60, 440, 0.5, 0.561, 2, 4.0, 0.2, 1, 0.1 
 
------------------------------------------------------------------------ 
ar agogobel kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn 
 
Audio output is a tone related to the striking of a cow bell or similar.  
The method is a physical model developed from Perry Cook, but re-
coded for Csound.   
 
 
Initialisation 
 
ihrd -- the hardness of the stick used in the strike.  A range of 0 to 1 
is used.  0.5 is a suitable value. 
 
ipos -- where the block is hit, in the range 0 to 1. 
 
imp - a table of the strike impulses.  The file "britestk.wav" is a    
suitable function from measurements, and can be loaded with a 
GEN1    table. 
 
ivfn - shape of vibrato, usually a sine table, created by a function.  
 
Performance 
 
A note is played on a cowbell or agogobell-like instrument, with the 
arguments as below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played.  While it can be varied in    
performance,  I have not tried it. 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12. 
 
kvamp - amplitude of the vibrato. 
 



 

 

80 

Example: 
a1    agogobel    31129.60, 440, p4, 0.561, 3, 6.0, 0.3, 1 
 
------------------------------------------------------------------------ 
ar shaker kamp, kfreq, kbeans, kdamp, knum, ktimes[, idecay] 
 
Audio output is a tone related to the shaking of a maraca or similar 
gourd instrument.  The method is a physically inspired model 
developed from Perry Cook, but re-coded for Csound.   
 
Initialisation 
 
idecay - If present indicates for how long at the end of the note the 
shaker is to be damped.  The default value is zero. 
 
Performance 
 
A note is played on a cowbell or agogobell-like instrument, with the 
arguments as below. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played, that is the frequency of the gourd. 
It can be varied in performance,  I have not tried it. 
 
kbeans - The number of beans in the gourd.  A value of 8 seems 
suitable. 
 
kdamp -- The damping vsalue of the shaker.  Values of 0.98 to 1 
seems suitable, with 0.99 a reasonable default. 
 
knum -- The number of shakes of the gourd.  Values over 64 are   
considered infinite. 
 
ktimes -- Number of times shaken. 
 
[RICK: Not sure all these are useful -- not clear in code] 
 
Example: 
a1     shaker     31129.60, 440, 8, 0.999, 0, 100, 0 
 
------------------------------------------------------------------------ 
a1 fmtbell  kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, 
ifn4, ivfn 
a1 fmrhode  kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, 
ifn4, ivfn 
a1 fmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, 
ifn4, ivfn 
a1 fmmetal  kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, 
ifn4, ivfn 
a1 fmb3     kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, 
ifn4, ivfn 
a1 fmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, 
ifn4, ivfn 
 
 
A family of FM sounds, all using 4 basic oscilators and various 
architectures, as used in the TX81Z synthesiser. 
 
Initialisation 
 
All these opcodes take 5 tables for initialisation.  The first 4 are the 
basic inputs and the last is the low frequency oscillator (LFO) used 
for vibrato.  The last table should usually be a sine wave. 
 
For the other opcodes the initial waves should be as in the table 
                         
 ifn1 ifn2 ifn3 ifn4 
fmtbell sinewave sinewave sinewave sinewave 
fmrhode sinewave sinewave sinewave fwavblnk 
fmwurlie sinewave sinewave sinewave fwavblnk 
fmmetal sinewave twopeaks twopeaks sinewave 
fmb3 sinewave sinewave sinewave sinewave 
fmpercfl sinewave sinewave sinewave sinewave 
 
The sounds produced are then 
 

fmtbell Tubular Bell 
fmrhode Fender Rhodes  Electric Piano 
fmwurlie Wurlitzer Electric Piano 
fmmetal "Heavy Metal" 
fmb3 Hammond B3 organ 
fmpercfl Percussive Flute 

 
Performance 
 
kamp – Amplitude. 
 
kfreq – frequency. 
 
kc1, kc2 -- Controls for the syntheser, as in the table 
 

 kc1 kc2 Algorithm 
fmtbell Mod index 1 Crossfase of two outputs 5 
fmrhode Mod index 1 Crossfase of two outputs 5 
fmwurlie Mod index 1 Crossfase of two outputs 5 
fmmetal Total mod 

index 
Crossfade of two 
modulators 

3 

fmb3 Total mod 
index 

Crossfade of two 
modulators 

4 

fmpercfl Total mod 
index 

Crossfade of two 
modulators 

4 

               
kvdepth -- Vibrator depth. 
 
kvrate -- Vibrator rate. 
 
Examples: 
a1          fmtbell 31129.60, 440, 1,   1.2, 0.2, 6,   1,1,1,1, 1 
a1          fmrhode 31129.60, 440, 1,   1.2, 0.2, 12,  1,1,1,4, 1 
a1          fmwurlie 31129.60, 440, 1,   1.2, 0.2, 8,   1,1,1,4, 1 
a1          fmmetal   31129.60, 110, 1,   1.2, 0.2, 5.5, 1,5,5,1, 1 
a1          fmb3    31129.60, 440, 1,   1.2, 0.2, 8,   1,1,1,1, 1 
a1          fmpercfl 31129.60, 440, 0.1, 0.1, 0.5, 12,  1,1,1,1, 1 
 
------------------------------------------------------------------------ 
a1 fmvoice  kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, ifn2, 
ifn3, ifn4, ivibfn 
 
FM Singing Voice Synthesis, 
Initialisation: 
 
ifn1, ifn2, ifn3, ifn3 -- Tables, usually of sinewaves. 
 
Performance 
 
kamp -- Amplitude control. 
 
kfreq -- Base frequency of sound. 
 
kvowel -- the vowel being sung, in the range 0-64; it is rounded to 
the nearest integer. 
 
ktilt -- the spectral tilt of the sound in the range 0 to 99. 
 
kvibamt -- Depth of vibrato. 
 
kvibrate -- Rate of vibrato. 
 
Example 
 
k1      line         0, p3, 64 
a1      fmvoice   31129.60, 110, k1, 0, 0.005, 6, 1,1,1,1,1 
 
------------------------------------------------------------------------ 
a1  moog   kamp, kfreq, kfiltq, kfiltrate, kvibf, kvamp, iafn, iwfn, 
ivfn 
 
An emulation of a mini-Moog syntheser. 
 
Initialisation. 
 



 

 

81 

iafn, iwfn, ivfn -- three table numbers containing the attack wave    
form (unlooped), the main looping wave form, and the vibrato 
waveform. 
The files mandpluk.aiff and impuls20.aiff are suitable for the first 
two,    and a sine wave for the last. 
 
Performance. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played. It can be varied in performance. 
 
kfiltq - Q of the filter, in the range 0.8 to 0.9 
 
kfiltrate - rate control for the filter in the range 0 to 0.0002 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12. 
 
kvamp - amplitude of the vibrato. 
 
------------------------------------------------------------------------ 
a1  mandol  kamp, kfreq, kpluck, kdetune, kgain, ksize, ifn[, 
iminfreq] 
 
An emulation of a mandolin. 
 
Initialisation. 
 
ifn -- table number containing the pluck wave form. The file 
mandpluk.aiff is suitable for this. 
 
iminfreq -- Lowest frequency to be played on the note.  If it is 
omitted it is taken to be the same as the initial kfreq.  
 
Performance. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played. It can be varied in performance. 
 
kpluck - The pluck position, in range 0 to 1.  Suggested value is 0.4 
 
kgain - the loopgain of the model, in the range 0.97 to 1. 
 
kdetune - The proportional detuning between the two strings.        
Suggested range 1 and 0.9 
 
ksize - The size of the body of the mandolin.  Range 0 to 2. 
 
------------------------------------------------------------------------ 
a1  voice   kamp, kfreq, kphoneme, kform, kvibf, kvamp, ifn, ivfn 
 
An emulation of a human voice. 
 
Initialisation. 
 
ifn, ivfn -- two table numbers containing the carrier wave form and    
the vibrato waveform. 
The files impuls20.aiff, ahh.aiff eee.aiff or ooo.aiff are suitable for    
the first of these, and a sine wave for the second. 
 
Performance. 
 
kamp - Amplitude of note.  
 
kfreq - Frequency of note played. It can be varied in performance. 
 
kphoneme - an integer in the range 0 to 16, which select the formants 
for the sounds  "eee","ihh","ehh","aaa",  
                        "ahh","aww","ohh","uhh", 
                        "uuu","ooo","rrr","lll", 
                        "mmm","nnn","nng","ngg". 
 
At present the phonemes 
                        "fff","sss","thh","shh", 
                        "xxx","hee","hoo","hah", 
                        "bbb","ddd","jjj","ggg", 

                        "vvv","zzz","thz","zhh" 
 
are not available. 
 
kform - Gain on the phoneme.  values 0.0 to 1.2 recommended. 
 
kvibf - frequency of vibrato in Hertz. Suggested range is 0 to 12. 
 
kvamp - amplitude of the vibrato. 
------------------------------------------------------------------------ 
 
GEN25, GEN27 
These subroutines are used to construct functions from segments of 
exponential curves (GEN25) or straight lines (GEN27) in breakpoint 
fashion. 
 
f #  time  size  25  x1 y1 x2 y2 x3 y3 . . . 
f #  time  size  27  x1 y1 x2 y2 x3 y3 . . . 
 
size - number of points in the table.  Must be a power of 2 or power-
of-2 
plus 1 (see f statement). 
 
x1, x2, x3, etc. - locations in table at which to attain the following y 
value.  Must be in increasing order.  If the last value is less than size, 
then the rest will be set to zero.  Should not be negative but can be 
zero. 
 
y1, y2, y3,  etc. - Breakpoint values attained at the location specified 
by the preceding x value.  For GEN25 these must be non-zero and 
must be alike in sign.  No such restrictions exist for GEN27. 
 
Note: If p4 is positive, functions are post-normalized (rescaled to a 
maximum absolute value of 1 after generation).  A negative p4 will 
cause rescaling to be skipped. 
 
Example:  f 1 0 257 27 0 0 100 1 200 -1 256 0 
 
This describes a function which begins at 0, rises to 1 at the 100th 
table location, falls to -1, by the 200th location, and returns to 0 by 
the end of the table.  The interpolation is linear.  
 
f 1 0 257 25 0 0.001 100 1 200 .001 256 0.001 
 
Similar to above, but creates exponential curve. No values <= 0 are 
allowed in Gen25. 
 
------------------------------------------------------------------------ 
Windows GUI  Changes 
==================== 
 
The treatment of graphs has changed significantly.  In particular there 
are two new menu items, to display the previous or next graph. 
These work during the run, and also at the end.  It can remember up 
to 
40 graphs. 
 
Instead of a dialog asking for a click at the end, the system waits for 
any character.  During this time the menus can be used, so the graphs 
can be redisplayed, or the output scrolled back.  Also the text buffer 
size has been increased. 
 
Also for Windows, the output form devaudio0, devaudio1,.. or adc0, 
adc1,... can be used to select which of many audio devices are to be 
used. (devaudio1 would refer to device 1 etc).  The form devaudio 
refers to device zero. 
 
==John ff 
  1998 Jan 2 
 
 
Release Notes for 3.48 
====================== 
 
These are the release notes for version 3.48, which is mainly a bug-
fix release. These notes should be read in conjunction with earlier 



 

 

82 

release notes.  The main non-bug-fix material is described in the 
language changes. 
 
Language Changes 
---------------- 
 
The input or output file in -i and -o can start with a | to indicate a 
process which is started to create or process audio files.  This works 
on Windows and Unix, but not (yet) DOS. 
  
WAV format now supports floating samples correctly. (Richard 
Dobson) 
 
Macros in orchestra and scores [Notes 1 and 2] 
 
Repeat sections in Scores [Note 1] 
 
#include available in orchestra and score [Notes 1 and 2] 
 
/* */ comments allowed in orchestra and score 
 
Removal of limit on orchestra size (ARGSPACE and ORTEXT 
problems) 
 
The opcodes asin, acos and atan renamed as sininv, cosinv and taninv 
so as to avoid name-space polution. 
 
_ allowed as part of a word.  Words case significant. 
 
Limited evaluation of expressions in the score [Note 6] 
 
Opcode Fixes 
------------ 
 
reverb2 was tuned to one particular sampling rate.  Replaced by 
nreverb opcode. (Richard Karpen) 
 
wgbow, flute and brass fixed in various ways 
 
Fixes in fof2 and fog (Ekman) 
 
shaker used to ignore krequency; now fixed 
 
New Opcodes 
----------- 
pvadd (Richard Karpen) [Note 3] 
 
taninv2 in kk and aa contexts (equivalent to atan2 in C) 
 
printk2 which prints when a k-value changes (Gabriel Maldonado) 
[Note 0] 
 
locsig, locsend, space, spsend, spdist (Richard Karpen) for locating 
sound [Notes 7 and 8] 
 
New GEN function 28 to read x,y values direct from a file. 
 
Other Changes: 
------------- 
 
On Windows permissions of output files could be wrong. 
 
Problem on SUN fixed, which gave silence sometimes and other 
errors. 
 
emacs modes have new opcodes added, and some support for 
macros. 
 
Pipes allowed in -L inputs, using a | as the first character of the 
‘filename’. 
 
-H2 and -H3 options to display heartbeat in a different way.  -H1 is 
equivalent to -H and -H0 is equivalent to no -H option. [Note 5] 
 
  
 
 

Windows GUI Changes 
------------------- 
 
Output device selectable by menu (Richard Dobson).  No equivalent 
code for input yet. 
 
Reading MIDI files fixed in interface. 
 
xyin implemented in windows. [Note 4] 
 
Heartbeat option on Extras dialog allows numbers now. [Note 5] 
 
 
------------------------------------------------------------------------ 
==John ff 
  1998 Apr 14 
=================================================
======================= 
Note 0: 
printk2 
 
 printk2 kvar [, numspaces] 
 
INITIALIZATION 
 
numspaces - number of space characters printed before the value of 
kvar 
 
PERFORMANCE 
 
kvar - signal to be printed 
 
Derived from Robin Whittle’s printk, prints a new value of kvar each 
time kvar changes. Useful for monitoring MIDI control changes 
when 
using sliders.  Warning! don’t use this opcode with normal, 
continuously variant k-signals, because it can hang the computer, as 
the rate of printing is too fast. 
------------------------------------------------------------------------ 
Note 1: 
 
Changes to the Score Language 
 
John ffitch April 1998 
 
The 3.48 version of Csound introduces a number of changes in the 
language in which scores are presented to the system.  These are all 
upward compatible, and so do not require any changes in existing 
scores.  These changes should allow for simpler score writing, and 
provide an elementary alternative to the full score-generation 
systems.  Similar changes have been made in the orchestra language. 
 
Simple Macros  
 
Macros are textual replacements which are made in the score as it is 
being read.  The macro system in Csound is a very simple one, and 
uses two special characters to indicate the presence of macros, the 
characters # and $. 
 
To define a macro one uses the # character. 
 
#define NAME  # replacement text# 
 
The name of the macro can be any made from letters, upper or lower 
case.  Digits are not allowed.  The replacement text is any character 
string (not containing a #) and can extend over more than one line. 
The replacement text is enclosed within the # characters, which 
ensures that additional characters are not inadvertently captured.  
 
To use a macro the name is used following a $ character.  The name 
is 
terminated by the next non-letter.  If the need is to have the name 
without a space a period can be used to terminate the name, which is 
ignored.  The string $NAME. is replaced by the replacement text 
from 
the definition.  Of course the replacement text can also include macro 
calls. 



 

 

83 

If a macro is not required any longer it can be undefined with 
 
#undef NAME 
 
Example: 
   If a note-event has a set of p-fields which are repeated 
 
#define ARGS # 1.01 2.33 138# 
i1 0 1 8.00 1000 $ARGS 
i1 0 1 8.01 1500 $ARGS 
i1 0 1 8.02 1200 $ARGS 
i1 0 1 8.03 1000 $ARGS 
 
This will get expanded before sorting into 
i1 0 1 8.00 1000 1.01 2.33 138 
i1 0 1 8.01 1500 1.01 2.33 138 
i1 0 1 8.02 1200 1.01 2.33 138 
i1 0 1 8.03 1000 1.01 2.33 138 
 
This can save typing and is easier to change if for example one 
needed to change one of the parameters.  If there were two sets of p-
fields one could have a second macro (there is no real limit on the 
number of macros one can define). 
 
#define ARGS1 # 1.01 2.33 138# 
#define ARGS2 # 1.41 10.33 1.00# 
i1 0 1 8.00 1000 $ARGS1 
i1 0 1 8.01 1500 $ARGS2 
i1 0 1 8.02 1200 $ARGS1 
i1 0 1 8.03 1000 $ARGS2 
 
An alternative would be to use the second form of the macro, 
described below. 
 
Note: some care is needed with textual macros as they can sometimes 
do strange things.  They take no notice of any meaning, and so 
spaces are significant, which is why the definition has the 
replacement text surrounded by # characters, unlike that in the C 
programming language. 
Used carefully simply macros are a powerful concept, but they can 
be abused. 
 
Advanced Macros 
 
Macros can also be defined with parameters.  This can be used in 
more complex situations.  In order to define a macro with arguments 
the syntax is 
 
#define NAME(A#B#C)  #replacement text# 
 
Within the replacement text the arguments can be substituted by the 
form $A.  In fact the implementation defines the arguments as simple 
macros.  There may be up to 5 arguments, and the names can be any 
choice of letters.  Case is significant in macro names. 
 
In use the argument form for example 
  
#define ARG(A) # 2.345   1.03   $A   234.9# 
i1 0 1 8.00 1000 $ARG(2.0) 
i1  + 1 8.01 1200 $ARG(3.0) 
 
which expands to 
 
i1 0  1 8.00 1000 2.345   1.03   2.0   234.9 
i1 + 1 8.01 1200 2.345   1.03   3.0   234.9 
 
As with the simple macros, these macros can also be undefined with 
 
#undef NAME 
 
 
 
Another Use For Macros 
 
When writing a complex score it is sometimes all too easy to forget 
to what the various instrument numbers refer. One can use macros to 
give names to the numbers. For example 

 
#define Flute #i1# 
#define Whoop #i2# 
 
$Flute. 0 10 4000 440 
$Whoop. 5 1 
 
 
Multiple File Score 
 
It is sometimes convenient to have the score in more than one file. 
This use is supported by the #include facility which is part of the 
macro system.  A line containing the text 
 
#include :filename: 
 
where the character : can be replaced by any suitable character.  For 
most uses the double quote symbol will probably be the most 
convenient. 
 
This takes input from the named file until it ends, when input reverts 
to the previous input.  There is currently a limit of 20 on the depth of 
included files and macros. 
 
A suggested use of #include would be to define a set of macros 
which 
are part of the composer’s style.  It could also be used to provide 
repeated sections. 
 
s 
#include :section1: 
;; Repeat that 
s 
#include :section1: 
However there is an alternative way of doing repeats, described 
below. 
 
Repeated Sections 
 
Sections can be repeated by using #include or by editing the text.  An 
alternative is the new r directive in the score language. 
 
r3 NN 
 
starts a repeated section, which lasts until the next s, r or e directive.  
The section is repeated 3 times in this example.  In order that the 
sections may be more flexible than simple editing, the macro NN is 
given the value of 1 for the first time through the section, 2 for the 
second, and 3 for the third.  This can be used to change p-field 
parameters, or indeed ignored. 
 
Warning: because of serious problems of interaction with macro 
expansion, sections must start and end in the same file, and not in a 
macro. 
 
 
Evaluation of Expressions 
 
In earlier versions of Csound the numbers presented in a score were 
used as given. There are occasions when some simple evaluation 
would be easier. This need is increased when there are macros. To 
assist in this area the syntax of an arithmetic expressions within 
square brackets [ ] has been introduced. Expressions built from the 
operations +, -, *, and / are allowed, together with grouping with ( ). 
The expressions can include numbers, and naturally macros whose 
values are numeric or arithmetic strings. All calculations are made in 
floating point numbers. Note that unary minus is not yet supported. 
 
Example: 
 
r3 CNT 
 
i1 0 [0.3*$CNT.] 
i1 + [($CNT./3)+0.2] 
 
e 
 



 

 

84 

As the three copies of the section have the macro $CNT. with the 
different values of 1, 2 and 3, this expands to 
 
s 
i1 0 0.3 
i1 0.3 0.533333 
s 
i1 0 0.6 
i1 0.6 0.866667 
s 
i1 0 0.9 
i1 0.9 1.2 
e 
 
This is an extreme form, but the evaluation system can be used to 
ensure that repeated sections are subtly different.   
------------------------------------------------------------------------ 
Note 2: 
Changes to the Orchestra Language 
 
John ffitch April 1998 
 
In version 3.48 a macro and multiple file system has been 
incorporated into the orchestra language.  This is similar to the macro 
system in the score language, but is independent. 
 
Simple Macros  
 
Macros are textual replacements which are made in the orchestra as it 
is being read.  The macro system in Csound is a very simple one, and 
uses two special characters to indicate the presence of macros, the 
characters # and $. 
 
To define a macro one uses the # character. 
 
#define NAME  # replacement text# 
 
The name of the macro can be any made from letters, upper or lower 
case.  Digits are not allowed.  The replacement text is any character 
string (not containing a #) and can extend over more than one line. 
The replacement text is enclosed within the # characters, which 
ensures that additional characters are not inadvertently captured.  
 
To use a macro the name is used following a $ character.  The name 
is terminated by the next non-letter.  If the need is to have the name 
without a space a period can be used to terminate the name, which is 
ignored. The string $NAME. is replaced by the replacement text 
from the definition.  Of course the replacement text can also include 
macro calls. 
 
If a macro is not required any longer it can be undefined with 
 
#undef NAME 
 
Example: 
    
#define REVERB #ga = ga+a1 
 out a1# 
 
instr 1 
  a1  oscil 
  $REVERB. 
endin 
 
instr 2 
  a1  repluck 
  $REVERB. 
endin 
 
This will get expanded before compilation into 
 
instr 1 
  a1  oscil 
  ga = ga+a1 
 out a1 
endin 
 

instr 2 
  a1  repluck 
  ga = ga+a1 
 out a1 
endin 
 
 
This can save typing, and in the case, for example, of a general 
effects processing sequence, it can lead to a coherent and consistent 
use. 
 
This form is limiting in at least having the variable names fixed.  An 
alternative would be to use the second form of the macro, described 
below. 
 
Note: some care is needed with textual macros as they can sometimes 
do strange things.  They take no notice of any meaning, and so 
spaces are significant, which is why the definition has the 
replacement text surrounded by # characters, unlike that in the C 
programming language. 
Used carefully simply macros are a powerful concept, but they can 
be abused. 
 
Advanced Macros 
 
Macros can also be defined with parameters.  This can be used in 
more complex situations.  In order to define a macro with arguments 
the syntax is 
 
#define NAME(A#B#C)  #replacement text# 
 
Within the replacement text the arguments can be substituted by the 
form $A.  In fact the implementation defines the arguments as simple 
macros.  There may be up to 5 arguments, and the names can be any 
choice of letters.  Case is significant in macro names. 
 
In use the argument form for example 
  
#define REVERB(A) #ga = ga+$A. 
 out $A.# 
instr 1 
  a1  oscil 
  $REVERB(a1) 
endin 
 
instr 2 
  a2  repluck 
  $REVERB(a2) 
endin 
 
to which expands 
 
instr 1 
  a1  oscil 
  ga = ga+a1 
 out a1 
endin 
 
instr 2 
  a2  repluck 
  ga = ga+a2 
 out a2 
endin 
 
As with the simple macros, these macros can also be undefined with 
 
#undef NAME 
 
Multiple File Orchestras 
 
It is sometimes convenient to have the orchestra arranged in a 
number of files, for example with each instrument in a separate file.  
This style is supported by the #include facility which is part of the 
macro system. A line containing the text 
 
#include :filename: 
 



 

 

85 

where the character : can be replaced by any suitable character. For 
most uses the double quote symbol will probably be the most 
convenient. 
 
This takes input from the named file until it ends, when input reverts 
to the previous input.  There is currently a limit of 20 on the depth of 
included files and macros. 
 
Another suggested use of #include would be to define a set of macros 
which are part of the composer’s style. 
 
An extreme form would be to have each instrument defines as a 
macro, with the instrument number as a parameter.  Then an entire 
orchestra could be constructed from a number of #include statements 
followed by macro calls. 
 
#include :clarinet: 
#include :flute: 
#include :bassoon: 
$CLARINET(1) 
$FLUTE(2) 
$BASSOON(3) 
 
It must be stressed that these changes are at the textual level and so 
take no cognisance of any meaning. 
 
------------------------------------------------------------------------ 
Note 3: 
pvadd 
Created by Richard Karpen, 1998 
 
a2   pvadd   ktimpnt, kfmod, ifile, ifn, ibins [, ibinoffset, ibinincr] 
   
DESCRIPTION 
 
pvadd reads from a pvoc file and uses the data to perform additive 
synthesis using an internal array of interpolating oscillators. The user 
supplies the wave table (usually one period of a sine wave), and can 
choose which analysis bins will be used in the re-synthesis. 
 
 
PERFORMANCE 
 
ktimpnt, kfmod, and ifile are used in the same way as in pvoc.  
 
ifn is the table number of a stored function containing a sine wave.  
 
ibins is the number of bins that will be used in the resynthesis (each  
bin counts as one oscillator in the re-synthesis). 
 
ibinoffset is the first bin used (it is optional and defaults to 0).  
 
ibinincr sets an increment by which pvadd counts up from ibinoffset 
for ibins components in the re-synthesis (see below for a further 
explanation). 
 
EXAMPLE: 
 
 
   ktime   line      0, p3, p3 
   asig     pvadd   ktime, 1, "oboe.pvoc", 1, 100, 2 
 
 
In the above, ibins is 100 and ibinoffset is 2. Using these settings the 
resynthesis will contain 100 components beginning with bin #2 (bins 
are counted starting with 0). That is, resynthesis will be done using 
bins 2-101 inclusive. It is usually a good idea to begin with bin 1 or 2 
since the 0th and often 1st bin have data that is neither necessary nor 
even helpful for creating good clean resynthesis. 
 
 
   ktime   line      0, p3, p3 
   asig     pvadd   ktime, 1, "oboe.pvoc", 1, 100, 2, 2 
 
 
The above is the same as the previous example with the addition of 
thevalue 2 used for the optional ibinincr argument. This result will 

still result in 100 components in the resynthesis, but pvadd will count 
through the bins by 2 instead of by 1. It will use bins 2, 4, 6, 8, 10, 
and so on. For ibins=10, ibinoffset=10, and ibinincr=10, pvadd 
would use bins 10, 20, 30, 40, up to and including 100. 
 
USEFUL HINTS: 
By using several pvadd units together, one can gradually fade in 
different parts of the resynthesis, creating various "filtering" effects. 
The author uses pvadd to synthesis one bin at a time to have control 
over each separate component of the re-synthesis. 
 
If any combination of ibins, ibinoffset, and ibinincr, creates a 
situation where pvadd is asked to used a bin number greater than the 
number of bins in the analysis, it will just use all of the available bins 
and give no complain. So to use every bin just make ibins a big 
number (ie. 2000). 
 
Expect to have to scale up the amplitudes by factors of 10-100 by the 
way. 
------------------------------------------------------------------------ 
 
Note 4: 
 
When xyin is called the position of the mouse within the output 
window is used to reply to the request. This simple mechanism does 
mean that only one xyin can be used accurately at once. The position 
of the mouse is reported in the output window 
 
------------------------------------------------------------------------ 
Note 5: 
 
-H1 generates a ‘rotating line’ progress report. 
-H2 generates a . everytime a buffer is written. 
-H3 reports the size in seconds of the output. 
-H4 sounds a bell for every buffer of the output written. 
 
------------------------------------------------------------------------ 
Note 6: 
 
Expressions enclosed in square brackets [ ] are evaluated at read-time 
for scores. This allows 4-function arithmetic and brackets (no unary 
minus yet) on numbers and macros whose values are numbers.  It can 
be used with repeats to change timing or dynamics. 
 
------------------------------------------------------------------------ 
Note 7: 
 
 

a1, a2 locsig asig, kdegree, kdistance, kreverbsend 
a1, a2, a3, a4 locsig asig, kdegree, kdistance, kreverbsend 
a1, a2 locsend  
a1, a2, a3, a4 locsend  

 
DESCRIPTION 
 
locsig takes an input signal and distributes it among 2 or 4 channels 
using values in degrees to calculate the balance between adjacent 
channels. It also takes arguments for distance (used to attenuate 
signals that are to sound as if they are some distance further than the 
loudspeaker itself), and for the amount the signal that will be sent to 
reverberators. This unit is based upon the example in the Charles 
Dodge/Thomas Jerse book, "Computer Music," page 320. 
 
locsend depends upon the existence of a previously defined locsig. 
The number of output signals must match the number in the previous 
locsig. The output signals from locsend are derived from the values 
given for distance and reverb in the locsig and are ready to be sent to 
local or global reverb units (see example below). The reverb amount 
and the balance between the 2 or 4 channels are calculated in the 
same way as described in the Dodge book (an essential text!). 
 
PERFORMANCE 
 
kdegree - value between 0 and 360 for placement of the signal in a 2 
or 4 channel space configured as: a1=0, a2=90, a3=180, a4=270 
(kdegree=45 would balanced the signal equally between a1 and a2). 



 

 

86 

locsig maps kdegree to sin and cos functions to derive the signal 
balances (ie.: asig=1, kdegree=45, a1=a2=.707). 
 
kdistance - value >= 1 used to attenuate the signal and to calculate 
reverb level to simulate distance cues.  As kdistance gets larger the 
sound should get softer and somewhat more reverberant (assuming 
the use of locsend in this case). 
 
kreverbsend - the percentage of the direct signal that will be factored 
along with the distance and degree values to derive signal amounts 
that can be sent to a reverb unit such as reverb, or reverb2. 
 
EXAMPLE: 
 
asig some audio signal 
kdegree line 0, p3, 360 
kdistance line 1, p3, 10 
a1, a2, a3, a4 locsig asig, kdegree, kdistance, .1 
ar1, ar2, ar3, ar4 locsend 
        
ga1 = ga1+ar1 
ga2 = ga2+ar2 
ga3 = ga3+ar3 
ga4 = ga4+ar4 
 
outq a1, a2, a3, a4 
endin 
         
instr 99 ; reverb instrument 
         
a1 reverb2 ga1, 2.5, .5 
a2 reverb2 ga2, 2.5, .5 
a3 reverb2 ga3, 2.5, .5 
a4 reverb2 ga4, 2.5, .5 
 
outq a1, a2, a3, a4 
ga1=0 
ga2=0 
ga3=0 
ga4=0 
 
In the above example, the signal, asig, is sent around a complete 
circle once during the duration of a note while at the same time it 
becomes more and more "distant" from the listeners’ location. Locsig 
sends the appropriate amount of the signal internally to locsend. The 
outputs of the locsend are added to global accumulators in a common 
Csound style and the global signals are used as inputs to the reverb 
units in a separate instrument. 
 
locsig is useful for quad and stereo panning as well as fixed placed of 
sounds anywhere between two loudspeakers. Below is an example of 
the fixed placement of sounds in a stereo field.  
 
instr 1 
... 
a1, a2 locsig asig, p4, p5, .1 
ar1, ar2 locsend 
 
ga1=ga1+ar1 
ga2=ga2+ar2 
outs a1, a2 
endin 
 
instr 99 ; reverb.... 
.... 
endin 
 
A few notes 
;place the sound in the left speaker and near 
i1 0 1 0 1 
;place the sound in the right speaker and far 
i1 1 1 90 25 
;place the sound equally between left and right and in the middle 
ground distance 
i1 2 1 45 12 
e 
 

The next example shows a simple intuitive use of the distance value 
to simulate doppler shift. The same value is used to scale the 
frequency as is used as the distance input to locsig.  
 
kdistance line 1, p3, 10 
kfreq = (ifreq * 340) / (340 + kdistance) 
asig oscili iamp, kfreq, 1 
kdegree line 0, p3, 360 
 
a1, a2, a3, a4 locsig asig, kdegree, kdistance, .1 
ar1, ar2, ar3, ar4 locsend 
 
------------------------------------------------------------------------ 
Note 8: 
 
a1, a2, a3, a4  space     asig, ifn, ktime, kreverbsend [,kx, ky]   
a1, a2, a3, a4  spsend 
k1                   spdist   ifn, ktime, [,kx, ky]  
 
 
DESCRIPTION 
 
space takes an input signal and distributes it among 4 channels using 
cartesian xy coordinates to calculate the balance of the outputs. The 
xy coordinates can be defined in a separate text file and accessed 
through a Function statement in the score using Gen28 (description 
of Gen28 given below), or they can be specified using the optional 
kx, ky arguments. There advantages to the former are: 1. A graphic 
user interface can be used to draw and edit the trajectory through the 
cartesian plane; 2. The file format is in the form time1 X1 Y1 time2 
X2 Y2 time3 X3 Y3 allowing the user to define a time-tagged 
trajectory. space then allows the user to specify a time pointer (much 
as is used for pvoc, lpread and some other units) to have detailed 
control over the final speed of movement. 
 
spsend depends upon the existence of a previously defined space. 
The output signals from spsend are derived from the values given for 
XY and reverb in the space and are ready to be sent to local or global 
reverb units (see example below). 
 
spdist uses the same xy data as space, also either from a text file 
using Gen28 or from x and y arguments given to the unit directly. 
The purpose of this unit is to make available the values for distance 
that are calculated from the xy coordinates. In the case of space the 
xy values are used to determine a distance which is used to attenuate 
the signal and prepare it for use in spsend. But it is also useful to 
have these values for distance available to scale the frequency of the 
signal before it is sent to the space unit. 
 
PERFORMANCE 
 
The configuration of the XY coordinates in space places the signal in 
the following way: a1 is -1, 1; a2 is 1, 1; a3 is -1, -1; a4 is 1, -1. This 
assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is 
left back, a4 is right back. Values greater than 1 will result in sounds 
being attenuated as if in the distance. Space considers the speakers to 
be at a distance of 1; smaller values of XY can be used, but space 
will not amplify the signal in this case. It will, however balance the 
signal so that it can sound as if it were within the 4 speaker space.  
x=0, y=1, will place the signal equally balanced between left and 
right front channels, x=y=0 will place the signal equally in all 4 
channels, and so on. Although there must be 4 output signal from 
space, it can be used in a 2 channel orchestra. If the XY’s are kept so 
that Y>=1, it should work well to do panning and fixed localization 
in a stereo field. 
 
ifn - number of the stored function created using Gen28. This 
function generator reads a text file which contains sets of three values 
representing the xy coordinates and a time-tag for when the signal 
should be placed at that location. The file should look like: 
                

  0  -1   1 
  1   1   1 
  2   4   4 
2.1  -4 -4 
  3  10 -10 
  5 -40   0 



 

 

87 

If that file were named "move" then the Gen28 call in the score 
would like:  
 
        f1 0 0 "move" 
 
Gen28 takes 0 as the size and automatically allocates memory. It 
creates values to 10 milliseconds of resolution. So in this case there 
will be 500 values created by interpolating X1 to X2 to X3 and so on, 
and Y1 to Y2 to Y3 and so on, over the appropriate number of values 
that are stored in the function table. In the above example, the sound 
will begin in the left front, over 1 second it will move to the right 
front, over another second it move further into the distance but still in 
the left front, then in just 1/10th of a second it moves to the left rear, 
a bit distant. Finally over the last .9 seconds the sound will move to 
the right rear, moderately distant, and it comes to rest between the 
two left channels (due west!), quite distant. Since the values in the 
table are accessed through the use of a time-ponter in the space unit, 
the actual timing can be made to follow the file’s timing exactly or it 
can be made to go faster or slower through the same trajectory. If you 
have access to the GUI that allows one to draw and edit the files, 
there is no need to create the text files manually. But as long as the 
file is ASCII and in the format shown above, it doesn’t matter how it 
is made!  IMPORTANT: If ifn is 0 then space will take its values for 
the xy coordinates from kx and ky. 
 
ktime - index into the table containing the xy coordinates. If used 
like: 
 
        ktime line 0, 5, 5 
        a1, a2, a3, a4 space asig, 1, ktime, ... 
 
with the file "move" described above, the speed of the signal’s 
movement will be exactly as desribed in that file. However: 
 
        ktime line 0, 10, 5 
 
the signal will move at half the speed specified. Or in the case of:  
 
        ktime line 5, 15, 0 
 
the signal will move in the reverse direction as specified and 3 times 
slower! Finally: 
 
        ktime line 2, 10, 3 
 
will cause the signal to move only from the place specified in line 3 
of the text file to the place specified in line 5 of the text file, and it 
will take 10 seconds to do it. 
 
kreverbsend - the percentage of the direct signal that will be factored 
along with the distance as derived from the XY coordinates to 
calculate signal amounts that can be sent to reverb units such as 
reverb, or reverb2. 
 
kx, ky - when ifn is 0, space and spdist will use these values as the 
XY coordinates to localize the signal. They are optional and both 
default to 0. 
 
EXAMPLE: 
 
asig some audio signal 
ktime line 0, p3, p10 
a1, a2, a3, a4 space asig,1, ktime, .1 
ar1, ar2, ar3, ar4 spsend 
         
ga1 = ga1+ar1 
ga2 = ga2+ar2 
ga3 = ga3+ar3 
ga4 = ga4+ar4 
 
outq a1, a2, a3, a4 
endin 
         
instr 99 ; reverb instrument 
         
a1 reverb2 ga1, 2.5, .5 
a2 reverb2 ga2, 2.5, .5 

a3 reverb2 ga3, 2.5, .5 
a4 reverb2 ga4, 2.5, .5 
 
outq a1, a2, a3, a4 
ga1=0 
ga2=0 
ga3=0 
ga4=0 
 
In the above example, the signal, asig, is moved according to the data 
in Function #1 indexed by ktime. space sends the appropriate amount 
of the signal internally to spsend. The outputs of the spsend are 
added to global accumulators in a common Csound style and the 
global signals are used as inputs to the reverb units in a separate 
instrument. 
 
space can useful for quad and stereo panning as well as fixed placed 
of sounds anywhere between two loudspeakers. Below is an example 
of the fixed placement of sounds in a stereo field using XY values 
from the score instead of a function table.  
 
instr 1 
... 
a1, a2, a3, a4 space asig, 0, 0, .1, p4, p5 
ar1, ar2, ar3, ar4 spsend 
 
ga1=ga1+ar1 
ga2=ga2+ar2 
outs a1, a2 
endin 
 
instr 99 ; reverb.... 
.... 
endin 
 
A few notes: p4 and p5 are the X and Y values 
;place the sound in the left speaker and near 
i1 0 1 -1 1 
;place the sound in the right speaker and far 
i1 1 1 45 45 
;place the sound equally between left and right and in the middle 
ground distance 
i1 2 1 0 12 
e 
 
The next example shows a simple intuitive use of the distance values 
returned by spdist to simulate doppler shift. 
 
ktime line 0, p3, 10 
kdist spdist 1, ktime 
kfreq = (ifreq * 340) / (340 + kdist) 
asig oscili iamp, kfreq, 1 
 
a1, a2, a3, a4 space asig, 1, ktime, .1 
ar1, ar2, ar3, ar4 spsend 
 
The same function and time values are used for both spdist and 
space. This insures that the distance values used internally in the 
space unit will be the same as those returned by spdist to give the 
impression of a doppler shift! 
------------------------------------------------------------------------ 
 
Release Notes for 3.49 
====================== 
 
These are the release notes for version 3.49, which is a large 
collection of bug-fixes and new code. These notes should be read in 
conjunction with earlier release notes.  Note that this incorporates all 
changes since 3.48, including sub-releases. 
 
Language Changes 
---------------- 
 
-J option selects IRCAM format in the same was as -W and -A 
 
Improved diagnostics in orchestra reading 
 



 

 

88 

b opcode in score to reset the clock 
 
Increase number of arguments to about 800 (still not dynamic) 
 
Improved recognition of # at start of line 
 
Stop redrawing of graphs in some circumstances 
 
strset now works, and unlimited in number; can ne used in pv, lpc, 
adsyn amd convolve cases as well.  
 
Removed a large number of 'namespace polution' opcodes to other 
names 
 eg  itable is now table 
     kgauss is now gauss 

ktableseg and ktablexseg renamed as tableseg 
and tablexseg  

 
Use of large instrument numbers now correct 
 
Corrected use of [ ] in scores 
 
Freed space problem in GEN20 
 
Digits allowed in macros names except at start 
 
-z option does not report internal opcodes 
 
AIFC supported at least for floats 
 
Included files in orchestra us a pathname look-up 
 
v opcode in scores for local textual varying of time 
 
Allow Mac, Unix or PC files to be read on other platforms 
 
Ouput file null is thrown away (ie no sound file generated) 
 
MIDI control message PROGRAM_TYPE recognised 
 
Rewrite us of \ as line continuation in orchestra 
 
New ramp functions in score introduced by { and } give ramps 
driven by 
expon rather than line 
 
The ramp function ~ gives a random value (uniform distribution) in 
range on the ramp 
 
Opcode Fixes 
------------ 
 
Internal bug in cross2 fixed which could confuse a second note 
 
wgflute improved so as not to reinitialise so much 
 
diskin and soundin fixed a little 
 
aftertouch had wrong arguments 
 
shaker has argument removed which was not used 
 
Skip initialisation in physical model instruments if lowest frequency 
is negative (for legato sounds) 
 
Arguments to specptrk and specdisp now agree with manual 
 
envlpr code included -- omitted by mistake earlier 
 
New Opcodes  
----------- 
 
dcblockr -- DC Blocking filter 
 
flanger -- as it says 
 
lowres, lowresx and vlowres -- lowpass resonent filters 

tonex atonex resonx -- more multiple filters 
 
spectrum -- calculate w variables 
 
mirror, wrap -- actions on large amplitudes 
 
ntrpol -- interpolation 
 
trigger -- trigger events 
 
ftsr -- sample rate of a f-table 
 
wguide1, wguide2 -- primitive wave guides 
 
GEN23 -- read a table of numbers 
 
adsr and madsr -- classical ADSR envelope 
 
biquad -- a new filter 
 
moogvcf -- another one 
 
rezzy -- and another 
 
Other Changes: 
------------- 
 
Solaris audio corrected 
 
Bug in line events for score fixed 
 
voscili opcode removed as did not work well and the functionality 
exists elsewhere 
 
Scot removed 
  
Windows GUI Changes 
------------------- 
 
Made buffer sizes in extras window independednt and remembered 
 
Stop redrawing of graphs 
 
OK button renamed Render 
 
Remove references to Pedal 
 
Added project button to set orc/sco/wav in one go 
 
Experimental control opcodes with non-MIDI sliders 
 
------------------------------------------------------------------------ 
==John ff 
  1998 Oct 18 
================================================= 
 
dcblockr 
 
 aout dcblockr ain[, igain] 
 
 
INITIALISATION 
 
igain -- the gain of teh filter, which defaults to 0.99 
 
PERFORMANCE 
 
Implements the DC blocking filter 
 Y[i] = X[i] - X[i-1] + (igain * Y[i=1]) 
This is due to P.Cook, and coded by JPff 
------------------------------------------------------------------------ 
 
flanger 
 
ar flanger  asig, adel, kfeedback, imaxd  
 
DESCRIPTION 



 

 

89 

 
a user controlled flanger  
 
INITALIZATION 
 
imaxd - maximum delay in seconds (needed for inital memory 
allocation) 
 
PERFORMANCE 
 
ar - output signal 
asig - input signal 
adel - delay in seconds 
kfeedback - feedback amount (in normal tasks this should not exceed 
1,  
  even if bigger values are allowed) 
 
This unit is useful for generating chourses and flangers. The delay 
must be varied at a-rate connecting adel to an oscillator output. Also 
the feedback can vary at k-rate.  This opcode is implemented to allow 
kr different than sr (else delay could not be lower than ksmps) 
enhancing realtime performance. (BtW: this unit is very similar to 
wguide1, the only difference is flanger does not have the lowpass 
filter.). 
 
------------------------------------------------------------------------ 
lowres, lowresx  
 
ar lowres asig, kcutoff, kresonance [,istor] 
ar lowresx asig, kcutoff, kresonance [, inumlayer, istor] 
 
 
DESCRIPTION  
 
lowres is a resonant lowpass filter.  
lowresx is equivalent to more layer of  lowres, with the same 
arguments, serially connected.  
 
INITIALIZATION 
 
inumlayer - number of elements of lowresx stack. Default value is 4.  
There is no maximum. 
 
istor - initial disposition of internal data space.  
 
A zero value will clear the space; a non-zero value will allow 
previous information to remain. The default value is 0. 
 
PERFORMANCE 
 
ar - output signal 
asig  - input signal 
kcutoff - filter cutoff frequency point 
kresonance - resonance amount 
 
 
lowres is a resonant lowpass filter derived from a Hans Mikelsons 
orchestra. This implementation is very much faster than 
implementing it in Csound language, and it allows kr lower than sr.  
kcutoff is not in cps and kresonance is not in dB, so experiment for 
finding best results. 
 
lowresx is equivalent to more layer of lowres, with the same 
arguments, serially connected.  Using a stack of more filters allows a 
sharper freqency cutoff.  It is very faster than using more lowres 
instances in Csound orchestra, because only one initialization and 'k' 
cycle are needed at time, and the audio loop falls enterely inside the 
cache memory of processor. 
 
 
------------------------------------------------------------------------ 
vlowres 
 
 ar vlowres  asig,  kfco, kres, iord, ksep; 
 
 
 

DESCRIPTION 
 
a bank of filters in which freqency cutoff can be separated under user 
control 
 
INITIALIZATION 
 
iord - total nuber of filter (1 to 10) 
 
PERFORMANCE 
 
ar - output signal 
asig - input signal 
kfco - frequency cutoff (not in cps) 
ksep - frequency cutoff separation for each filter 
 
 
vlowres (variable resonant lowpass filter) allow a variable response 
curve in resonant filters.  It can be thinked as a bank of lowpass 
resonant filters with the same resonance, serially connected. The 
frequency cutoff of each filter can vary with the kcutoff and ksep 
parameters.  
 
------------------------------------------------------------------------ 
tonex atonex resonx 
 
ar tonex asig, khp[, inumlayer, istor] 
ar atonex asig, khp[, inumalayer, istor] 
ar resonx asig, kcf, kbw[, inumlayer, iscl, istor] 
 
INITALIZATION 
 
inumlayer - number of elements of filter stack. Default value is 4. 
 
isig - some as tone, atone and reson 
istor - some as tone, atone and reson 
iscl - some as reson 
 
 
PERFORMANCE 
 
ar - output signal 
asig - input signal 
khp - some as tone, atone  
kcf - some as reson 
kbw - some as reson 
 
 
tonex, atonex and resonx are equivalent to more layer of tone, atone 
and reson, with the same arguments, serially connected. Using a 
stack of more filters allows a sharper frequency cutoff. They are very 
faster than using  more instances in Csound orchestra of old opcodes, 
because only one initialization and 'k' cycle are needed at time, and 
the audio loop falls enterely inside the cache memory of processor.  
 
------------------------------------------------------------------------ 
spectrum 
 
wsig spectrum xsig, iprd, iocts, ifrqs, iq[,ihann, idbout, idsprd,  

idsinrs] 
 
Generate a constant-Q, exponentially-spaced DFT across al octaves 
of a multiply-downsampled control or audio input signal. 
INITIALIZATION 
 
ihann (optional) - apply a hamming or hanning window to the input. 
The default is 0 (hamming window) 
 
idbout (optional) - coded conversion of the DFT output: 0 = 
magnitude, 1 = dB, 2 = mag squared, 3 = root magnitude.  The 
default value is 0 (magnitude). 
   
idisprd (optional) - if non-zero, display the composite downsampling 
buffer every idisprd seconds.  The default value is 0 (no display). 
 
idsines (optional) - if non-zero, display the hamming or hanning 
windowed sinusoids used in DFT filtering.  The default value is 0 (no 



 

 

90 

sinusoid display). 
 
PERFORMANCE 
 
This unit first puts signal asig or ksig through iocts of successive 
octave decimation and downsampling, and preserves a buffer of 
down-sampled values in each octave (optionally displayed as a 
composite buffer every idisprd seconds).  Then at every iprd seconds, 
the preserved samples are passed through a filter bank (ifrqs parallel 
filters per octave, exponentially spaced, with frequency/bandwidth Q 
of iq), and the output magnitudes optionally converted (idbout) to 
produce a band-limited spectrum that can be read by other units. 
 
The stages in this process are computationally intensive, and 
computation time varies directly with iocts, ifrqs, iq, and inversely 
with iprd.  Settings of ifrqs = 12, iq = 10, idbout = 3, and iprd = .02 
will normally be adequate, but experimentation is encouraged. 
ifrqs currently has a maximum of 120 divisions per octave.  For 
audio input, the frequency bins are tuned to coincide with A440.  
 
This unit produces a self-defining spectral datablock wsig, whose 
characteristics used (iprd, iocts, ifrqs, idbout) are passed via the data 
block itself to all derivative wsigs.  There can be any number of 
spectrum units in an instrument or orchestra, but all wsig names must 
be unique. 
 
 
Example: 
 
asig  in    ; get external audio 
wsig  spectrum  asig,.02,6,12,33,0,1,1 ; downsample in 6 octs  

;& calc a 72 pt 
   ; dft (Q 33, dB out) every 20 msecs 
 
------------------------------------------------------------------------ 
mirror, wrap --  
 
idest wrap isig, ilow, ihigh  
kdest wrap ksig, klow, khigh 
adest wrap asig, klow, khigh 
   
idest mirror isig, ilow, ihigh 
kdest mirror ksig, klow, khigh 
adest mirror asig, klow, khigh 
 
DESCRIPTION 
Wraps the signal in various ways (similar to limit opcode by Robin 
Whittle). 
 
INITIALIZATION - PERFORMANCE 
 
xdest - output signal 
xsig - input ignal 
xlow - low threshold 
xhigh - high threshold 
 
mirror "reflects" the signal that exceeds low and high thresholds. 
wrap wraps-around the signal that exceeds low and high thresholds. 
 
These opcodes are useful in several situations, such as for table 
indexing and for clipping and modeling irate, krate or arate signals.  
wrap is also useful for wrapping-around tables data when maximum 
index is not a power of two (see table and tablei).  
Another use of wrap is in cyclical event repeating with arbirary cycle 
length. 
 
------------------------------------------------------------------------ 
ntrpol  
 
ir ntrpol isig1, isig2, ipoint [, imin, imax] 
kr ntrpol ksig1, ksig2, kpoint [, imin, imax] 
ar ntrpol asig1, asig2, kpoint [, imin, imax] 
 
DESCRIPTION 
 
calculates the weighted mean value (i.e. linear interpolation) of two 
input signals  

 
INITALIZATION 
imin - minimum xpoint value (optional, default 0) 
imax - maximum xpoint value (optional, default 1) 
 
PERFORMANCE 
xr - output signal 
xsig1, xsig2 - input signals 
xpoint - interpolation point beetween the two values 
 
nterpol opcode outputs the linear interpolation beetween two input 
values. xpoint is the distance of evaluation point from the first value. 
With the default values of imin and imax, (0 and 1) a zero value 
indicates no distance from the first value and the maximum distance 
from the second one. With a 0.5 ntrpol value will output the mean 
value of the two inputs, indicating the exact half point between xsig1 
and xsig2. A 1 value indicates the maximum distance from the first 
value and no distance from the second one. 
The range of xpoint can be also defined with imin and imax to make 
easier its management.  
These opcodes are useful for crossfading two signals. 
------------------------------------------------------------------------ 
trigger 
 
kout trigger ksig, kthreshold, kmode 
 
DESCRIPTION 
 
informs when a krate signal crosses a threshold 
 
PERFORMANCE 
kout - output signal (a stream of zeroes with some 1) 
ksig - input signal 
kthreshold - trigger threshold 
kmode - can be 0 , 1 or 2  
 
 
Normally trigger outputs zeroes: only each time ksig crosses 
kthreshold 'trig' outputs a 1.  There are three modes of using ktrig:  
kmode = 0  - (down-up) ktrig outputs a 1 when current value of ksig 
is higher than kthreshold while old value of ksig was equal or lower 
than kthreshold  
kmode = 1  - (up-down) ktrig outputs a 1 when current value of ksig 
is lower than kthreshold while old value of ksig was equal or higher 
than kthreshold  
kmode = 2  - (both) ktrig outputs a 1 in both the two previous cases. 
 
------------------------------------------------------------------------ 
ftsr(x) 
 
DESCRIPTION 
 
this function returns the sampling-rate of a GEN01 or GEN22 
generated table. The sampling-rate is determined from the header of 
the original file. If the original file has no header, or the table was not 
created by these two GENs ftsr returns 0. 
 
------------------------------------------------------------------------ 
wguide1, wguide2 
 
DESCRIPTION 
 
simple waveguide blocks 
 
ar wguide1 asig, kfreq, kcutoff, kfeedback; 
ar wguide2 asig, kfreq1, kfreq2, kcutoff1, kcutoff2, 

kfeedback1, kfeedback2 
 
PERFORMANCE 
 
wguide1 is the most elemental waveguide model consisting of one 
delay line and one first-order lowpass filter.  
wguide2 is a model of beaten plate consisting of two parallel delay 
lines and two first-order lowpass filters. The two feedabak lines are 
mixed and sent to the delay again each cycle. 
 



 

 

91 

asig is the input of excitation noise, kfreq the frequency (i.e. the 
inverse of delay time), kcutoff is the filter cutoff frequency in Hz and 
kfeedback is the feedback factor.  
Implementing waveguide algoritms as opcodes, instead of as orc 
instr, allows the  user to set kr different than sr, allowing better 
performance particulary when using real-time. 
 
------------------------------------------------------------------------ 
GEN23 
 
This subroutine reads numeric values from an external ascii file 
 
f# time size -23 "filename.txt" 
 
The numeric values contained in "filename.txt" (which indicates the 
complete pathname of the character file to be read), can be separated 
by spaces, tabs, newline characters or commas. Also words that 
contains non-numeric characters can be used as comments since they 
are ignored. 
 
All characters following ';' (comment) are ignored until next line 
(numbers too).  
 
------------------------------------------------------------------------ 
adsr, madsr 
 
kr adsr iatt, idec, islev, irel[, idelay] 
ar adsr iatt, idec, islev, irel[, idelay] 
 
DESCRIPTION 
 
Calculates the classical ADSR envelope 
 
INITALIZATION 
 
iatt - duration of attack phase 
idec - duration of decay 
islev - level for sustain phase 
irel - duration of release phase 
idel - period of zero before the envelope starts 
 
PERFORMANCE 
The envelope is the range 0 to 1 and may need to be scaled further. 
 
The length of the sustain is calculated from then length of the note.  
This means adsr is not suitable for use with MIDI events.  The 
opcode madsr uses the linsegr mechanism and so can be used in 
MIDI applications 
 
------------------------------------------------------------------------ 
Sweepable Filters 
 
        ar biquad asig, kb0, kb1, kb2, ka0, ka1, ka2 
 
        ar rezzy asig, kfco, kres 
 
        ar moogvcf asig, kfco, kres 
 
Implementation of a sweepable general purpose filter and two 
sweepable resonant low-pass filters. 
 
PERFORMANCE 
 
biquad is a general purpose biquadratic digital filter of the form: 
 
a0*y(n) + a1*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2] 
 
This type of filter is often encountered in digital signal processing  
literature. It allows six user defined k-rate coefficients. 
 
rezzy is a resonant low-pass filter created empirically by Hans 
Mikelson. 
 
kfco is the filter cut-off frequency in Hz 
 
kres is the amount of resonance. Values of 1 to 100 are 
typical. Resonance should be one or greater. 

moogvcf is a digital emulation of the Moog diode ladder filter 
configuration. This emulation is based loosely on the paper 
"Analyzing the Moog VCF with Considerations for Digital 
Implemnetation" by Stilson and Smith (CCRMA). This version was 
originally coded in Csound by Josep Comajuncosas. Some 
modifications and conversion to C were done by Hans Mikelson. 
 
Note: This filter requires that the input signal be normalized to one. 
 
kfco is the filter cut-off frequency in Hz. 
 
kres is the amount of resonance with self oscillation occurring when 
kres is approximately one. 
 
Examples 
 
;biquad example 
kfcon   =      2*3.14159265*kfco/sr  
kalpha  =      1-
2*krez*cos(kfcon)*cos(kfcon)+krez*krez*cos(2*kfcon) 
kbeta   =      krez*krez*sin(2*kfcon)-2*krez*cos(kfcon)*sin(kfcon) 
kgama   =      1+cos(kfcon) 
km1     =      kalpha*kgama+kbeta*sin(kfcon) 
km2     =      kalpha*kgama-kbeta*sin(kfcon) 
kden    =      sqrt(km1*km1+km2*km2) 
kb0     =      1.5*(kalpha*kalpha+kbeta*kbeta)/kden 
kb1     =      kb0 
kb2     =      0 
ka0     =      1 
ka1     =     -2*krez*cos(kfcon) 
ka2     =      krez*krez 
ayn     biquad axn, kb0, kb1, kb2, ka0, ka1, ka2 
        outs   ayn*iamp/2, ayn*iamp/2 
 
;   Sta  Dur  Amp    Pitch Fco   Rez 
i14 8.0  1.0  20000  6.00  1000  .8 
i14 +    1.0  20000  6.03  2000  .95 
  
;rezzy example 
kfco    expseg 100+.01*ifco, .2*idur, ifco+100, .5*idur, ifco*.1+100, 
.3*idur, .001*ifco+100 
apulse1 buzz   1,ifqc, sr/2/ifqc, 1 ; Avoid aliasing 
asaw    integ  apulse1 
axn     =      asaw-.5 
ayn     rezzy  axn, kfco, krez 
        outs   ayn*iamp, ayn*iamp 
 
;    Sta  Dur  Amp    Pitch  Fco   Rez 
i10  0.0  1.0  20000  6.00   1000  2 
i10  +    1.0  20000  6.03   2000  10 
 
;moogvcf example 
apulse1 buzz    1,ifqc, sr/2/ifqc, 1 ; Avoid aliasing 
asaw    integ   apulse1 
ax      =       asaw-.5 
ayn     moogvcf ax, kfco, krez 
        outs    ayn*iamp, ayn*iamp 
 
;     Sta  Dur  Amp    Pitch  Fco   Rez 
i11   4.0  1.0  20000  6.00   1000  .4 
i11   +    1.0  20000  6.03   2000  .7 
  
 
Author 
 
Hans Mikelson 
 
October 1998 
------------------------------------------------------------------------ 
 
Release Notes for 3.493 
======================= 
 
These are the release notes for version 3.493, which will eventually 
becone 3.50 
 
 



 

 

92 

Bug Fixes 
--------- 
 
Pow now available again. 
Internal changes to parser to make fewer calls to strcmp 
Corrections to rand in a-rate case and 16 bit randoms 
 
 
Language Changes 
---------------- 
 
hetro had a wrong constant which would give rise to a little noise. 
 
If the incorrect out opcode is used it now attempts to correct to the 
correct one, which is not necessarily correct. 
 
new names dumpk rather than kdump introduced.  
 
kon renamed midion 
 
kfilter2 renamed filter2 (still not sure it works though) 
 
The opcodes rand randi and randh take an additional, optional 
argument which if non zero gives a 31bit random nuber rather than 
the 16bit one. 
 
Rising to a power is available in expressions with the ^ operator. 
use with some caution as I am not sure that the precidence is correct. 
 
An internal changes has changed the conditional compilation flag for  
the Ingalls' port from __MWERKS__ to macintosh; this should help 
the BeOS port. 
 
Opcode Fixes 
------------ 
 
sndwarp had bugs on Linux 
 
ramnd, randh and randi now take an additional operand, which if 
non-zero use a better randon number generator 
 
bug in ntrpol fixed 
 
MIDI on Linux may work. 
 
New Opcodes  
----------- 
 
schedule -- schedule an instrument event 
 
schedwhen -- conditional scheduling 
 
lfo -- Low Frequency Oscilator with 6 shapes 
 
midion2 -- MIDI turnon (G.Maldonado) 
 
midiin --  (G.Maldonado) 
 
midiout --  (G.Maldonado) 
 
nrpn --  (G.Maldonado) 
 
cpstmid --  (G.Maldonado) 
 
streson -- string resonator (V.Lazzarini) 
 
Other Changes: 
------------- 
 
Windows GUI Changes 
------------------- 
 
 
 
------------------------------------------------------------------------ 
==John ff 
  1998 Nov 1 

================================================= 
 
schedule, schedwhen 
 
 schedule  inst, iwhen, idur, .... 
 schedwhen ktrigger, kinst, kwhen, kdur, .... 
 
PERFORMANCE 
 
schedule adds a new score event.  The arguments are the same as in a 
score.  The when time (p2) is measured from the time of this event.  
 
If the duration is zero or negative the new event is of MIDI type, and 
inherits the release sub-event from the scheduling instruction. 
 
In the case of schedwhen the event is only scheduled when the krate 
value ktrigger is first non-zero. 
 
Examples: 
 
;; Double hit and 1sec separation 
instr 1 
      schedule 2,  1, 0.5, p4, p5 
a1    shaker p4, 60, 0.999, 0, 100, 0 
      out a1 
endin 
 
instr 2 
a1    marimba   p4, cpspch(p5), p6, p7, 2, 6.0, 0.05, 1, 0.1 
      out       a1 
endin  
 
instr 3  
kr    table kr, 1 
      schedwhen kr, 1, 0.25, 1, p4, p5 
endin 
------------------------------------------------------------------------ 
 
lfo 
 
kr lfo kamp, kcps[, itype] 
ar lfo kamp, kcps[, itype] 
 
DESCRIPTION 
 
A LFO of various shapes 
 
INITALIZATION 
 
itype -- determine the form of the oscilator 
  (default)  0:  sine 

1:  triangles 
 2:  square (biplar) 
 3:  square (unipolar) 
 4:  saw-tooth 
 5:  saw-tooth(down) 
 
The sine wave is implemented as a 4096 table and linear 
interpolation. The others are calculated. 
 
 
 
PERFORMANCE 
 
ar, kr - output signal 
kamp - amplitude 
kcps - frequency of oscilator 
 
EXAMPLE: 
instr 1 
kp    lfo 10, 5, 4 
ar    oscil p4, p5+kp, 1 
      out ar 
endin 
 
------------------------------------------------------------------------ 
minion2 



 

 

93 

 
        midion2    kchn, knum, kvel, ktrig 
 
DESCRIPTION 
 
sends note on and off messages to the midi out port when triggered 
by a value different than zero. 
 
PERFORMANCE 
 
kchn - midi channel 
knum - midi note number 
kvel - note velocity 
ktrig - trigger input signal (normally 0) 
 
Similary to 'midion', this opcode sends note-on and note-off 
messages to the midi out port, but only when ktrig is different than 
zero. This opcode is thinked to work toghether with the output of the 
'trigger' opcode. 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
pctrlinit 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
dpctrlinit 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
midiin 
 
kstatus, kchan, kdata1, kdata2          midiin 
 
DESCRIPTION 
returns a generic midi message received by the midi in port 
 
 
PERFORMANCE 
kstatus - the type of midi message. Can be: 
                128 (note off), 
                144 (note on), 
                160 (polyphonic aftertouch),  
                176 (control change), 
                192 (program change),  
                208 (channel aftertouch), 
                224 (pitch bend) 
                or 0 if no midi message are pending in the MIDI IN buffer. 
 
kchan - midi channel (1-16) 
kdata1, kdata2 - message-dependent data values 
 
midiin has no input arguments, because it reads at the midi in port 
implicitly.  It works at k-rate. Normally (i.e. when no messages are 
pending) kstatus is zero, only each time midi data are present in the 
midi in buffer, kstatus is set to the type of the relative messages. 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
midiout 
 
        midiout         kstatus, kchan, kdata1, kdata2 
 
DESCRIPTION 
sends a generic midi message to the midi out port 
 
PERFORMANCE 
kstatus - the type of midi message. Can be: 
                128 (note off), 
                144 (note on), 
                160 (polyphonic aftertouch),  
                176 (control change), 
                192 (program change),  
                208 (channel aftertouch),   
                224 (pitch bend) 
                or 0 when no midi messages must be sent to the MIDI  

OUT port. 

kchan - midi channel (1-16) 
kdata1, kdata2 - message-dependent data values 
 
midiout has not output arguments, because it sends the message to  
the midi out port implicitly.  It works at k-rate. It sends a midi 
message only when kstatus is different than zero.  
Warning! Normally kstatus should be set to 0, only when the user 
intend to send a midi message, it can be set to the corresponding 
message type number. 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
nrpn 
 
        nrpn    kchan, kparmnum, kparmvalue 
 
DESCRIPTION 
 
sends a nprn (Non Registered Parameter Number) message to the 
midi out port each time one of the input arguments changes. 
 
 
PERFORMANCE 
 
kchan - midi channel 
kparmnum - number of NRPN parameter 
kparmvalue - value of NRPN parameter 
 
 
This opcode sends new message when the MIDI translated value of 
one of the input arguments changes. It operates at k-rate. Useful with 
the midi instruments that recognize NRPNs (for example with the 
newest sound-cards with internal midi synthesizer such as SB 
AWE32, AWE64, GUS etc. in which each patch parameter can be 
changed during the performance via NRPN) 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
cpstmid 
 
icps    cpstmid  ifn 
 
INITIALIZATION 
 
ifn - function table containing the parameters  
      (numgrades, interval, basefreq, basekeymidi) and 
      the tuning ratios. 
 
(init rate only) 
 
This unit is similar to cpsmidi, but allows fully customized micro-
tuning scales.  It requires five parameters, the first ifn is the function 
table number of the tuning ratios, and the other parameters must be 
stored in the function tables itself.  The function table ifn should be 
generated by the GEN2 and the first four values stored in this 
function are: numgrades (the number of grades of the micro-tuning 
scale), interval (the frequency range covered before repeating the 
grade ratios, for example 2 for one octave, 1.5 for a fift etcetera), 
basefreq (the base frequency of the scale in cps), basekeymidi (the 
midi-note-number to which to assign the basefreq unmodified).  
 
After these four values, the user can begin to insert the tuning ratios.  
For example, for a standard 12-grade scale with the base-frequency 
of 261 cps assigned to the key-number 60, the corresponding f-
statement in the score to generate the table should be: 
 
 
 
; numgrades   basefreq   tuning-ratios (eq.temp) .......    
; interval    basekeymidi        
f1 0 64 -2 12 2   261    60   1  1.059463094359  1.122462048309  
1.189207115003 ..etc...   
 
 
Another example with a 24-grade scale with a base frequency of 440 
assigned to the key-number 48, and a repetition interval of 1.5: 
 



 

 

94 

 
; numgrades     basefreq    tuning-ratios .......    
; interval      basekeymidi        
f1 0 64 -2   24      1.5     440        48        1   1.01  1.02  1.03   ..etc...   
 
(G.Maldonado) 
------------------------------------------------------------------------ 
ar   streson  asig, kfr, ifdbgain 
 
An audio signal is modified by an string resonator with variable 
fundamental frequency. 
 
INITIALIZATION 
 
ifdbgain - feedback gain, between 0 and 1, of the internal delay line. 
A value close to 1 creates a slower decay and a more pronounced 
resonance. Small values may leave the input signal unaffected. 
Depending on the filter frequency, typical values are > .9. 
 
 
PERFORMANCE 
 
streson passes the input asig through a network composed of comb, 
low-pass and all-pass filters, similar to the one used in some versions 
of the Karplus-Strong algorythm, creating a string resonator effect. 
The fundamental frequency of the "string" is controled by the k-rate 
variable kfr.This opcode can be used to simulate sympathetic 
resonances to an input signal. 
 
streson is an adaptation of the StringFlt object of the SndObj Sound 
Object Library developed by the author. 
 
Victor Lazzarini 
Music Department 
National University of Ireland, Maynooth 
Maynooth Co.Kildare 
Ireland 
------------------------------------------------------------------------ 
 
Release Notes for 3.50 
====================== 
 
These are the release notes for version 3.50.  This accumulates a 
number of changes which have been released in bits, but there are 
even more here than previously released. 
 
It incorporates significant bodies of code from Gabriel Maldonado 
and hans Mikelson, with contributions from Richard Boulanger, 
V.Lazzarini, Greg Sulliven, rasmus ekman, matt ingalls, Ed Hall, and 
many others who assisted in identifying bugs etc. (I really should 
maintain records of them all, but they know who they are I hope). 
 
 
Bug Fixes 
--------- 
 
Pow now available again. 
Internal changes to parser to make fewer calls to strcmp 
Corrections to rand in a-rate case and 16 bit randoms 
Two bugs in extending labels and goto tables corrected 
Minor bug in extending instrument numbers fixed 
 
Language Changes 
---------------- 
 
hetro had a wrong constant which would give rise to a little noise. 
 
If the incorrect out opcode is used it now attempts to correct to the  
correct one, which is not necessarily correct. 
 
new names dumpk rather than kdump introduced.  
 
kon renamed midion 
 
kfilter2 renamed filter2 (still not sure it works though) 
 

The opcodes rand randi and randh take an additional, optional 
argument which if non zero gives a 31bit random nuber rather than 
the 16bit one. 
 
Rising to a power is available in expressions with the ^ operator. 
use with some caution as I am not sure that the precidence is correct. 
 
An internal changes has changed the conditional compilation flag for  
the Ingalls' port from __MWERKS__ to macintosh; this should help 
the BeOS port. 
 
The single file .csd input has been extended for all command-line 
versions, and possibly for Windows. It can not decode additional 
parameters. 
 
Id a file .csoundrc exists, it is read to set parameters first, which can 
be overridden.  It used the .csd form so options are written as on the 
command line, with optional newlines at appropriate places. It does 
not set orc/sco names (as far as i can understand it) 
 
Opcode Fixes 
------------ 
 
sndwarp had bugs on Linux 
 
rand, randh and randi now take an additional operand, which if non-
zero use a better randon number generator 
 
bug in ntrpol fixed 
 
MIDI on Linux may work, or may not.... 
 
Many changes to the pitchbend opcodes 
 
moogvcf and rezzy can accept a-rate parameters, and moogvcf takes 
an optional scaling factor 
 
foscil/foscili can take a-rate amplitude and frequency 
 
biquad has an additional optional argument, which if non zero skips 
initialisation.  
 
 
New Opcodes  
----------- 
 
schedule -- schedule an instrument event 
 
schedwhen -- conditional scheduling 
 
lfo -- Low Frequency Oscilator with 6 shapes 
 
midion2 -- MIDI turnon (G.Maldonado) 
 
midiin --  (G.Maldonado) 
 
midiout --  (G.Maldonado) 
 
nrpn --  (G.Maldonado) 
 
cpstmid --  (G.Maldonado) 
 
streson -- string resonator (V.Lazzarini) 
 
mod opcodes -- to complete arithmetic operations 
 
slider8, slider8f, islider8 
slider16, slider16f, islider16 
slider32, slider32f, islider32 
slider64, slider64f, islider64 
s16b14, is16b14, s32b14, is32b14  -- MIDI slider controls 
(G.Maldonado) 
 
vco -- (Hans Mikelson) 
 
planet -- (Hans Mikelson) 
 



 

 

95 

distort1 -- (Hans Mikelson) 
 
pareq -- Implementation of Zoelzer's Parmentric Equalizer Filters 
(Hans Mikelson) 
 
deltapn -- (Hans Mikelson) 
 
Experimental opcodes: 
-------------------- 
oscil3 -- Just like oscili but with cubic interpolation 
foscil3 
losil3 
table3 
itable3 
deltap3 
vdelay3 
 
Other Changes: 
------------- 
 
use of kdump or kon, while still allowed gives a message about 
deprecated opcodes. 
 
Windows GUI Changes 
------------------- 
 
None i think 
 
------------------------------------------------------------------------ 
==John ff 
  1999 Orthodox Christmas 
================================================= 
 
schedule, schedwhen 
 
 schedule  inst, iwhen, idur, .... 
 schedwhen ktrigger, kinst, kwhen, kdur, .... 
 
PERFORMANCE 
 
schedule adds a new score event.  The arguments are the same as in a 
score.  The when time (p2) is measured from the time of this event.  
 
If the duration is zero or negative the new event is of MIDI type, and  
inherits the release sub-event from the scheduling instruction. 
 
In the case of schedwhen the event is only scheduled when the krate 
value ktrigger is first non-zero. 
 
Examples: 
 
;; Double hit and 1sec separation 
instr 1 
      schedule 2,  1, 0.5, p4, p5 
a1    shaker p4, 60, 0.999, 0, 100, 0 
      out a1 
endin 
 
instr 2 
a1    marimba   p4, cpspch(p5), p6, p7, 2, 6.0, 0.05, 1, 0.1 
      out       a1 
endin  
 
instr 3  
kr    table kr, 1 
      schedwhen kr, 1, 0.25, 1, p4, p5 
endin 
------------------------------------------------------------------------ 
 
lfo 
 
kr lfo  kamp, kcps[, itype] 
ar lfo  kamp, kcps[, itype] 
 
 
DESCRIPTION 
 

A LFO of various shapes 
 
INITALIZATION 
 
itype -- determine the form of the oscilator 
       (default) 0: sine 
                 1:  triangles 
     2:  square (biplar) 
     3:  square (unipolar) 
     4:  saw-tooth 
     5:  saw-tooth(down) 
 
The sine wave is implemented as a 4096 table and linear 
interpolation.  The others are calculated. 
 
PERFORMANCE 
 
ar, kr - output signal 
kamp - amplitude 
kcps - frequency of oscilator 
 
EXAMPLE: 
instr 1 
kp    lfo 10, 5, 4 
ar    oscil p4, p5+kp, 1 
      out ar 
endin 
 
------------------------------------------------------------------------ 
minion2 
 
        midion2    kchn, knum, kvel, ktrig 
 
DESCRIPTION 
 
sends note on and off messages to the midi out port when triggered 
by a value different than zero. 
 
 
PERFORMANCE 
 
kchn - midi channel 
knum - midi note number 
kvel - note velocity 
ktrig - trigger input signal (normally 0) 
 
Similary to 'midion', this opcode sends note-on and note-off 
messages to the midi out port, but only when ktrig is different than 
zero. This opcode is thinked to work toghether with the output of the 
'trigger' opcode. 
 
(G.Maldonado) 
 
------------------------------------------------------------------------ 
midiin 
 
kstatus, kchan, kdata1, kdata2  midiin 
 
DESCRIPTION 
returns a generic midi message received by the midi in port 
 
 
 
PERFORMANCE 
kstatus - the type of midi message. Can be: 
                128 (note off), 
                144 (note on), 
                160 (polyphonic aftertouch),  
                176 (control change), 
                192 (program change),  
                208 (channel aftertouch), 
                224 (pitch bend) 
                or 0 if no midi message are pending in the MIDI IN buffer. 
 
kchan - midi channel (1-16) 
kdata1, kdata2 - message-dependent data values 
 



 

 

96 

midiin has no input arguments, because it reads at the midi in port 
implicitly.  It works at k-rate. Normally (i.e. when no messages are 
pending) kstatus is zero, only each time midi data are present in the 
midi in buffer, kstatus is set to the type of the relative messages. 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
midiout 
 
        midiout         kstatus, kchan, kdata1, kdata2 
 
DESCRIPTION 
sends a generic midi message to the midi out port 
 
PERFORMANCE 
kstatus - the type of midi message. Can be: 
                128 (note off), 
                144 (note on), 
                160 (polyphonic aftertouch),  
                176 (control change), 
                192 (program change),  
                208 (channel aftertouch),   
                224 (pitch bend) 
                or 0 when no midi messages must be sent to the MIDI 
OUT port. 
kchan - midi channel (1-16) 
kdata1, kdata2 - message-dependent data values 
 
midiout has not output arguments, because it sends the message to 
the midi out port implicitly.  It works at k-rate. It sends a midi 
message only when kstatus is different than zero.  
Warning! Normally kstatus should be set to 0, only when the user 
intend to send a midi message, it can be set to the corresponding 
message type number. 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
nrpn 
 
        nrpn    kchan, kparmnum, kparmvalue 
 
DESCRIPTION 
 
sends a nprn (Non Registered Parameter Number) message to the 
midi out port each time one of the input arguments changes. 
 
 
PERFORMANCE 
 
kchan - midi channel 
kparmnum - number of NRPN parameter 
kparmvalue - value of NRPN parameter 
 
 
This opcode sends new message when the MIDI translated value of 
one of the input arguments changes. It operates at k-rate. Useful with 
the midi instruments that recognize NRPNs (for example with the 
newest sound-cards with internal midi synthesizer such as SB 
AWE32, AWE64, GUS etc. in which each patch parameter can be 
changed during the performance via NRPN) 
 
(G.Maldonado) 
------------------------------------------------------------------------ 
 
 
cpstmid 
 
icps    cpstmid  ifn 
 
 
INITIALIZATION 
 
ifn - function table containing the parameters  
      (numgrades, interval, basefreq, basekeymidi) and 
      the tuning ratios. 
(init rate only) 
 

This unit is similar to cpsmidi, but allows fully customized micro-
tuning scales.  It requires five parameters, the first ifn is the function 
table number of the tuning ratios, and the other parameters must be 
stored in the function tables itself. The function table ifn should be 
generated by the GEN2 and the first four values stored in this 
function are: numgrades (the number of grades of the micro-tuning 
scale), interval (the frequency range covered before repeating the 
grade ratios, for example 2 for one octave, 1.5 for a fift etcetera), 
basefreq (the base frequency of the scale in cps), basekeymidi (the 
midi-note-number to which to assign the basefreq unmodified).  
 
After these four values, the user can begin to insert the tuning ratios.  
For example, for a standard 12-grade scale with the base-frequency 
of 261 cps assigned to the key-number 60, the corresponding f-
statement in the score to generate the table should be: 
 
;       numgrades     basefreq               tuning-ratios (eq.temp) .. 
.....    
;            nterval         basekeymidi        
f1 0 64 -2 12 2   261    60   1  1.059463094359  1.122462048309  
1.189207115003 ..etc...   
 
 
Another example with a 24-grade scale with a base frequency  
of 440 assigned to the key-number 48, and a repetition interval of 
1.5: 
 
 
;        numgrades        basefreq               tuning-ratios .......    
;                 interval         basekeymidi        
f1 0 64 -2   24      1.5     440        48        1   1.01  1.02  1.03   ..etc...   
 
(G.Maldonado) 
------------------------------------------------------------------------ 
ar   streson  asig, kfr, ifdbgain 
 
An audio signal is modified by an string resonator with variable 
fundamental frequency. 
 
INITIALIZATION 
 
ifdbgain - feedback gain, between 0 and 1, of the internal            
delay line. A value close to 1 creates a slower decay and a more 
pronounced resonance. Small values may leave the input signal 
unaffected. Depending on the filter frequency, typical values are > .9. 
 
PERFORMANCE 
 
streson passes the input asig through a network composed of comb, 
low-pass and all-pass filters, similar to the one used in some versions 
of the Karplus-Strong algorythm, creating a string resonator effect. 
The fundamental frequency of the "string" is controled by the k-rate 
variable kfr.This opcode can be used to simulate sympathetic 
resonances to an input signal. 
 
streson is an adaptation of the StringFlt object of the SndObj Sound 
Object Library developed by the author. 
 
Victor Lazzarini 
Music Department 
National University of Ireland, Maynooth 
Maynooth Co.Kildare 
Ireland 
------------------------------------------------------------------------ 
Expression: 
 
kr = ka % kb 
ar = ka % ab 
ar = aa % kb 
ar = aa % ab 
 
PERFORMANCE 
 
Returns the valus a reduced by b, so the result in absolute value that 
the absoute value of b, by repeated subtraction.  This is the same as 
a modulus function in the integer case. 
 



 

 

97 

------------------------------------------------------------------------ 
 
ar vco kamp, kfqc, iwave, kpw, isine, imaxd 
 
Implementation of an band limited analog modeled oscillator based 
on integration of band limited impulses. 
 
Performance 
 
vco can be used to simulate a variety of analog wave forms. 
 
kamp determines the amplitude, kfqc is the frequency of the wave, 
 
iwave determines the waveform 1 = sawtooth, 2 = Square/PWM, 3 = 
triangle/Saw Ramp 
 
kpw determines the pulse width when iwave is set to 2 and 
determines Saw/Ramp character when iwave is set to 3. The value of 
kpw should be between 0 and 1. A value of .5 will generate a square 
wave or a triangle wave depending on iwave. 
 
isine should be the number of a stored sine wave table. 
 
imaxd is the maximum delay time. A time of 1/ifqc may be required 
for the pwm and triangle waveform. To bend the pitch down this 
value must be as large as 1/(minimum frequency). 
 
Example 
 
instr 10 
  idur = p3 ; Duration 
  iamp = p4 ; Amplitude 
  ifqc = cpspch(p5) ; Frequency 
  iwave = p6 ; Selected wave form 1=Saw, 2=Square/PWM, 
3=Tri/Saw-Ramp-Mod 
  isine = 1 
  imaxd = 1/ifqc*2 ; Allows pitch bend down of two octaves 
  kpw1 oscil .25, ifqc/200, 1 
  kpw = kpw1 + .5 
  asig vco iamp, ifqc, iwave, kpw, 1, imaxd 
  outs asig, asig ; Ouput and amplification 
endin 
 
f1 0 65536 10 1 
; Sta Dur Amp Pitch Wave 
i10 0 2 20000 5.00 1 
i10 + . . . 2 
i10 . . . . 3 
i10 . 2 20000 7.00 1 
i10 . . . . 2 
i10 . . . . 3 
i10 . 2 20000 9.00 1 
i10 . . . . 2 
i10 . . . . 3 
i10 . 2 20000 11.00 1 
i10 . . . . 2 
i10 . . . . 3 
Author 
 
Hans Mikelson 
 
December 1998 
------------------------------------------------------------------------ 
aout distort1 asig, kpregain, kpostgain, kshape1, kshape2 
 
Implementation of modified hyperbolic tangent distortion. 
 
 
 
PERFORMANCE 
 
distort1 can be used to generate wave shaping distortion based on a 
modification of the tanh function. 
 
           exp(asig * (pregain + shape1)) - exp(asig*(pregain+shape2)) 
aout = ----------------------------------------------------------- 
        exp(asig*pregain)  + exp(-asig*pregain) 

 
asig is the input signal. 
 
kpregain determines the amount of gain applied to the signal before 
waveshaping. A value of 1 gives slight distortion. 
 
kpostgain determines the amount of gain applied to the signal after 
waveshaping. 
 
kshape1 determines the shape of the positive part of the curve. A 
value of zero gives a flat clip, small positive values give sloped 
shaping. 
 
kshape2 determines the shape of the negative part of the curve. 
 
Example 
 
gadist  init    0 
 
        instr   1 
iamp =       p4 
ifqc =       cpspch(p5) 
asig pluck   iamp, ifqc, ifqc, 0, 1 
gadist =       gadist + asig 
        endin 
 
        instr   50 
kpre init    p4 
kpost init    p5 
kshap1 init    p6 
kshap2 init    p7 
aout    distort1 gadist, kpre, kpost, kshap1, kshap2 
        outs    aout, aout 
gadist  =       0 
        endin 
 
;   Sta  Dur  Amp    Pitch 
i1  0.0  3.0  10000  6.00 
i1  0.5  2.5  10000  7.00 
i1  1.0  2.0  10000  7.07 
i1  1.5  1.5  10000  8.00 
 
;   Sta  Dur  PreGain PostGain Shape1 Shape2 
i50 0    3    2       1        0      0 
Author 
 
Hans Mikelson 
December 1998 
 
PS Name chosen to avoid clash with XTC's distort opcode  
------------------------------------------------------------------------ 
outx, outy, outz planet kmass1, kmass2, ksep, ix, iy, iz, ivx, ivy, ivz, 
idelta, ifriction 
 
Signal generator which loosely simulates a planet orbiting in a binary 
star system. 
 
PERFORMANCE 
 
planet simulates a planet orbiting in a binary star system. The outputs 
are the x, y and z coordinates of the orbiting planet. It is possible for 
the planet to achieve escape velocity by a close encounter with a star. 
This makes this system somewhat unstable. 
 
kmass1 is the mass of the first star, 
 
kmass2 is the mass of the second star, 
 
ksep determines the distance between the two stars, 
 
ix, iy, iz are the initial x, y and z coordinates of the planet, 
 
ivx, ivy, ivz are the initial velocity vector components for the planet. 
 
idelta is the step size used to approximate the differential equation. 
 



 

 

98 

ifriction is a value for friction which can used to keep the system 
from blowing up. 
 
Example 
 
           instr 1 
 
idur =     p3 
iamp =     p4 
km1 =     p5 
km2 =     p6 
ksep =     p7 
ix =     p8 
iy =     p9 
iz =     p10 
ivx =     p11 
ivy =     p12 
ivz =     p13 
ih =     p14 
ifric =     p15 
 
kamp   linseg     0, .002, iamp, idur-.004, iamp, .002, 0 
 
ax, ay, az planet km1, km2, ksep, ix, iy, iz, ivx, ivy, ivz, ih, ifric 
 
           outs   ax*kamp, ay*kamp 
 
           endin 
 
;   Sta  Dur  Amp   M1  M2  Sep  X   Y  Z  VX  VY  VZ   h   Frict 
i1  0    1    5000  .5  .35 2.2  0  .1  0  .5  .6  -.1  .5  -0.1 
i1  +    .    .     .5  0   0    0  .1  0  .5  .6  -.1  .5   0.1 
i1  .    .    .     .4  .3  2    0  .1  0  .5  .6  -.1  .5   0.0 
i1  .    .    .     .3  .3  2    0  .1  0  .5  .6  -.1  .5   0.1 
i1  .    .    .     .25 .3  2    0  .1  0  .5  .6  -.1  .5   1.0 
i1  .    .    .     .2  .5  2    0  .1  0  .5  .6  -.1  .1   1.0 
 
Author 
 
Hans Mikelson 
December 1998 
 
------------------------------------------------------------------------ 
Banks of sliders 
 
slider8,slider16,slider32,slider64 
slider8f, slider16f,slider32f,slider64f 
islider8,islider16,islider32,islider64 
s16b14,is16b14,s32b14,is32b14 
 
 
SYNTAX 
 
k1,k2,k3,k4,k5,k6,k7,k8 slider8 ichan, ictlnum1, imin1, imax1, init1, 
ifn1, ..., ictlnum8, imin8, imax8, init8, ifn8     
 
k1, ... , k16   slider16  ichan, ictlnum1,  imin1,  imax1,  init1,  ifn1, 
...., ictlnum16, imin16, imax16, init16, ifn16 
 
k1, ... , k32   slider32  ichan, ictlnum1,  imin1,  imax1,  init1,  ifn1, 
...., ictlnum32, imin32, imax32, init32, ifn32 
 
k1, ... , k64   slider64  ichan, ictlnum1,  imin1,  imax1,  init1,  ifn1, 
...., ictlnum64, imin64, imax64, init64, ifn64 
 
k1,k2,k3,k4,k5,k6,k7,k8 slider8f ichan, ictlnum1, imin1, imax1, 
init1, ifn1, icutoff1, ...., ictlnum8, imin8, imax8, init8, ifn8, icutoff8 
    
k1, ... , k16   slider16f ichan, ictlnum1,  imin1,  imax1,  init1,  ifn1,  
icutoff1, .... , ictlnum16, imin16, imax16, init16, ifn16, icutoff16 
 
k1, ... , k32   slider32f ichan, ictlnum1,  imin1,  imax1,  init1,  ifn1,  
icutoff1, .... , ictlnum32, imin32, imax32, init32, ifn32, icutoff32 
 
k1, ... , k64   slider64f ichan, ictlnum1,  imin1,  imax1,  init1,  ifn1,  
icutoff1, .... , ictlnum64, imin64, imax64, init64, ifn64, icutoff64 
 

i1, ... , i8 islider8 ichan, ictlnum1, imin1, imax1, ifn1, ...., ictlnum8, 
imin8, imax8, ifn8 
 
 
i1, ... , i16 islider16 ichan, ictlnum1,  imin1,  imax1,  ifn1, ....,  
ictlnum16, imin16, imax16, ifn16 
 
i1, ... , i32 islider32 ichan, ictlnum1,  imin1,  imax1,  ifn1, ....,  
ictlnum32, imin32, imax32, ifn32 
 
i1, ... , i64 islider64 ichan, ictlnum1,  imin1,  imax1,  ifn1, ....,                    
ictlnum64, imin64, imax64, ifn64 
 
i1, ... , i16 s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, 
initvalue1, ifn1, ....., ictlno_msb16, ictlno_lsb16, imin16, imax16, 
initvalue16, ifn16 
 
i1, ... , i16 is16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, 
ifn1, .......... ictlno_msb16, ictlno_lsb16, imin16, imax16, ifn16 
 
i1, ... , i32 s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, 
initvalue1, ifn1, ....., ictlno_msb32, ictlno_lsb32, imin32, imax32, 
initvalue32, ifn32 
 
i1, ... , i32 is32b14 ichan,  ictlno_msb1, ictlno_lsb1, imin1, imax1, 
ifn1, .......... ictlno_msb32, ictlno_lsb32, imin32, imax32, ifn32 
 
 
DESCRIPTION 
 
MIDI slider control banks  
 
 
INITIALIZATION 
 
i1 ... i64 - output values 
 
ichan - midi channel (1-16) 
 
ictlnum1 ... ictlnum64 - midi control number 
ictlno_msb1 .... ictlno_msb32 - midi control number (most 
significant byte) 
ictlno_lsb1 .... ictlno_lsb32 - midi control number (less significant 
byte) 
imin1 ... imin64 - minimum values for each controller 
imax1 ... imax64 - maximum values for each controller 
init1 ... init64 - inital value for each controller 
ifn1 ... ifn64 - function table for conversion for each controller 
icutoff1 ... icutoff64 - low pass filter frequency cutoff for each 
controller 
 
PERFORMANCE 
 
k1 ... k64 - output values 
 
isliderN,  sliderN and sliderNf are banks of MIDI controller (useful 
when using midi mixer such as KAWAI MM-16 or others for 
changing whatever sound  parameter in realtime. A software slider 
bank will be avalaible within short time).  
The raw midi control messages at the input port are converted to 
agree with iminN and imaxN,  and an initial value can be set. Also an 
optional non-interpolated function table with a custom translation 
curve is allowed, useful for enabling exponential response curves.  
 
When no function table translation is required, set the ifnN value to 
0, else set ifnN to a valid function table number. When table 
translation is enabled (i.e. setting ifnN value to a non-zero number 
referring to an already allocated function table), initN value should 
be set equal to iminN or imaxN value, else the initial output value 
will not be the same as specified in initN argument. 
slider8 allows a bank of 8 different midi control message numbers, 
slider16 does the same with a bank of 16 controls, and so on.   
 
sliderNf filter the signal before output for eliminating discontinuities 
due to the low resolution of the MIDI (7 bit); the cutoff frequency 
can be set separately for each controller (suggested range: .1 to 5 
cps). Warning! sliderNf opcodes do not output the required initial 



 

 

99 

value immediately, but only after some k-cycle because the filter 
slightly delays the output. 
 
As the input and output arguments are many, you can split the line 
using '\' (backslash) character (new in 3.47 version) to improve the 
readability. Using these opcodes is quite more efficient than using 
the separate ones (ctrl7 and ktone) when more controllers are 
required.  
 
In isliderN there is not an initial-value input argument because the 
output is get directly from current status of internal controller array 
of Csound.  
 
isNb14 and sNb14 opcodes are the 14-bit versions of these banks of 
controllers.  
 
------------------------------------------------------------------------ 
ar   pareq   asig, kc, iv, iq, imode 
 
iv is volume boost or cut 
iq is the quality factor (sqrt(.5) is no resonance) 
imode is 0=Peaking EQ, 1=Low Shelf, 2=High Shelf 
 
Performance 
 
kc is the centre of shelf value 
asig is the incoming signal 
 
Eqample: 
 
        instr 15 
ifc =     p4 ; Center / Shelf 
iq =     p5       ; Quality factor sqrt(.5) is no resonance 
iv =     ampdb(p6)   ; Volume Boost/Cut 
imode   =     p7     ;Mode 0=Peaking EQ, 1=Low Shelf, 2=High Shelf 
kfc     linseg  ifc*2, p3, ifc/2 
asig    rand  5000                     ; Random number source for testing 
aout    pareq asig, kfc, iv, iq, imode ; Parmetric equalization 
        outs  aout, aout               ; Output the results 
endin 
 
; SCORE: 
;   Sta  Dur  Fcenter  Q        Boost/Cut(dB)  Mode 
i15  0    1    10000 .2          12             1 
i15  +    .    5000 .2          12             1 
i15  .    .    1000 .707     -12             2 
i15  .    .    5000  .1        -12             0 
 
Hans Mikelson 
------------------------------------------------------------------------ 
oscil3, foscil3, loscil3, vdelay3, table3, itable3, deltap3 
 
These are experimental opcodes which use cubic interpolation rather 
than teh linear interpolation of oscili, foscili, loscili, vdelay, tablei, 
itablei and  deltapi.  Testing so far has shown that oscil3 works and 
gives a better sound (on a 32 point sine wave). The others have not 
been tested and so shoudl be used with some care. Feedback on these 
is most acceptable 
 
JPff 
 
------------------------------------------------------------------------ 
Release Notes for 3.51 
====================== 
 
These are the release notes for version 3.51.  This is mainly a small 
number of bug fixes from 3.50, but rather significant ones. 
 
 
Bug Fixes 
--------- 
 
Use of C-style comment /* .. */ now works on both orchestra and 
score 
 
Another attempt to get line continations working 
Language Changes 

---------------- 
 
Lines starting # or ; in .csoundrc or in the options part of a .csd file 
are treated as comments. Comments can also start where an option is 
expected. 
 
Opcode Fixes 
------------ 
 
wgbow -- the pitch control was all wrong and has been rewritten.  
Also the bow slope had been removed; now restored. 
 
oscil3 at k-rate was totally wrong; fixed 
 
New Opcodes  
----------- 
 
envlpxr -- inadvertently lost; exponential, MIDI controlled envelope 
 
xadsr  -- ADSR opcode with exponential lines rather than linear 
 
mxadsr -- ADSR with exponential curves and MIDI sensitive to 
release 
 
Other Changes: 
------------- 
 
Code for follow recast 
 
Windows GUI Changes 
------------------- 
 
Can look for .csd files in orchestra field 
 
------------------------------------------------------------------------ 
==John ff 
  1999 in time for Luigi Nono's Birthday 
================================================= 
 
Release Notes for 3.53 
====================== 
 
These are the release notes for version 3.53.   
 
Bug Fixes 
--------- 
 
In vdelay it was possible for an error on wrapping the delay  
 
(PC only) the shaker opcode did not work due to a file transfer 
failure. 
 
envlpxr could cause a crash due to a typing error 
 
Bug in wgflute which caused silent notes eliminated 
 
Bug in diskin/soundin fixed 
 
cpsmidi nolonger attempts to track pitchbend 
 
 
Language Changes 
---------------- 
 
Internal changes to NeXT added in many places (thanks to Stephen 
Brandon) 
 
Strings are now recognised in scores for a large number fo opcodes 
(convolve, adsyn, diskin, soundin, pvoc etc.  
 
ftlen upgraded so it works with deferred function tables (it loads the 
file)  
 
opcode ondur/ondur2 renamed to noteondur/noteondur2. 
 
peakk renamed peak (with internal discrimination) 
 



 

 

100 

Inside [ ] in the score the form ~ will give a randon number in the 
range 0 to 1. 
 
 
Opcode Fixes 
------------ 
 
ftsr -- this opcode/function got lost at some stage, mea culpa 
 
mandol -- not accepts a negative base-frequency to skip initialisation 
 
In various wg opcodes, if minimum frequency is not given and the 
frequency is a k-rate value, instead of an error, a minimum of 50Hz 
is assumed with a warning  
 
New Opcodes  
----------- 
 
nestedap -- nested allpass filters 
 
lorenz -- ode generator 
 
pitch -- a spectrum-based pitch-tracker 
 
Other Changes: 
------------- 
 
 
Windows GUI Changes 
------------------- 
 
 
------------------------------------------------------------------------ 
==John ff 
  1999 Budget Day 
================================================= 
 
nestedap implements three different nested all-pass filters useful for 
implementing reverbs. 
 
aout nestedap asig, imode, imaxdelay, idelay1, igain1 [, idelay2,  

igain2, idelay3, igain3] 
 
Mode 1 is a simple all-pass filter. 
Mode 2 is a single nested all-pass filter 
Mode 3 is a double nested all-pass filter. 
 
Note imaxdelay is not currently used but will be necessary if k-rate 
delay is implemented. 
 
Example: 
instr 5 
insnd = p4 
gasig diskin insnd, 1 
endin  
 
instr 10 
  imax =           1 
  idel1 =           p4 
  igain1 =           p5 
  idel2 =           p6 
  igain2 =           p7 
  idel3 =           p8 
  igain3 =           p9 
  idel4 =           p10 
  igain4 =           p11 
  idel5 =           p12 
  igain5 =           p13 
  idel6 =           p14 
  igain6 =           p15 
  afdbk init        0 
 
aout1 nestedap    gasig+afdbk*.4, 3, imax, idel1, igain1, idel2,     

igain2, idel3,    igain3       
aout2 nestedap    aout1, 2, imax, idel4, igain4, idel5, igain5 

aout  nestedap    aout2, 1, imax, idel6, igain6 
afdbk butterlp    aout, 1000 

            outs        gasig+(aout+aout1)/2, gasig-(aout+aout1)/2 
  gasig = 0 
endin  
f1 0 8192 10 1 
 
; Diskin 
;   Sta  Dur  Soundin 
i5  0    3    1 
 
; Reverb 
;   Sta  Dur  Del1 Gain1 Del2 Gain2  Del3 Gain3 Del4 Gain4 Del5 
Gain5 Del6 Gain6 
i10  0    4    97   .11   23   .07    43   .09   72   .2    53   .2    119  .3 
 
------------------------------------------------------------------------ 
lorenz implements the lorenz system of equations: 
 
ax, ay, az lorenz ksv, krv, kbv, kh, ix, iy, iz, iskip 
 
instr 20 
  ksv =           p4 
  krv =           p5 
  kbv =           p6 
 
  ax, ay,az lorenz      ksv, krv, kbv, .01, .6, .6, .6, 1 
            outs        ax*1000, ay*1000 
endin  
 
; Lorenz system 
;   Sta  Dur  S   R  V 
i20 5    1    10  28  2.667 
------------------------------------------------------------------------ 
pitch is a spectrum-based pitch tracker 
 
koct, kamp  pitch asig, iupdte, ilo, ihi, idbthresh[, ifrqs, iconf, istrt, 
                   iocts, ifrqs, iq, inptls, irolloff, istor] 
 
The input signal is analysed to give a pitch/amplitude pair for the 
strongest pitch in the signal. The value is updates every iupdte 
seconds. 
 
INITIALISATION 
 
ilo, ihi -- range in which pitch is detected (as decimal octaves) 
 
idbthresh -- energy level in decibells necessary for pith to be 
detected.  Once started it continues until it is 6bd down 
 
iconf -- the number of conformations needed for an octave jump. 
Default value is 10 
 
istrt -- starting pitch for tracker, defaults to average of ilo and 
ihi. 
 
iocts -- number of octave decimations in spectrum, defaulting to 6 
 
ifrqs -- number of divisons of an octave, defaults to 12 and is 
limited to 120 
 
iq -- Q rate of analysis, dafaulting to 10 
 
inptls, irolloff -- number of harmonic partials used in matching. 
Defaulst to 4 and 0.6 
 
istor -- is none zero skips initialisation 
 
PERFORMANCE 
 
Using the same techniques as spectrum and specptrk estimates the 
pitch of the signal.  Pitch is reported in decimal octave form, and 
amplitude in db 
 
While the default settings are reasonable for general use, some 
experimentation may be necessary for complex sounds. 
------------------------------------------------------------------------ 
 
 



 

 

101 

Release Notes for 3.54 
====================== 
 
These are the release notes for version 3.54   
 
Bug Fixes 
--------- 
 
in -o there were some bracketing difficulties. 
 
Arguments in macros are now checked for length overflowing 
internal buffer 
 
fm4op opcodes could give rubbish die to uninitialised array. 
 
Function nsamp made usable 
 
 
Language Changes 
---------------- 
 
For piped output to work there must not be a WAV or AIFF header 
(they require a rewind). This is not checked. 
 
The default sound file is test, test.wav or test.aif depending on 
selected format. 
 
There are now y and z type arguments in entry.c (from Gabriel)  
 
When using line events the e event is now accepted 
 
Both .csd and .CSD files are accepted as description files 
 
The system expects to have a file csound.txt for strings. This allows 
for languages other than American. 
 
 
Opcode Fixes 
------------ 
 
An error message in pvread said it was from pvoc. Changed to 
correct opcode.  
 
pareq, rezzy, moogvcf and biquad optimised a little 
 
New Opcodes  
----------- 
 
sum -- add together arbitrary number of arguments 
 
product -- multiply arbitrary number of arguments 
 
 
Other Changes: 
------------- 
 
Internal changes to optimise all irate random opcodes; not much 
though. 
 
Internally the variable PMASK has been renamed PHMASK as (a) 
that is a better description and (b) it caused problems on Solaris 
 
 
Windows GUI Changes 
------------------- 
 
Automatic adding of .wav or .aif on sound files 
 
 
------------------------------------------------------------------------ 
==John ff 
  1999 May 17 
================================================= 
 
aout sum  a1, a2, a3, ... 
aout product a1, a2, a3, ... 
 

DESCRIPTION 
 
The signals are added or multiplied together to give the output signal.  
 
PERFORMANCE 
 
a1, a2,.. -- audio inputs 
 
------------------------------------------------------------------------ 
 
Release Notes for 3.55 
====================== 
 
These are the release notes for version 3.55 
 
Bug Fixes 
--------- 
 
only in opcodes (below) 
 
 
 
 
 
Language Changes 
---------------- 
 
The environment variable CSSTRNGS is used to identify the string 
database.  If it is not present it looks in SSDIR SADIR etc and finally 
/usr/local/lib 
 
This can be overridden with a -j filename option 
 
 
Opcode Fixes 
------------ 
 
linseg, linsegr -- an off-by-one error corrected in all cases 
 
buzz, gbuzz -- error case reported only once per note instead of every 
k-cycle in error.  
 
loscil3 -- ignored the amplitude leading to usually quiet output 
 
mandolin -- Bug fixed which stop the initial pluck, and also rescaled 
 
 
New Opcodes  
----------- 
 
svfilter --       Implementation of a resonant second order filter, with 
simultaneous lowpass, highpass and bandpass outputs.  
 
hilbert --        An IIR implementation of a Hilbert transformer.  
 
resonr, resonz -- Implementations of a second-order, two-pole two-
zero bandpass filter with variable frequency response.  
 
mac, maca --      Multiply and Accumulate instructions 
 
 
Other Changes: 
------------- 
 
 
 
Windows GUI Changes 
------------------- 
 
devaudio as an output device was incorrectly changed to 
devaudio.wav 
 
------------------------------------------------------------------------ 
==John ff 
  1999 June 20 
 
================================================= 



 

 

102 

 
hilbert 
 
        areal, aimag     hilbert    asig 
 
DESCRIPTION 
 
An IIR implementation of a Hilbert transformer.  
 
PERFORMANCE 
 
hilbert is an IIR filter based implementation of a broad-band 90 
degree phase difference network.  The input to hilbert is an audio 
signal, with a frequency range from 15 Hz to 15 kHz. The outputs of 
hilbert have an identical frequency response to the input (i.e. they 
sound the same), but the two outputs have a constant phase 
difference of 90 degrees, plus or minus some small amount of error, 
throughout the entire frequency range - the outputs are in quadrature. 
hilbert is useful in the implementation of many digital signal 
processing techniques that require a signal in phase quadrature. areal 
corresponds to the cosine output of hilbert, while aimag corresponds 
to the sine output; the two outputs have a constant phase difference 
throughout the audio range that corresponds to the phase relationship 
between cosine and sine waves. 
 
Internally, hilbert is based on two parallel 6th-order allpass filters. 
Each allpass filter implements a phase lag that increases with 
frequency; the difference between the phase lags of the parallel 
allpass filters at any given point is approximately 90 degrees. Unlike 
an FIR-based Hilbert transformer, the output of hilbert does not have 
a linear phase response. However, the IIR structure used in hilbert is 
far more efficient to compute, and the nonlinear phase response can 
be used in the creation of interesting audio effects, as in the second 
example below. 
 
AUTHOR 
 
Sean Costello 
Seattle, Washington 
1999 
 
------------------------------------------------------------------------ 
svfilter 
 
        alow, ahigh, aband     svfilter        asig, kcf, kq[, iscl] 
 
DESCRIPTION 
 
Implementation of a resonant second order filter, with simultaneous 
lowpass, highpass and bandpass outputs. 
 
INITIALIZATION 
 
iscl - coded scaling factor, similar to that in reson. A non-zero value 
signifies a peak response factor of 1, i.e. all frequencies other than 
kcf are attenuated in accordance with the (normalized) response 
curve. A zero value signifies no scaling of the signal, leaving that to 
some later adjustment (see balance). The default value is 0. 
 
PERFORMANCE 
 
svfilter is a second order state-variable filter, with k-rate controls for 
cutoff frequency and Q.  As Q is increased, a resonant peak forms 
around the cutoff frequency. svfilter has simultaneous lowpass, 
highpass, and bandpass filter outputs; by mixing the outputs together, 
a variety of frequency responses can be generated. The state-variable 
filter, or "multimode" filter was a common feature in early analog 
synthesizers, due to the wide variety of sounds available from the 
interaction between cutoff, resonance, and output mix ratios. Svfilter 
is well suited to the emulation of "analog" sounds, as well as other 
applications where resonant filters are called for. 
 
asig - Input signal to be filtered. 
 
kcf - Cutoff or resonant frequency of the filter, measured in cps.  
 

kq - Q of the filter, which is defined (for bandpass filters) as 
bandwidth/cutoff. kq should be in a range between 1 and 500. As kq 
is increased, the resonance of the filter increases, which corresponds 
to an increase in the magnitude and "sharpness" of the resonant peak. 
When using svfilter without any scaling of the signal (where iscl is 
either absent or 0), the volume of the resonant peak increases as Q 
increases. For high values of Q, it is recommended that iscl be set to 
a non-zero value, or that an external scaling function such as balance 
is used. 
 
svfilter is based upon an algorithm in Hal Chamberlin's Musical 
Applications of Microprocessors (Hayden Books, 1985). 
 
AUTHOR 
 
Sean Costello 
Seattle, Washington 
1999 
------------------------------------------------------------------------ 
resonr, resonz 
 
        ar     resonr        asig, kcf, kbw[,iscl, istor] 
        ar     resonz        asig, kcf, kbw[,iscl, istor] 
 
DESCRIPTION 
 
Implementations of a second-order, two-pole two-zero bandpass 
filter 
with variable frequency response. 
 
INITIALIZATION 
 
The optional initialization variables for resonr and resonz are 
identical to the i-time variables for reson. 
 
istor - initial disposition of internal data space. Since filtering 
incorporates a feedback loop of previous output, the initial status of 
the storage space used is significant. A zero value will clear the 
space; a non-zero value will allow previous information to remain. 
The default value is 0. 
 
iscl - coded scaling factor for resonators. A value of 1 signifies a 
peak response factor of 1, i.e.  all frequencies other than kcf are 
attenuated in accordance with the (normalized) response curve. A 
value of 2 raises the response factor so that its overall RMS value 
equals 1. (This intended equalization of input and output power 
assumes all frequencies are physically present; hence it is most 
applicable to white noise.) A zero value signifies no scaling of the 
signal, leaving that to some later adjustment ( see balance). The 
default value is 0. 
 
PERFORMANCE 
 
resonr and resonz are variations of the classic two-pole bandpass 
resonator (reson). Both resonr and resonz have two zeroes in their 
transfer functions, in addition to the two poles. resonz has its zeroes 
located at z = 1 and z = -1. resonr has its zeroes located at +sqrt(R) 
and -sqrt(R), where R is the radius of the poles in the complex z-
plane. The addition of zeroes to resonr and resonz results in the 
improved selectivity of the magnitude response of these filters at 
cutoff frequencies close to 0, at the expense of less selectivity of 
frequencies above the cutoff peak. resonr and resonz have very close 
to constant-gain as the center frequency is swept, resulting in a more 
efficient control of the magnitude response than with traditional two-
pole resonators such as reson.  resonr and resonz produce a sound 
that is considerably different from reson, especially for lower center 
frequencies; trial and error is the best way of determining which 
resonator is best suited for a particular application. 
 
asig - Input signal to be filtered. 
 
kcf - Cutoff or resonant frequency of the filter, measured in cps.  
 
kbw - Bandwidth of the filter (the cps difference between the upper 
and lower half-power points). 
 
 



 

 

103 

AUTHOR 
 
Sean Costello 
Seattle, Washington 
1999 
 
------------------------------------------------------------------------ 
 
mac and maca 
 
        ar     mac        ksig1, asig2, ksig3, asig4, ... 
        ar     maca       asig1, asig2, asig3, asig4, ... 
 
DESCRIPTION 
 
Multiplies the arguments in pairs and accumulates their sum 
ar = ksig1*asig2 + ksig3*asig4 + ... 
ar = asig1*asig2 + asig3*asig4 + ... 
 
INITIALIZATION 
 
none 
 
PERFORMANCE 
 
ksign - multipliers (scales) of signals 
 
asign - Audio signals to be summed/scaled   
 
------------------------------------------------------------------------ 
 
Release Notes for 3.56 
====================== 
 
These are the release notes for version 3.56 
 
Bug Fixes 
--------- 
 
pset opcode was ignored. 
 
The ~ operator within [] in a score was wrong and did not work 
 
 
Language Changes 
---------------- 
 
There are two new operators in scores, within arithmetic contexts [ ]. 
@ followed by a number yields the power of two equal or greater 
than the number given.  The operator @@ gives the power-of-two-
plus1 equal or greater than the number given.  
 
Opcode Fixes 
------------ 
 
follow had an off-by-one error which meant it increased but never 
decreased 
 
 
New Opcodes  
----------- 
 
clockon 
clockoff 
readclock -- Performance timing opcodes 
 
resony --     A bank of second-order bandpass filters, connected in  
parallel.   
 
fold -- Adds artificial foldover to an audio signal 
 
vincr -- incretment an audio variable 
clear -- Clear audio variables [Note: these opcodes have results on         
right so may lead to incorrect warnings] 
 
fout 
foutk 

fouti 
foutir  -- Outout to audio files 
 
fiopen 
fin 
fink 
fini -- Input from audio files 
 
 
 
Other Changes: 
------------- 
 
Some internal reorganisation. 
 
 
Windows GUI Changes 
------------------- 
 
New button and dialog box to set SSDIR, SADIR and SFDIR.  Also 
csound.txt name cached.  
 
Editors are spawned in NOWAIT mode so can exist while setting 
options  
 
Playback can be interrupted after "Play at End" 
 
 
 
------------------------------------------------------------------------ 
==John ff 
  1999 July 20 
================================================= 
 
resony  
 
ar    resony     asig, kbf, kbw, inum, ksep [, iscl, istor]  
 
 
DESCRIPTION  
 
A bank of second-order bandpass filters, connected in parallel.  
 
INITIALIZATION  
 
inum - number of filters.  Defaults to 4  
iscl - coded scaling factor for resonators. A value of 1 signifies a 
peak response factor of 1, i.e. all frequencies other than kcf are 
attenuated in accordance with the (normalized) response curve. A 
value of 2 raises the response factor so that its overall RMS value 
equals 1. (This intended equalization of input and output power 
assumes all frequencies are physically present; hence it is most 
applicable to white noise.) A zero value signifies no scaling of the 
signal, leaving that to some later adjustment (e.g. see balance). The 
default value is 0.  
istor - initial disposition of internal data space. Since filtering 
incorporates a feedback loop of previous output, the initial status of 
the storage space used is significant. A zero value will clear the 
space; a non-zero value will allow previous information to remain. 
The default value is 0.  
 
PERFORMANCE  
 
asig - audio input signal 
kbf - base frequency, i.e. center frequency of lowest filter in Hz 
kbw - bandwidth in Hz 
ksep - separation of the center frequency of filters in octaves 
 
resony is a bank of second-order bandpass filters, with k-rate variant 
frequency separation, base frequency and bandwidth, connected in 
parallel (i.e. the resulting signal is a mixing of the output of each 
filter). The center frequency of each filter depends of kbf and ksep 
variables.  
 
EXAMPLE:  
asig, kbf, kbw, inum, ksep [, iscl, istor]  
 



 

 

104 

In this example the global variable gk1 modifies kbf, gk2 modifies 
kbw, gk3  inum, gk4 ksep and gk5 the main volume.  
 
        instr   1 
a1 soundin "myfile.aif" 
a2 resony  a1,   gk1 , gk2 ,i(gk3),gk4 ,2   
        out a2 * gk5  
        endin 
------------------------------------------------------------------------ 
fold  
 
ar fold asig, kincr  
 
DESCRIPTION  
 
Adds artificial foldover to an audio signal  
 
PERFORMANCE  
 
asig - input signal 
kincr - amount of foldover expressed in multiple of sampling 
rate. Must be >= 1   
 
fold is an opcode which creates artificial foldover. For example, 
when kincr is equal to 1 with sr=44100, no foldover is added, when 
kincr is set to 2 the foldover is equivalent to a downsampling to 
22050, when it is set to 4 to 11025 etc. Fractional values of kincr are 
possible, allowing a continuous variation of foldover amount. This 
can be used for a wide range of special effects.   
 
EXAMPLE:  
 
        instr   1 
kfreq line    1,p3,200 
a1 oscili  10000, 100, 1 
k1 init    8.5 
a1 fold    a1, kfreq 
        out     a1       
        endin 
------------------------------------------------------------------------ 
 
vincr, clear  
 
vincr  asig, aincr  
clear  avar1 [,avar2, avar3,...,avarN]  
 
DESCRIPTION  
 
vincr increments an audio variable of another signal, i.e. accumulates 
output.  
clear zeroes a list of audio signals.  
 
PERFORMANCE  
 
asig - audio variable to be incremented  
aincr - incrementation signal  
avar1 [,avar2, avar3,...,avarN] - signals to be zeroed  
 
vincr (variable increment) and clear are thinked to be used togheter. 
vincr stores the result of the sum of two audio variables into the first 
variable itself (which is thinked to be used as accumulator in case of 
polyphony). The accumulator-variable can be used for output signal 
by means of fout opcode. After the disk writing operation, the 
accumulator-variable should be set to zero by means of clear opcode 
(or it will explode).  
------------------------------------------------------------------------ 
fout, foutk, fouti, foutir, fiopen  
 
fout "ifilename", iformat, aout1 [, aout2, aout3,.... ,aoutN] 
foutk "ifilename", iformat, kout1 [, kout2, kout3,....,koutN] 
fouti ihandle, iformat, iflag, iout1 [, iout2, iout3,....,ioutN] 
foutir  ihandle, iformat, iflag, iout1 [, iout2, iout3,....,ioutN] 
ihandle  fiopen  "ifilename",imode  
 
DESCRIPTION  
 

fout, foutk, fouti and foutir output N audio, k or i-rate signals to a 
specified file of N channels. 
fiopen can be used to open a file in one of the specified modes.  
 
INITIALIZATION  
 
ifilename - a double-quote delimited string file name iformat - a flag 
to choose output file format: 
for fout and foutk only: 
0 - 32-bit floating point samples without header (binary PCM 
multichannel file) 
1 - 16-bit integers without header (binary PCM multichannel file) 
2 - 16-bit integers with type header from -W -A or -J (mono or stereo 
file)  
 
for fouti and foutir only: 
0 - floating point in text format 
1 - 32-bit floating point in binary format  
 
iflag - choose the mode of writing to the ascii file (valid only in ascii 
mode; in binary mode iflag has no meaning, but it must be present 
anyway). 
 
iflag can be a value choosen among the following: 
0 - line of text without instrument prefix 
1 - line of text with instrument prefix (see below) 
2 - reset the time of instrument prefixes to zero (to be used only in 
some particular cases. See below)   
 
iout,... ioutN - values to be written to the file.  
 
imode - choose the mode of opening the file. 
imode can be a value choosen among the following: 
0 - open a text file for writing 
1 - open a text file for reading 
2 - open a binary file for writing 
3 - open a binary file for reading  
 
PERFORMANCE  
 
aout1,... aoutN - signals to be written to the file.  
kout1,...koutN - signals to be written to the file.  
 
fout (file output) writes samples of audio signals to a file with any 
number of channels. Channel number depends by the number of 
aoutN variables (i.e. a mono signal with only an a-rate argument, a 
stereo signal with two a-rate arguments etc.) Maximum number of 
channels is fixed to 64.  
More fout opcodes can be present in the same instrument, referring to 
different files.   
Notice that, differently by out, outs and outq, fout does not zeroes the 
audio variable, so you must provide a zeroing after calling fout if 
poliphony is used. You can use incr and clear opcodes for this task.  
 
foutk operates in the same way of fout, but with k-rate signals. 
iformat can be set only to 0 or 1.   
 
fouti and foutir write i-rate values to a file. The main use of these 
opcodes is to generate a score file during a realtime session. For this 
purpose the user should set iformat to 0 (text file output) and iflag to 
1, which enable the output of a prefix consisting of the following 
strings: 
 
i num  actiontime duration  
 
before the values of iout1...ioutN arguments. Prefix is referring to 
instrument number, action time and duration of current note.   
 
The difference of fouti and foutir is that,  in the case of fouti, when 
iflag is set to 1, the duration of the first opcode is undefined (so it is 
replaced by a dot ) wheras in the case of foutir is defined at the end 
of note, so the corresponding text line is written only at the end of the 
current note (in order to recognize its duration). The corresponding 
file is linked by the ihandle value generated by fiopen opcode (see 
below). So fouti and foutir can be used to generate a Csound score 
while playing  a realtime session.   



 

 

105 

fiopen  opens a file to be used by the foutX opcodes. It must be 
defined externally by any instruments, in the header section. It 
returns a number ihandle, which is univocally referring to the opened 
file.   
 
Notice that fout and foutk can use both a string containing a file 
pathname or a handle-number generated by fiopen, wheras in the 
case of fouti and foutir, the target file can be only specified by means 
of a handle-number.   
 
------------------------------------------------------------------------ 
 
fin, fink, fini  
 
fin  "ifilename", iskipframes, iformat, ain1 [, ain2, ain3,.... ,ainN] 
fink  "ifilename", iskipframes, iformat, kin1 [, kin2, kin3,.... ,kinN] 
fini  "ifilename", iskipframes, iformat, in1 [, in2, in3,.... ,inN]  
 
DESCRIPTION  
 
read signals from a file (at a, k, and i-rate)  
 
INITIALIZATION  
 
ifilename - input file name (can be a string or a handle number 
generated by fiopen)  
iskipframes - number of frames to skip at the start (every frame 
contains a sample of each channel)  
iformat - a number specifying the input file format: for fin and fink: 
0 -  32 bit floating points without header 
1 - 16 bit integers without header  
 
for fini: 
0 - floating points in text format (loop; see below) 
1 - floating points in text format (no loop; see below) 
2 - 32 bit floating points in binary format (no loop)  
 
fin (file input) is the complement of fout: it reads a multi channel file 
to generate audio rate signals. At present time no header is supported 
for file format. The user must be sure that the number of channel of 
the input file is the same of the number of ainX arguments  
 
fink is the same as fin, but operates at k-rate.  
 
fini is the complement of fouti and foutir, it reads the  values each 
time the corresponding instrument note is activated. When iformat is 
set to 0, if the end of file is reached the file pointer is zeroed, 
restarting the scanning from the beginning. When iformat is set to 1 
or 2 no loop is enabled, so at the end of file the corresponding 
variables will be filled with zeroes.   
 
------------------------------------------------------------------------ 
clockon, clockoff, readclock 
 
        clockon         inum 
        clockoff        inum 
ival    readclock       inum 
 
 
DESCRIPTION 
 
Starts and stops one of a number of internal clocks, and read value of 
a clock.  
 
 
INITIALIZATION 
 
inum is the number of a clock. There are 32 clocks numbered 0 
through 31; all other values are mapped to clock number 32. 
[Note: in 3.56 a bug means that xloxk zero is always used -- fixed in 
source!] 
 
PERFORMANCE 
 
Between a clockon and a clockoff the CPU time used is accumulated 
in the clock.  The precision is machine dependent, but is milliseconds 
on UNIX and Windows. 

readclock reads the current value of a clock at initialisation time. 
 
Note there is no way to zero a clock. 
------------------------------------------------------------------------ 
 
Release Notes for 3.57 
====================== 
 
These are the release notes for version 3.57 
 
Bug Fixes 
--------- 
 
clock opcodes all mapped to clock 0 -- fixed 
 
divz was decoded incorrectly in parsing 
 
The triple strike in marimba never happened due to programming 
error. 
The percentage of doubles and singles are variable as two optional 
arguments, both defaulting to 20%. 
 
Some error and warning strings were wrong.  Extensively reviewed 
and fixed 
 
 
Language Changes 
---------------- 
 
In GEN23 (read ASCII file of numbers it is now possible to have a 
length of 0 and have the generator calculated from the number of 
numbers in the file. 
 
 
Opcode Fixes 
------------ 
 
in buzz and gbuzz at least 1 harmonic is always used, and the 
absolute value of the number is used rather than giving a warning 
bug in wgbrass fixed which could lead to crashes 
 
 
New Opcodes  
----------- 
 
active -- tell how many active instances there are of an instrument 
cpuprc  -- limit number of allocations of an instrument by load 
maxalloc -- limit number of allocations of an instrument count 
prealloc -- create a pool of unactive instances 
 
expsega -- a-rate exponential segments 
 
logbtwo  
powoftwo -- fast versions of pow and log in both i and k position 
 
ilen filelen ifilcod ; returns length of "ifilcod" in 
seconds 
isr filesr ifilcod ; returns the sample rate of "ifilcod" 
inchnls filenchnls ifilcod ; returns the number of chnls of 
"ifilcod" 
ipeak filepeak ifilcod, [ichnl]  ; returns peak absolute value of 
       ; "ifilcod" 
   ; if ichnl=0, returns peak out of all 
channels 
   ; if ichnl>0, returns the peak of 
ichnl 
   ; if ichnl is not specified, returns  

; peak of  the entire file. 
   ; currently only supports AIFF_C 
float files 
 
Other Changes: 
------------- 
The pvtool utility has been included in utils2, and as a -U option 
 
 
Windows GUI Changes 



 

 

106 

------------------- 
 
New dialog for pvlook utility 
 
 
------------------------------------------------------------------------ 
==John ff 
  1999 August 3 
================================================= 
 
active 
 
inum  active   ins 
 
DESCRIPTION 
 
Returns the number of active instances of instrument number ins 
 
------------------------------------------------------------------------ 
expsega  
 
asig expsega ia, idur1, ib[, idur2, ic[...]]  
 
DESCRIPTION  
 
An exponential segment generator operating at a-rate. This unit is 
almost identical to expseg, but very more precise when defining 
segments with very short duration (i.e. in percussive attack phase) at 
audio-rate.   
 
Note that expseg opcode does not operate correctly at audio rate 
when segments are shorter than a k-period. 
 
INITIALISATION  
 
ia - starting value. Zero is illegal.  
ib, ic, etc. - value after idur1 seconds, etc. must be non-zero and 
must agree in sign with ia.   
idur1 - duration in seconds of first segment.  
 
A zero or negative value will cause all initialization to be skipped.  
 
idur2, idur3, etc. - duration in seconds of subsequent segments.  
A zero or negative value will terminate the initialization process with 
the preceding point, permitting the last-defined line or curve to be 
continued indefinitely in performance.  The default is zero. 
 
PERFORMANCE  
 
These units generate control or audio signals whose values can pass 
through 2 or more specified points.  The sum of dur values may or 
may not equal the instrument's performance time: a shorter 
performance will truncate the specified pattern, while a longer one 
will cause the last-defined segment to continue on in the same 
direction. 
------------------------------------------------------------------------ 
powoftwo(x)  
logbtwo(x)  
 
powoftwo( ) function returns 2 ^ x and allows positive and negatives 
numbers as argument.   
 
logbtwo( ) returns the logarithm base two of x. 
If the argument is in the range [-5,+5] for powoftwo( ) or [0.25,4] for 
logbatwo( ) then an internal table is used, allowing a precision more 
fine than one cent in a range of ten octaves.  Outside those ranges the 
value is calculated afresh and will be as slow as use of pow or log. 
 
logbtwo( ) returns the logarithm base two of x.  
 
Also they are very useful when working with tuning ratios. They 
work at i and k-rate. 
------------------------------------------------------------------------ 
 
cpuprc 
maxalloc 
  cpuprc  instrnum, ipercent 

  maxalloc  instrnum, icount 
  prealloc  instrnum, icount 
 
DESCRIPTION 
cpuprc sets the cpu processing-time percent usage of an instrument in 
order to avoid buffer underrun in realtime performances maxalloc 
limits the number of allocations of an instrument. 
prealloc creates space for instruments but does not run them 
 
INITIALIZATION 
 
instrnum - instrument number 
ipercent - percent of cpu processing-time to assign 
icount -- number of instruments instances that can be allocated 
 
cpuprc is an opcode that enables a sort of polyphony theshold.  The 
user must set ipercent value for each instrument he want to activate 
in realtime.  It is assumed that the total theorical processing time of 
the cpu of the computer is 100%, but note that this percent value can 
only be defined empirically. 
 
For example if ipercent is set to 5% for instrument 1, the maximum 
number of voices that can be allocated at any time will be 20 (as 5% 
X20 = 100%). If the user attempts to play a further note while the 20 
previous notes are still playing, Csound inhibits the allocation of that 
note and will display a warning message. 
 
In order to avoid audio buffer underruns, it is suggested to set the 
maximum number of voices a bit below the real processing power of 
the computer, because sometimes an instrument can require more 
processing time than normal (for example, if the instrument contains 
an oscillator which reads a table that doesn't fit in cache memory, it 
will be slower than normal; also, any concurrent program which run 
in multitasking, can subtract more processing power in some cases, 
less power in other cases etc.) 
 
Initially all instruments are set to a default value of ipercent = 0.0% 
(i.e. zero processing time or rather infinite cpu processing-speed).  
Note that this opcode can be used either at instrument 0 time or 
dynamically, when it only affects later instruments.  Any active 
instuenmt whose load is changed may lead to incorrect or anomolous 
results. 
 
In maxalloc setting the number of maximum allocation to 0 means 
unlimited allocations are allowed. A negative allocation disallows 
any allocation. 
 
 
example: 
 
sr = 44100 
kr = 441 
ksmps = 100 
nchnls = 2 
 
cpuprc 1, 2.5 ;** set instr 1 to 2.5% of cpu, max 40 voices 
cpuprc 2, 33.333  ;** set instr 2 to 33.333% of cpu, max 3 voices 
 
instr 1 
...body... 
endin 
 
instr 2 
....body... 
endin 
 
------------------------------------------------------------------------ 
 
Release Notes for 3.58 
====================== 
 
These are the release notes for version 3.58 
 
Bug Fixes 
--------- 
 
A file in .csd was left open which stopped some things working 



 

 

107 

 
Language Changes 
---------------- 
 
Number of arguments to macros in both score and orchestra is 
unrestricted, and spaces are now allowed in argument lists  
 
Blank lines and comments in .csd files allowed 
 
Opcode Fixes 
------------ 
 
readk opcodes could not have worked as they were. 
 
fof/fog only allocate space if phs is positive, to allow for legato 
 
some improvement in streson (but not yet correct)  
 
Avoid some crashes when using MIDI in non-midi context 
 
 
New Opcodes  
----------- 
 
adsynt -- Additive synthesis 
 
hsboscil -- Oscilator with brightness and tonality control 
 
pitchamdf -- Pitch following 
 
Other Changes: 
------------- 
Windows GUI Changes 
------------------- 
 
Windows GUI Changes: 
The xyin opcode should now read the mouse at the requested rate. 
 
--------------- 
xyin  
 
Windows Implementation Note 
 
In this implementation, mouse input is read from the full screen 
rather than clipped to the Winsound output window. If you use more 
instances of xyin in an orchestra, they will only do different scaling 
of the mouse cursor position (this was also true in the earlier 
version). 
The bottom left screen position is minimum for x and y.  
Note that the graphics display option must be set to Full for the xyin 
operator to be functional. 
 
Example: 
 
sr = 22050 
kr =   294 
ksmps = 75 
nchnls = 2 
 
instr 1 ; Simple xyin test 
 ; Let oscillators range 20 - 2000 Hz 
 kcps1, kcps2 xyin .03, 20, 2000, 20, 2000, 500, 300 
 ; Smooth input 
 kcps1 port kcps1, .01 
 kcps2 port kcps2, .01 
 
 ; Use input 
 kamp linseg 0, .5, 20000, p3-1, 20000, .5, 0 
 kndx oscil 4, kcps1 / 50, 1 
 kndx = kndx+5 
 ar1 foscil kamp, 1, kcps1, kcps2, kndx, 1 
 ar2 foscil kamp, 1, kcps2, kcps1, kndx, 1 
 
  outs ar1, ar2 
endin 
 
; Score: 

 
f1 0 4096 10 1        ; sine  
 
i1 0 10 
e 
 
; End score 
 
------------------------------------------------------------------------ 
 
ar    adsynt   kamp, kcps, ifn, ifreqtbl, iamptbl, icnt [, iphs] 
 
DESCRIPTION 
This opcode performs additive synthesis with an arbitrary number of 
partials (not necessarily harmonic). Frequency and amplitude of each  
partial is given in the two tables provided. The purpose of this 
opcode is to have an instrument generate synthesis parameters at k-
time and write them to the global parameter tables with the tablew 
opcode. 
 
INITIALIZATION 
ifn      -  a function table, usually a sine. Table values are not 
            interpolated for performance reasons, so you better  
            provide a larger table for better quality. 
ifreqtbl -  an arbitrary function table. Size has to be at least icnt. 
            Table can contain frequency values for each partial at start, 
            but is usually used for generating parameters at runtime 
            with tablew. Frequencies must be relative to kcps. 
iamptbl  -  same as ifreqtbl for relative partial amplitudes.  
icnt     -  number of partials to be generated. 
iphs     -  initial phase if each oscillator, if -1 initialization is skipped. 
            If > 1 all phases will be initialized with a random value. 
 
PERFORMANCE 
kamp     -  Amplitude of note. 
kcps     -  Base frequency of note. Partial frequencies will be relative 
            to kcps. 
================================================= 
 
hsboscil 
-------- 
 
ar    hsboscil   kamp, ktona, kbrite, ibasef, ifn, imixtbl [, ioctcnt] [, 
iphs] 
 
DESCRIPTION 
This oscillator takes tonality and brightness as arguments, relative to 
a base frequency (ibasef). Tonality is a cyclic parameter in the 
logarithmic octave, brightness is realized by mixing multiple 
weighted octaves. 
It is useful when tone space is understood in a concept of polar 
coordinates. 
If you run ktona as a line and keep kbrite constant, you get Risset's 
glissando. 
Oscillator table ifn is always read interpolated.  
Performance time requires about ioctcnt * oscili. 
 
INITIALIZATION 
 
ibasef   -  a base frequency to which tonality and brighness are  

relative. 
ifn      -  a function table, usually a sine. 
imixtbl  -  a function table used for weighting the octaves, usually             

something like:  f n 0  1024  -19  1  0.5  270  0.5 
ioctcnt  -  number of octaves used for brightness blending,             

default is 3, minimum 2, maximum 10. 
iphs     -  initial phase if the oscillator, if -1 initialisation is skipped. 
 
PERFORMANCE 
 
kamp     -  Amplitude of note. 
ktona    -  Cyclic tonality parameter relative to ibasef in logarithmic                

octave, range 0 - 1, values > 1 can be used and are 
internally reduced to frac(ktona). 

kbrite   -  brightness parameter relative to ibasef achieved by             
weighting ioctcnt octaves. It is scaled in a way that a value of 0 



 

 

108 

corresponds to orignal ibasef, 1 one octave above, -2 two            
octaves below ibasef etc. and any fractional value in between. 
================================================= 
 
pitchamdf 
--------- 
 
kcps, krms   pitchamdf   asig, imincps, imaxcps [, icps] [, imedi] [, 
idowns] [, iexcps] 
 
DESCRIPTION 
This opcode follows the pitch of signal asig based on the amdf 
method (Average Magnitude Difference Function) and outputs it to 
kcps. Additionally it outputs the energy of the signal to krms. The 
method is quite fast and should run in realtime. Techniques like that 
usually only work for monophonic 
signals. 
 
INITIALIZATION 
imincps  -  estimated minimum frequency (expressed in cps) present 
in the signal. 
imaxcps  -  estimated maximum frequency present in the signal. 
icps     -  estimated initial frequency of the signal.  
            If 0, (imincps+imaxcps) / 2 is assumed. (Default = 0) 
imedi    -  size of median filter applied to kcps output.  
            In fact, the resulting size of the filter will be imedi*2+1.  
            If 0, no median filtering will be applied. (Default = 1) 
idowns   -  downsampling factor for asig. A factor of idowns>1 
results in faster performance but may result in worse pitch detection. 
            Useful range is 1...4 (integer values). (Default = 1) 
iexcps   -  how frequently pitch analysis is executed, expressed in 
cps. 
            If 0, iexcps is set to imincps which is usually reasonable,  
            but you can experiment with other values. (Default = 0) 
 
PERFORMANCE 
Pitch is detected quite reliably in monophonic signals if you select 
fitting init values. imincps and imaxcps should be as narrow as 
possible to the range of the signal's pitch - this results in better 
performance and better detection. 
Setting icps close to the signal's real initial pitch prevents garbage at 
start, as the process can only detect pitch after some periods. The 
median filter prevents the pitch from jumping - experiment what size 
is best for the given signal. 
The other init values can usually be left at their default. 
It can be useful to lowpass-filter asig before giving it to pitchamdf. 
 
EXAMPLE 
 
asig        loscil     1, 1, input, 1       ; get input signal with original freq 
asig        tone       asig, 1000           ; lowpass-filter 
kcps, krms  pitchamdf  asig, 150, 500, 200  ; extract pitch and  

envelope 
asig1       oscil      krms, kcps, iwave    ; "resynthesize" with some  

waveform 
            out        asig1 
 
=================================================
==John ff 
  1999 August 30 
================================================= 
 
Release Notes for 3.59 
====================== 
These are the release notes for version 3.59 
 
Bug Fixes 
--------- 
 
Fixed a typing error in fgens 
 
MIDI file sin .csd files now work 
 
Language Changes 
---------------- 
 
a-rate^p-rate expressions allowed 

Opcode Fixes 
------------ 
 
pluck: Error check for kcps exceeding sample rate 
 
posc family: allow negative frequencies 
 
Phasor: use double sinternally for better precision 
 
poweroftwo -- also works at a-rate 
logbasetwo -- also works at a-rate 
 
repluck, nreverb, grain, cross2, nlfilt -- no longer change constants 
 
linseg -- h-rate version rewritten to remove various bugs 
 
tone, tonex, atone, atonex -- better intialisation 
 
mxdsr, madsr -- new optional arguemnt to give release time. 
 
linesegr, expsegr -- bugs corrected 
 
vpvoc -- new optional argument to give a table for controsl rather 
than previous tableseg/tablexseg 
 
slider* -- fixed so work 
 
New Opcodes  
----------- 
 
phasorbnk -- bank of phasors 
 
schedkwhen -- k-rate adding of score events 
 
 
Other Changes: 
------------- 
 
Better treatment of score events 
 
Windows GUI Changes 
------------------- 
 
Correction in MIDI files selected 
 
------------------------------------------------------------------------ 
 
phasorbnk 
--------- 
 
kr     phasorbnk    kcps, kindx, icnt [, iphs] 
ar     phasorbnk    xcps, kindx, icnt [, iphs] 
 
DESCRIPTION 
 
This opcode works like the phasor opcode, except that there is an 
array of an arbitrary number of phasors that can be accessed by 
index. 
 
INITIALIZATION 
icnt     -  maximum number of phasors to be used. 
iphs     -  initial phase if each phasor, if -1 initialization is skipped. 
            If > 1 all phases will be initialized with a random value. 
 
PERFORMANCE 
For each independent phasor an internal phase is successively 
accumulated in accordance with the cps frequency to produce a 
moving phase value, normalized to lie in the range 0 <= phs < 1. 
Each individual phasor is accessed by index kindx. 
This phasor bank can be used inside a k-time loop to generate 
multiple independent voices, or together with the adsynt opcode to 
change parameters in the tables used by adsynt. 
 
 
EXAMPLE 
Generate multiple voices with independent partials. 
(In fact this example would better be done with adsynt.)  



 

 

109 

See also example for k-rate use of phasorbnk under adsynt. 
 
giwave ftgen  1, 0, 1024, 10, 1           ; generate a sinewave table 
 
       instr 1 
icnt =          10                      ; generate 10 voices 
asum =          0                       ; empty output buffer 
kindex =          0                       ; reset loop index 
 
loop: ;loop executed every k-cycle 
 
kcps =          (kindex+1)*100 + 30     ; non-harmonic partials 
aphas  phasorbnk  kcps, kindex, icnt      ; get phase for each voice 
asig   table      aphas, giwave, 1        ; and read wave from table 
asum   =          asum + asig             ; accumulate output 
 
kindex  =          kindex + 1 
if (kindex < icnt) kgoto loop             ; do loop 
 
       out        asum*3000 
       endin 
 
================================================= 
==John ff 
  1999 August 30 
================================================= 
 
Release Notes for 4.01 
====================== 
 
These are the release notes for version 4.01.  This is a set of small 
changes against version 4.00, which was only slightly different from 
the 3.59 (v4.0 beta) release.  These notes incorporate all changes 
since v3.591 
 
 
Bug Fixes 
--------- 
 
None 
 
Language Changes 
---------------- 
 
Csound no longer creates score.srt as a fixed file unless the option 
-t0 is given. 
 
Opcode Fixes 
------------ 
 
wguide1 and wguide2 -- fixed code so both a-rate and k-rate 
variables can be used. 
 
pvinterp and pvread -- now allow small frame sizes 
 
space -- bug fixed which would lead to inconsistent results 
 
schedule and schedwhen -- should now work if the event is in the 
future 
 
New Opcodes  
----------- 
 
(opcode change) 
 
resony -- now has a new optional argument (not at the end 
***INCOMPATIBLE CHANGE**) which controls logarithmic or 
linear spread. 
See new documentation below. 
 
Other Changes: 
------------- 
 
Version number now printed in x.xx format 
 
 
 

Windows GUI Changes 
------------------- 
 
Changes to how often the screen is repainted; should maintain the 
graphs better. 
 
New check box in Extras dialog for keeping score.srt 
 
 
------------------------------------------------------------------------ 
==John ff 
  1999 Thanksgiving Week (USA) 
================================================= 
resony  
 
ar    resony     asig, kbf, kbw, inum, ksep [,  isepmode, iscl, istor]  
 
DESCRIPTION  
 
A bank of second-order bandpass filters, connected in parallel.  
 
INITIALIZATION  
 
inum - number of filters.  
isepmode - determines if the separation center frequencies of each 
filter must be generated in logarithmically (using octave as unit of 
measure) or linearly (using Hertz). Default value is 0, corresponding 
to logarithmic mode. 
 
iscl - coded scaling factor for resonators. A value of 1 signifies a 
peak response factor of 1, i.e. all frequencies other than kcf are 
attenuated in accordance with the (normalized) response curve. A 
value of 2 raises the response factor so that its overall RMS value 
equals 1. (This intended equalization of input and output power 
assumes all frequencies are physically present; hence it is most 
applicable to white noise.) A zero value signifies no scaling of the 
signal, leaving that to some later adjustment (e.g. see balance). The 
default value is 0. 
 
istor - initial disposition of internal data space. Since filtering 
incorporates a feedback loop of previous output, the initial status of 
the storage space used is significant. A zero value will clear the 
space; a non-zero value will allow previous information to remain. 
The default value is 0. 
 
 
PERFORMANCE 
 
asig - audio input signal 
kbf -  base frequency, i.e. center frequency of lowest filter in Hz 
kbw -  bandwidth in Hz 
ksep - separation of the center frequency of filters (in octaves or in 
       Hertz, depending by isepmode flag)  
 
 
resony is a bank of second-order bandpass filters, with k-rate variant 
frequency separation, base frequency and bandwidth, connected in 
parallel (i.e. the resulting signal is a mixing of the output of each 
filter). The center frequency of each filter depends of kbf and ksep 
variables. The maximum number of filters is set to 100. 
 
EXAMPLE:  
 
In this example the global variable gk1 modifies kbf, gk2 modifies 
kbw, gk3 inum, gk4 ksep and gk5 the main volume. 
 
 instr 1 
a1 soundin "myfile.aif" 
a2 resony a1,   gk1 , gk2 ,i(gk3),gk4  
 out a2 * gk5  
 endin 
================================================= 
 
 
 
 
 



 

 

110 

Release Notes for 4.02 
====================== 
 
These are the release notes for version 4.02.  This is a set of small  
changes against version 4.01. 
 
 
Bug Fixes 
--------- 
 
On Windows, Macintoshes and BeOS any silent section of audio was 
possibly too long by up to 127 k-cycles. 
 
Coding error in tablew code fixed -- may have not given any errors. 
Similar error in Windows interface fixed. 
 
Temporary files are removed (was OK on Unix) 
 
^ in scores refers to previous event always 
 
 
Language Changes 
---------------- 
 
Gen23 treats negative numbers correctly, and is more forgiving in 
some cases 
 
 
Opcode Fixes 
------------ 
 
All the slider code had potential problems (order of evaluation) 
 
 
New Opcodes  
----------- 
 
NONE 
 
Other Changes: 
------------- 
 
Slightly improved performance on Windows. 
 
 
Windows GUI Changes 
------------------- 
 
Improved code for play_at_end and similar.  Fixes some 
longstanding oddities 
 
Stupid coding errors in sound input fixed 
 
------------------------------------------------------------------------ 
==John ff 
  2000 Jan 29 
================================================= 
 
Release Notes for 4.03 
====================== 
 
These are the release notes for version 4.03.  This is a set of small 
changes against version 4.01/4.02. 
 
Bug Fixes 
--------- 
 
pvl_main.c had a small coding error 
 
Removed stdout and stdin as values in top-level assignment as some 
C systems do not allow it. 
 
Coding error in getstring fixed 
 
Language Changes 
---------------- 
 

In loscil and loscil3 the base frequency of a sample defaults to 
middle C if it is missing from the sample and the opcode 
 
The opcodes rand, randh and randi all accept an additional optional 
argument which is a base value added to the random result.  This 
value can vary at k-rate. 
 
 
Opcode Fixes 
------------ 
 
lfo in a-rate form was broken except for sinusoidal case. 
 
New Opcodes  
----------- 
 
follow2 -- a different envelope extractor with controllable response to 
rise and fail 
 
Other Changes: 
------------- 
 
The scale program can now take new arguments -M num or -P num 
which give a maximum value to which to scale or a maximum 
percentage of full range (32767 or 1.0 for floats).  This uses two 
passes over the sound file. 
 
On Windows machines the temporary files are made in the temporary 
directory, or SFDIR or HOME based on environment variables. 
 
Experimentally I have arranged that an AIFF sample read which has 
no looping information is adjusted to be treated as a single loop the 
length of the sample. 
 
WAV and AIFF files generated by Csound now contain a PEAK 
chunk. 
 
Windows GUI Changes 
------------------- 
------------------------------------------------------------------------ 
==John ff 
  2000 Feb 
================================================= 
 
follow2 
 
ar    follow2    asig, katt, krel 
 
DESCRIPTION  
 
A controllable envelope extractor using the algorithm attributed to 
Jean-Marc Jot. 
 
PERFORMANCE 
 
asig  -- the input signal whose envelope is followed 
 
katt  -- the attack rate (60dB attack time in seconds) 
 
krel  -- the decay rate (60dB decay time in seconds) 
The output tracks the amplitude envelope of the input signal.  The 
rate at which the output grows to follow the signal is controlled by 
the attack rate, and the rate at which is decreases in response to a 
lower amplitude is controlled by the release rate. This gives a 
smoother envelope that the follow opcode at a little more expense.  
 
EXAMPLE 
 
a1      follow2         ain, 0.01, .1 
 
------------------------------------------------------------------------ 
JPff 
 
================================================= 
 
 
 



 

 

111 

Release Notes for 4.05 
====================== 
 
These are the release notes for version 4.05.  There were no notes for 
4.04 which was only released for Linux. This version contains two  
new families of opcodes, and some significant fixes.  
 
Bug Fixes 
--------- 
 
Calculation of kr (if omitted) was wrong 
 
On some systems (notable recent Linux) the double closing of the 
file scfp let to crashes. 
 
Temporary files are cleaned up in more circumstances 
 
Problems with large numbers of labels fixed 
 
 
Language Changes 
---------------- 
 
Added a new option, -Z, which switches on dithering of audio 
conversion from internal fpt to 32bit, 16bit and 8bit formats.  This is 
not properly tested 
 
 
Opcode Fixes 
------------ 
 
atone and atonex failed if the input and output were the same variable  
 
Simpler tests in midiops3 family 
 
 
New Opcodes  
----------- 
Added two opcodes for scanned synthesis (Interval's copyright): 
        scanu 
        scans 
 
Added family of Sound Font opcodes: 
        sfload, sfpreset, sfplay, sfplaym,  
        sfplist, sfilist, sfpassign, sfinstrm, sfinstr 
 
Other Changes: 
------------- 
 
Integration of BeOs makefiles and audio 
 
Windows GUI Changes 
------------------- 
 
None 
 
------------------------------------------------------------------------ 
==John ff 
  2000 March  
================================================= 
 
SoundFont2-related opcodes 
ifilhandle sfload "filename"  
sfplist ifilhandle 
sfilist ifilhandle 
sfpassign istartindex, ifilhandle 
ipreindex  sfpreset iprog, ibank, ifilhandle, ipreindex 
 
a1, a2    sfplay ivel, inotnum, xamp, xfreq, ipreindex [, iflag] 
a1          sfplaym ivel, inotnum, xamp, xfreq, ipreindex [, iflag] 
 
a1,a2 sfinstr ivel, inotnum, xamp, xfreq, instrNum, ifilhandle [, iflag] 
a1   sfinstrm ivel, inotnum, xamp, xfreq, instrNum, ifilhandle[, iflag] 
 
 
 
 

DESCRIPTION 
 
Csound now supports SoundFont2 format. These opcodes allow to 
manage the sample-structure of SoundFont2 files. 
 
INITIALIZATION 
 
filename - name of the SoundFont2 file (complete pathname). You 
must use "/" to separate directories even under Windows. It must be 
typed within double-quotes. 
ifilhandle - unique number generated by sfload opcode to be used as 
an identifier of a SoundFont2 file, since several SoundFont2 files can 
be loaded and activated at the same time. 
istartindex - starting preset index set by the user in bulk preset 
assignments (see below). 
ipreindex - preset index  
iprog - program number of a bank of presets of a SoundFont2 file 
ibank - number of a specific bank of a SoundFont2 file 
ivel - velocity value 
inotnum - note number value 
iflag - flag regarding the behaviour of xfreq (see below). 
instrNum - number of an instrument of a SoundFont2 file. 
 
PERFORMANCE 
 
xamp - amplitude correction factor 
xfreq - frequency value or frequency correction factor (depending by 
iflag, see below) 
 
SoundFont2 is a widespread standard which allow to embed banks of 
wavetable-based sounds into a binary file. In order to understand the 
usage of these opcodes, the user must know some notion about SF2 
format. So a brief description of this format follows. 
 
The SoundFont2 format is made by generator and modulator objects. 
All current Csound opcodes regarding SF2 support generator section 
only, so we will only deal with the generator-related structure of SF2 
format, omitting the modulators.  
 
There are several levels of generators having a hierarchical structure. 
The most basic kind of generator object is a sample. Samples can or 
can't be be looped and are associated to a MIDI note number, called 
base-key. When a sample is associated with a range of MIDI note 
numbers, with a range of velocities, with a transposition (coarse and 
fine tuning), with a scale tuning, and with a level scaling factor, such 
sample makes up a split. A set of splits, together with a name, makes 
up an instrument. When an instrument is associated with a key range, 
with a velocity range, with a level scaling factor, and with a 
transposition, it makes up a layer. A set of layers, together with a 
name, makes up a preset. Presets are normally the final sound-
generating structures ready for the user. They generate sound 
according to the settings of their lower-level components. 
 
Both sample data and structure data is embedded in the same 
SoundFont2 binary file. A single SF2 file can contain up to a 
maximum of 128 banks of 128 preset programs, for a total of 16384 
presets each one. Maximum number of layers, instruments, splits and 
samples is not defined, and probably is only limited by the computer 
memory. 
 
sfload opcode loads an entire SF2 file in memory. It returns a file 
handle to be used by other opcodes. Several instances of sfload can 
placed in the header section of an orchestra, allowing to work with 
more-than-one SF2 files at the same time. 
 
sfplist prints a list of all presets of a previously loaded SF2 file to the 
console. 
 
sfilist prints a list of all instruments of a previously loaded SF2 file to 
the console. 
sfpassign assigns all presets of a previously loaded SF2 file to a 
sequence of progressive index numbers, to be used later with the 
opcodes sfplay and sfplaym. The user can establish the first index 
number by setting startindex argument. Any number of sfpassign 
instances can be placed in the header section of an orchestra, each 
one assigning presets belonging to different SF2 files. The user must 



 

 

112 

take care that preset index numbers of different SF2 files don't cross 
themselves. 
 
sfpreset assigns an existing preset of a previously-loaded SF2 file to 
an index number, to be used later with the opcodes sfplay and 
sfplaym. The user must previously know the program and the bank 
numbers of the preset in order to fill the corresponding arguments. 
Any number of sfpreset instances can be placed in the header section 
of an orchestra, each one assigning a different preset belonging to the 
same (or different) SF2 file to different index numbers. 
 
sfplay plays a preset generating a stereo sound. 
ivel argument does not directly affect the amplitude of the output, but 
inform sfplay opcode about what sample has to be chosen in multi-
sample velocity-splitted presets. inotnum argument sets the 
frequency of the output when iflag = 0. When iflag == 1, inotnum 
doesn't directly affect the frequency of the output (see below). 
Adjustment of amplitude can be done by varying the xamp argument, 
that actually is a multiplier factor. xfreq argument have a two 
different behaviour depending by the value of iflag argument: 
 
    when iflag = 0 (or missing as this value is the default)  
    xfreq argument is a multiplier of a the default frequency 
    assigned by SF2 preset to the inotenum value. This can correct 
    the default frequency (for example to obtain vibrato or some other 
    frequency -shift effect). 
 
   when iflag = 1 xfreq argument should contain the actual frequency 
of the output sound in cps. This allow the user to use any kind of 
micro-tuning based scales. However this flag is designed to work 
correctly only with presets tuned to the default equal temperament. 
Don't try to use this flag value with preset already having non-
standard tunings or with drum-kit-based presets, since unexpected 
results could occur. 
 
Notice that both xamp and xfreq arguments can contain k-rate signals 
as well as a-rate signals, but the user must be sure that both rguments 
are filled with variables of the same rate, or sfplay will ot work 
correctly.  The user must be sure that ipreindex argument is illed with 
a number containing a previously assigned preset, therwise Csound 
will crash. 
 
sfplaym opcode is a mono version of sfplay. It should be used with 
ono preset, or with the stereo presets in which stereo output is not 
equired, because is a bit faster than sfplay. 
 
sfinstr plays an SF2 instrument instead of a preset (an SF2 instrument 
is the base of a preset layer). instrnum argument contains the 
nstrument number, and the user must be sure that such number 
belongs o an existent instrument of a determinate soundfont bank. 
Notice that oth xamp and xfreq arguments can contain k-rate signals 
as well as -rate signals, but, also in this case, the user must be sure 
that oth arguments are filled with variables of the same rate, or sfinstr 
will not work correctly. 
 
sfinstrm plays is a mono version of sfinstr. This is the fastest opcode 
of the SF2 family.  
These Csound opcodes only handle sampling structure of SF2 files, 
because support of modulator objects (amplitude envelopes, 
frequency modulation, filter envelopes and modulation) is very basic 
and trivial in SF2 standard; so, adding any kind of modulation or 
processing to the sample data is completely left to the Csound user, 
bypassing all restrictions forced by the SF2 standard. 
 
Gabriel Maldonado 
------------------------------------------------------------------------ 
scanu iinit, irate, ivel, im, if, ic, id, km, kf, kc, kd,  
 il, ir, kx, ky, ain, idisp, iid 
 
iinit: the initial position of the masses.  If this is a negative number, 
then the absolute of iinit signifies the table to use as a hammer shape.  
If iinit > 0, the length of it should be the same as the intended mass 
number, otherwise it can be anything. 
 
irate: the amount of time between successive updates of the mass 
state.  Kind of like the sample period of the system.  If the number is 
big the string will update at a slow rate showing little timbral 

variability, otherwise it will change rapidly resulting in a more 
dynamic sound. 
 
ivel: The number of the ftable that contains the initial velocity for 
each mass.  It should have the same size as the indented mass 
number. 
 
im: The number of the ftable that contains the mass of each mass.  It 
should have the same size as the indented mass number. 
 
if: The number of the ftable that contains the spring stiffness of each 
connection.  It should have the same size as the square of the 
indented mass number.  The data ordering is a row after row dump of 
the connection matrix of the system. 
 
ic: The number of the ftable that contains the centering force of each 
mass.  It should have the same size as the indented mass number. 
 
id: The number of the ftable that contains the damping factor of each 
mass.  It should have the same size as the indented mass number. 
 
km: A parameter that scales the masses. 
 
kf: a parameter that scales the spring stiffness. 
 
kc; a parameter that scales the centering force. 
 
kd: a parameter that scales damping. 
 
il: If iinit < 0, the position of the left hammer (il = 0 is hit at  
leftmost, il = 1 is hit at rightmost). 
 
ir: If iinit < 0, the position of the right hammer (ir = 0 is hit at  
leftmost, ir = 1 is hit at rightmost). 
 
ix: This is the position of an active hammer along the string (0 
leftmost,1 rightmost).  The shape of the hammer is determined by 
iinit and the power it pushes with is iy. 
 
iy: The power that the active hammer uses. 
 
ain:  The audio input that adds to the velocity of the masses (don't 
make it too loud). 
 
idisp: If 0, no display of the masses is provided.  Otherwise you get 
to see them wiggle. 
 
iid: For scanu: the ID of the opcode.  This will be used to point the 
scanning opcode to the proper waveform maker.  If this value is 
negative it is minus the wavetable on which to write the waveshape.  
That wavetable can be used later from an other opcode to generate 
sound.  The initial contents of this table will be destroyed, so do not 
rely on them being there. 
 
The syntax for scans is: 
 
  scans kamp, kfreq, itrj, iid 
 
kamp: The output amplitude. Note that the resulting amplitude is also 
dependent to the state of the wavetable. This number is effectively 
the scaling factor of the wavetable. 
 
kfreq: The frequency of the scan rate. 
 
itraj: The number of the ftable that contains the scanning trajectory. 
This is a series of numbers that contains addresses of masses. The 
order of these addresses is used as the scan path.  It shouldn't contain 
values more that the number of masses, as well as negative numbers. 
 
iid: The ID number of the scanu opcode's waveform to use. To 
produce the matrices, the file format is straightforward. For example 
for 4 masses we have the following grid describing the connections: 
 
 
 
 
 



 

 

113 

   | 1 | 2 | 3 | 4 |  
------------------- 
1 |   |   |   |   | 
------------------- 
2 |   |   |   |   | 
------------------- 
3 |   |   |   |   | 
------------------- 
4 |   |   |   |   | 
------------------- 
 
Whenever two masses are connected then the point they define is 1, 
so for a unidirectional string we would have the following 
connections, (1,2), (2,3), (3,4) (if it was bidirectional we would also 
have (2,1), (3,2), (4,3)).  So I fill these out with ones and the rest with 
zeros and I get: 
 
   | 1 | 2 | 3 | 4 | 
------------------- 
1 | 0 | 1 | 0 | 0 | 
------------------- 
2 | 0 | 0 | 1 | 0 | 
------------------- 
3 | 0 | 0 | 0 | 1 | 
------------------- 
4 | 0 | 0 | 0 | 0 | 
------------------- 
 
Similarly for the other shapes, I find the connections and fill them 
out. This gets saved in an ASCII file column by column, so the string 
up there would be saved as: 
 
0. 
1. 
0. 
0. 
0. 
0. 
1. 
0. 
0. 
0. 
0. 
1. 
0. 
0. 
0. 
0. 
 
Paris Smaragdis 
------------------------------------------------------------------------ 
 
Release Notes for 4.06 
====================== 
 
These are the release notes for version 4.06.  A lot has changed, and 
in places my notes are less than explicit.  Major change is in multiple 
channel audio. The maximum number of channels is increased to 
256, and there are opcodes for reading and writing m any channels. 
Related there are the VBAP family of opcodes which allow for 
positioning and moving of sound between members of an array of 
speakers. 
 
I have been playing with Tcl/Tk having had to teach it this last term, 
and I have a set of on-screen sliders which can control an instrument, 
not through MIDI. As this is a first attempt there may be 
opportunities for better versions. The interface is such that any 
Python fans, or indeed any other system could be used instead. At 
present it assumes the existence of wish and the TK sources are 
hardwired.  This will change when i have thought about it. 
 
Bug Fixes 
--------- 
 
In reading scores it was possible to get an overflow condition which 
gave really odd errors. 
 

Language Changes 
---------------- 
In scansys opcodes it is now possible to select the interpolation order 
with a new optional i-rate argument.  The default is 4 (as it was 
previously) but there are reports that cubic (3) or quadratic (2) 
sounds better, and is certainly faster. 
 
Maximum number of audio channels in now 256 
 
File names in FGENS 23 and 28 are now expanded relative to a 
number of directories. 
Opcode Fixes 
------------ 
 
Bug in ADSR fixed. 
 
vpvoc now checks things more carefully 
 
schedule now behaves with negative triggers 
 
 
New Opcodes  
----------- 
 
outx, out32 and outch, outz for multi-channel output 
 
inx, in32 and inc, inz similar for input 
 
vbap family of opcodes added (vbap4, vbap8, vbap16, vbapz, 
vbaplsinit, 
vbap4move, vbap8move, vbap16move, vbapzmove)  
 
control, setcntrl now available for UNIX, and any operating system 
with Tcl/Tk (perhaps) 
 
pinkish to generate pink noise 
 
seqtime, trigseq -- Handle timed-sequences of groups of values 
stored into tables.  
 
 
Other Changes: 
------------- 
 
OS2 code now incorporated into sources 
 
Soundfont code reworked 
 
There is a small Tcl/Tk program to build matrices for the scanned 
synthesis opcodes -- matrix.tk 
 
GUI Changes 
----------- 
 
In Windows, Heartbeat option 3 writes information to title bar 
 
In Unix implementations there are now on-screen sliders for real-
time control of Csound, using the control opcode. 
 
------------------------------------------------------------------------ 
==John ff 
  2000 June 10  
================================================= 
     

ar  pinkish  xin[, imethod, inumbands, iseed, iskip] 
 
Generates approximately pink noise (-3dB/oct response) by two 
different methods: multirate noise generator due to Moore, coded by 
Martin Gardner, or a filter bank designed by Paul Kellet.  
 
PERFORMANCE 
ar - pink noise.  
xin - For Gardner method: k- or a-rate amplitude. 
        For Kellet filters: normally a-rate uniform random noise from 
        rand (31-bit) or unirand, but can be any a-rate signal. 
        The output peak value varies widely (15%) even over long runs, 
        and will usually be well below the input amplitude. Peak 



 

 

114 

        values may also occasionally overshoot input amp/noise.  
imethod - (optional) selects filter method.  
        =0 Gardner method (default). 
        =1 Kellet filter bank. 
        =2 A somewhat faster filter bank by Kellet, with less accurate 
        response. 
inumbands - (optional) only effective with Gardner method. The 
number 

of noise bands to generate. Maximum is 32, minimum is 4. 
Higher levels give smoother spectrum, but above 20 bands        
there will be almost DC-like slow fluctuations.  Default value        
is 20.  

iseed - (optional) only effective with Gardner method. If non-zero, 
seeds the random generator. If zero, the generator will be seeded 
from current time. Default is 0.  

iskip - (optional) if non-zero, skip (re)initialisation of internal state  
(useful for tied notes).  Default is 0. 

 
pinkish attempts to generates pink noise (ie noise with equal energy 
in each octave),  by either of two different methods. 
 
The first method, by Moore/Gardner, adds several (up to 32) signals 
of white noise, generated at octave rates (sr, sr/2, sr/4 etc). It gets 
pseudo-random values from an internal 32-bit generator, which is 
local to each opcode instance and seedable (similarly to rand). 
 
The second method is a lowpass filter with hardcoded response 
approximating -3dB/oct. If input is uniform white noise, it outputs 
pink noise. Any signal may be used as input for this method. The 
high quality filter is slower, but has less ripple and slightly wider 
operating frequency range than the "economy" version. With the 
Kellet filters, seeding is not used. 
 
The Gardner method output has some bumps and dips in the low-mid 
and mid-high frequency ranges. It can be set to generate more low-
frequency energy by increasing the number of bands. It is also a bit 
faster. The Kellet filter (refined) has very smooth spectrum, but a 
more limited effective range, and the level increases slightly at the 
high end of the spectrum. 
 
EXAMPLE 
Kellet-filtered noise for a tied note (iskip is non-zero). 
 
    awhite unirand 2.0 
    awhite = awhite - 1.0         ; Normalize to +/-1.0 
    apink pinkish awhite, 1, 0, 0, 1 
        out apink * 30000 
------------------------------------------------------------------------ 
outx  a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af 
out32   a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af,                  

ag, ah, ai, aj, ak, al, am, an, ao, ap, aq, ar, as, at, au 
outc    a1[, a2,....] 
outch   k1, a1, k2, a2, .... 
outz    k1 
 
outx and out32 output 16 and 32 channels of audio. 
outc outputs as many channels as provided.  Any channels greater 
than nchnls are ignores, and zeros are added as necessary outch 
outputs a1 on channel k1, a2 on channel k2 and so on. 
outz outputs from a ZAK array, for nchnls of audio 
 
------------------------------------------------------------------------ 
a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af inx a1, a2, a3, 
a4, a5, a6, a7, a8, a9 , aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, 
ao, ap, aq, ar, as, at, au in32 
a1  inch  k1 
    inz   k1 
 
inx and in32 read 16 and 32 channel inputs 
inch reads from a numbered channel k1 into a1 
inz reads audio samples in nchnls into a ZA array starting at k1 
 
------------------------------------------------------------------------ 
 
vbaplsinit, vbap4, vbap8, vbap16 
vbap4move, vbap8move, vbap16move 
vbaplsinit  idim, ils_amount, idir1, idir2,...  

a1, a2, a3, a4 vbap4 asig, iazi,iele, ispread 
a1, a2, a3, a4, a5, a6, a7, a8 vbap8 asig, iazi,iele, ispread 
 
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16 
vbap16 asig, iazi,iele, ispread 
 
a1, a2, a3, a4  vbap4move  asig, ispread, ifld_amount, ifld1, ifld2, ... 
 
a1, a2, a3, a4, a5, a6, a7, a8 vbap8move  asig, ispread, ifld_amount,  

ifld1, ifld2, ... 
 
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16 
vbap16move  asig, ispread, ifld_amount, ifld1, ifld2, ... 
 
 
Distribute an audio signal amongst 2 to 16 channels with localization 
control. 
 
INITIALIZATION 
 
idim - dimensionality, 2 or 3. 
  
ils_amount - number of loudspeakers. In two dimensions the number 
can vary between two to 16. In three dimensions the number can vary 
between three and 16. 
  
idirn - directions of loudspeakers, number of directions must be less 
or equal than 16. In two-dimensional loudspeaker positioning idirn is 
the azimuth angle respective to nth channel. In three-dimensional 
loudspeaker positioning fields are the azimuth and elevation angles 
of each loudspeaker consequently (azi1, ele1, azi2, ele2,...). 
  
asig - audio signal to be panned. 
  
iazi - azimuth angle of the virtual source. 
  
iele  - elevation angle of the virtual source 
  
ispread - spreading of the virtual source (range 0 - 100).  If value is 
zero, conventional amplitude panning is used. When value is 
increased, the amount of loudspeakers used in panning gets larger. If 
value is 100, the sound is applied to all loudspeakers. 
   
 
ifld_amount - number of fields (absolute value must be 2 or larger). 
If ifld_amount is positive, the virtual source movement is a polyline  
specified by given directions, each transition is performed in an equal 
time interval. If ifld_amount is negative, specified angular velocities 
are applied to the virtual source during specified relative time 
intervals (see below). 
 
  
ifldn - Azimuth angles or angular velocities, and relative durations of 
movement phases (see below). 
 
PERFORMANCE 
 
vbap4, vbap8 and vbap16 take an input signal asig and distribute it 
amongst at two to 16 outputs according to the controls iazi and iele 
and configured loudspeaker placement.  If idim = 2, iele is set to 
zero. The distribution is performed using Vector Base Amplitude 
Panning (VBAP) [1].  VBAP distributes the signal using loudspeaker 
data configured with vbaplsinit. The signal is applied at most to two 
loudspeakers in 2-D loudspeaker configurations and to three 
loudspeakers in 3-D loudspeaker configurations. If the virtual source 
is panned outside the region spanned by loudspeakers, nearmost 
loudspeakers are used in panning. 
 
 
vbap4move, vbap8move and vbap16move allow moving virtual 
sources to be applied. If ifld_amount is positive, the fields represent 
directions of virtual sources and equal times, iazi1, [iele1,] iazi2, 
[iele2,]....  
The position of the virtual source is interpolated between directions 
starting from first direction and ending to last. Each interval is 
interpolated in time that is fraction total_time / number_of_intervals 
of the duration of the sound event. 



 

 

115 

 
If ifld_amount is negative, the fields represent angular velocities and 
equal times. The first field is however the starting direction, iazi1, 
[iele1,] iazi_vel1, [iele_vel1,] iazi_vel2, [iele_vel2,]....  
Each velocity is applied to the note that is fraction total_time/ 
number_of_velocities of the duration of the sound event. If the 
elevation of the virtual source becomes greater than 90 degrees or 
less than 0 degrees, the polarity of angular velocity is changed. Thus 
the elevational angular velocity produces a virtual source that moves 
up and down between 0 and 90 degrees. 
 
EXAMPLE 
 
2-D panning example with stationary virtual sources 
         sr = 44100 
         kr = 441 
         ksmps = 100 
         nchnls = 4 
         vbaplsinit 2, 6,  0, 45, 90, 135, 200, 315,  
         instr     1   ;parameter 
  asig oscil 20000, 440, 1 ; p4 = azimuth  
a1, a2, a3, a4, a5, a6, a7, a8 vbap8 asig, p4, 0, 20  
 outq     a1,a2,a3,a4 
;        outq     a5,a6,a7,a8 
         endin 
References 
[1] Ville Pulkki: Virtual Sound Source Positioning Using Vector 
Base Amplitude Panning. Journal of the Audio Engineering Society, 
1997 June, Vol. 45/6, p. 456.  
 
Implementation by Ville Pulkki 
Sibelius Academy Computer Music Studio 
Laboratory of Acoustics and Audio Signal Processing  
Helsinki University of Technology 
May 2000 
------------------------------------------------------------------------ 
 
The opcode vbapz and vbabzmove are the multiple channel analogs 
of the above opcodes, working an nchnls and using a ZAK array for 
output. 
The limit on the number of channels is 256. 
 
(Coded by JPff from material of Ville Pulkii) 
------------------------------------------------------------------------ 
 
Sequence-related opcodes (seqtime  and trigseq ) 
 
ktrig_out seqtime ktime_unit, kstart, kloop, initndx, kfn_times  
trigseq  ktrig_in,  kstart,  kloop, initndx,  kfn_values, kout1 [, 

kout2, kout3, ....,  koutN]  
 
 
DESCRIPTION  
 
Handle timed-sequences of groups of values stored into tables.  
 
INITIALIZATION  
 
initndx - initial index  
 
PERFORMANCE  
 
ktrig_out - output trigger signal 
ktime_unit  - unit of measure of time, related to seconds. 
kstart - start index of looped section 
kloop - end index of looped section  
kfn_times - number of table containing a sequence of times 
kfn_values - numer of a table containing a sequence of groups of 
values 
ktrig_in - input tirgger signal  
kout1 [, kout2, kout3, ....,  koutN] - output values  
 
These opcodes handle timed-sequences of groups of values stored 
into tables.  
 
seqtime generates a trigger signal (a sequence of impulses, see also 
trigger opcode), according to the values stored in kfn_times table. 

This table should contain a series of delta-times (i.e. times beetween 
to adiacent events). The time units stored into table are expressed in 
seconds, but can be rescaled by means of ktime_unit argument. The 
table can be filled with GEN02 or by means of an external text-file 
containing numbers, with GEN23. It is possible to start the sequence 
from a value different than the first, by assigning to initndx an index 
different than zero (which corresponds to the first value of the table). 
Normally the sequence is looped, and the start and end of loop can be 
adjusted by modifying kstart and kloop arguments. User must be sure 
that values of these arguments (as well as initndx) correspond to 
valid table numbers, otherwise Csound will crash (because no range-
checking is implementeted). It is possible to disable loop (one-shot 
mode) by assigning the same value both to kstart and kloop 
arguments. In this case, the last read element will be the one 
corresponding to the value of such arguments. Table can be read 
backward by assigning a negative kloop value. It is possible to 
trigger two events almost at the same time (actually separated by a k-
cycle) by giving a zero value to the corresponding delta-time. 
First element contained in the table should be zero, if the user intend 
to send a trigger impulse it immediately after the orchestra 
instrument containing seqtime opcode 
 
trigseq accepts a trigger signal (ktrig_in) as input and outputs group 
of values (contained into kfn_values table) each time ktrig_in 
assumes a non-zero value. Each time a group of values is triggered, 
table pointer is advanced of a number of positions corresponding to 
the number of group-elements, in order to point to the next group of 
values. The number of elements of groups is determined by the 
number of koutX arguments. It is possible to start the sequence from 
a value different than the first, by assigning to initndx an index 
different than zero (which corresponds to the first value of the table). 
Normally the sequence is looped, and the start and end of loop can be 
adjusted by modifying kstart and kloop arguments. User must be sure 
that values of these arguments (as well as initndx) correspond to 
valid table numbers, otherwise Csound will crash (because no range-
checking is implementeted). It is possible to disable loop (one-shot 
mode) by assigning the same value both to kstart and kloop 
arguments. In this case, the last read element will be the one 
corresponding to the value of such arguments. Table can be read 
backward by assigning a negative kloop value. 
 
trigseq is designed to be used together with seqtime or trigger 
opcodes.  
 
Example:  
 
 instr 1 
icps cpsmidi 
iamp ampmidi 5000 
ktrig seqtime 1,   1,  10,  0, 1 
trigseq ktrig, 0, 10, 0, 2, kdur, kampratio, kfreqratio 
schedkwhen ktrig, -1, -1, 2, 0, kdur, kampratio*iamp, kfreqratio*icps 
 endin 
 
 instr  2 
**** put here your intrument code ******* 
 out a1 
 endin 
------------------------------------------------------------------------ 
 
Release Notes for 4.07 
====================== 
 
These are the release notes for version 4.07. Note that there are four 
new files in the sources, bowedbar.c, bowedbar.h, phisem.c and 
phisem.h. 
 
Bug Fixes 
--------- 
Error in message in extract functions fixed 
 
Typing error in fileopen fixed 
 
Fixed bad message in AIFF headers 
 
Minor fix in WAV format files used for input 
 



 

 

116 

Initial value in midi controllers changed in one case 
 
 
Language Changes 
---------------- 
 
New tags added to .csd files to allow for Base64 encoded MIDI files 
<CsMidifileB filename=...>, and for Base64 encoded samples 
<CsSampleB filename=...>.  
 
Macro names can now include _ as a character 
 
Exponential format numbers in scores allowed (finishes earlier 
attempt) 
Opcode Fixes 
------------ 
 
Minor bug in bowed fixed related to length of delay line 
 
The physical model opcodes have been revised in line with P.Cook's 
STK3.1.  This effects filter values in marimba, gogobel in particular.  
Strike position on vibraphone now used, and in gogobell. 
 
The reverb and nreverb opcodes could have a zero delay time, which 
gives rise to an infinite gain.  Attempts to set non-positive delay has 
the value changed to 0.01s 
 
New Opcodes  
----------- 
 
clip -- apply soft clipping to a signal using a variety of algorithms.  
Current version has two working algorithms 
 
wgbowedbar -- physical model of a bowed bar 
 
PhISem family of opcodes: cabasa, crunch, sekere, sandpaper, stix, 
guiro, tambourine, bamboo, dripwater, sleighbells. These are all 
percussion sounds. 
 
 
Other Changes: 
------------- 
 
Some support for OS/2 in sources 
 
Some support for rpm format distribution 
In vbap a large array has been moved off stack, which should help 
platforms with stack limitations, 
 
 
Windows GUI Changes 
------------------- 
 
Phase Vocoder dialog had its check for illegal hopsize all wrong 
 
PVLook dialog extended to allow a log file 
 
------------------------------------------------------------------------ 
==John ff 
  2000 August  
================================================= 
 

ar clip ain, imethod, ilimit[, iarg] 
 
Clips an input audio signal to a limit in a 'soft' fashion rather than a 
straight cutoff.  There are three methods at present, and the argument 
is used in each case to control the abruptness of the clip. 
 
 
PERFORMANCE 
 
ar - clipped audio 
ain - an input a-rate signal 
imethod - selects clipping method.  
        =0 Bram de Jong method (default). 
        =1 sine clipping 
        =2 tanh clipping 

iarg (optional)-- Method 0 in the range 0 to 1 indicating the fraction 
at which the clipping starts.  Default value is 0.5. This argument is 
not used in methods 1 or 2 
         
The first method, by Bram de Jong, applies the algorithm (assuming 
a 
signal normalised to 1).   
 |x| > a:  f(x) = sign(x) * (a + (x-a)/(1+((x-a)/(1-a))^2)) 
 |x| > 1:  f(x) = sign(x)*(a+1)/2 
 
The second method is a sine clip: 
 |x|<limit f(x) = limit * sin(pi x/(2*limit) 
           f(x) = limit * sign(x) 
 
The third method is a tanh clip: 
 |x|<limit f(x) = limit * tanh(x/limit)/tanh(1) 

f(x) = limit * sign(x) 
 
Note: Method 1 seems to be non-functional 
 
EXAMPLE 
 
    a1     in 
    a2     oscil   25000, 1 
    asig   clip    a1+a2, 0, 30000, 0.75 
           out     asig 
------------------------------------------------------------------------ 
ar  wgbowedbar  kamp, kfreq, kpos, kbowpres, kgain[, kconst,        

ktVel, ibowpos, ilow] 
 
A physical model of a bowed bar, belonging to the Perry Cook 
family of waveguide instruments. 
 
kamp -- amplitude of signal 
 
kfreq -- frequency of signal 
 
kpos -- where on bar the bow is used in the range 0 to 1 
 
kbowpres -- pressure of the bow 9as in wgbowed) 
kgain -- gain of filter; suggested to have values about 0.809. 
 
kconst -- an integration constant, defaulting to zero. 
 
ktVel -- either 0 or 1; with zero the bow velocity follows an ADSR 
style trajectory; when 1 the value of the bow velocity decays in an 
exponential way. 
 
kbowpos -- the position on the bow, which affects the bow velocity 
trajectory.  
 
ilow -- lowest frequency required 
 
Example 
            instr       1 
;;;        pos = [0, 1] 
;;;        bowpress = [1, 10] 
;;;        GAIN = [0.8, 1] 
;;;        intr = [0,1] 
;;;        trackvel = {0, 1} 
;;;        bowpos = [0, 1] 
 
;; amp,freq, pos,bowPr, GAIN, int,trackVel,bowpos,lowest 
Freq; 
kb          line        0.5, p3, 0.1 
kp          line        0.6, p3, 0.7 
kc          line        1, p3, 1 
a1          wgbowedbar  p4, cpspch(p5), kb, kp,   0.995, p6, 0,      kc,     
50 
            out         a1 
            endin        
 
i1 0   3 32000 7.00 0 
------------------------------------------------------------------------ 
PhiSem:: 
   
  ar cabasa iamp, idettack[, knum, kdamp, kmaxshake] 



 

 

117 

  ar crunch iamp, idettack[, knum, kdamp, kmaxshake] 
  ar sekere iamp, idettack[, knum, kdamp, kmaxshake] 
  ar  sandpaper iamp, idettack[, knum, kdamp, kmaxshake] 
  ar  stix iamp, idettack[, knum, kdamp, kmaxshake] 
  ar  guiro iamp, idettack[, knum, kdamp, kmaxshake,  

kfreq, kfreq1] 
  ar tambourine iamp, idettack[, knum, kdamp, kmaxshake,  

kfreq, kfreq1, kfreq2] 
  ar bamboo iamp, idettack[, knum, kdamp, kmaxshake,  

kfreq, kfreq1, kfreq2] 
  ar dripwater  iamp, idettack[, knum, kdamp, kmaxshake,  

kfreq, kfreq1, kfreq2] 
  ar sleighbells   iamp, idettack[, knum, kdamp, kmaxshake,  

kfreq, kfreq1, kfreq2] 
 
Semi-physical models of various percussion sounds. 
 
iamp -- Amplitude of output.  Note that as these instruments are 
stochastic, this is only a rough guide. 
 
idettack -- period of time over which all sound is stopped 
 
knum -- The number of beads, teeth, bells, timbrels etc.  If zero the 
default value is used 

cabasa  512 
     crunch  7 
      sekere  64 
     sandpaper  128 
     stix  30 
     guiro   128 
     tambourine  32 
     bamboo           1.25 
     dripwater  10 
     sleighbells      32 
kdamp -- the damping factor of the instrument.  The value is used as 
an adjustment close to the defaults below, with 1 being no damping. 
If zero the default values are: 
         cabasa  0.997 
     crunch  0.99806 
      sekere  0.999 
     sandpaper  0.999 
     stix  0.998 
     guiro   1.0 
     tambourine  0.9985 
     bamboo           0.9999 
     dripwater  0.995 
     sleighbells      0.9994 
 
kmaxshake -- amount of energy to add back into the system, in range 
0 to 1. 
kfreq -- Setting the main resonant frequency; default values are: 
     guiro   2500 
     tambourine  2300 
     bamboo           2800 
     dripwater  450 
     sleighbells      2500 
kfreq1 -- setting the first resonant frequency; defaults are 
     guiro    
     tambourine  5600 
     bamboo           2240 
     dripwater  600 
     sleighbells      5300 
kfreq2 -- setting the second resonant frequency; defaults are 
     tambourine  8100 
     bamboo           3360 
     dripwater  750 
     sleighbells      6500 
 
Examples 
 
 asig cabasa  p4, 0.01, 0, 0, 0 
 asig sekere  p4, 0.01, 0, 0, 0 
 asig sandpaper  p4, 0.01, 0, 0, 0 
 asig stix  p4, 0.01, 0, 0, 0 
 asig tambourine p4, 0.01 
 asig bamboo p4, 0.01 
 asig dripwater p4, 0.01 

 asig sleighbells p4, 0.01 
------------------------------------------------------------------------ 
 
Release Notes for 4.08 
====================== 
 
These are the release notes for version 4.08. Note that there are new 
files in the sources, sdif.c, sdif.h, sdif-mem.c, sdif-mem.h and 
sdif2adsyn.c 
 
This release is mainly a number of bug fixes, but there are a couple 
of new opcodes, and a major internal reorganisation to allow creation 
of a double-based Csound. 
 
Bug Fixes 
--------- 
 
Bug in score macros fixed 
 
Dithering message was overlaid with a Scansys message 
 
 
Language Changes 
---------------- 
 
hetro can generate SDIF files, and a new utility can translate SDIF to 
adsyn 
 
 
Opcode Fixes 
------------ 
 
guiro had an argument missing which was dangerous 
 
The damp parameter of guiro was documented as being the damping, 
but it was not in the code.  It is now, and should have a value less 
than 1. 
 
 
New Opcodes  
----------- 
 
mpulse -- generate a stream of impulses 
button -- buttonpush control 
checkbox -- checkbox control 
 
Other Changes: 
------------- 
 
Internal changes to make FreeBSD build easier 
 
There has been a major source change so it is now possible to build 
Csound using doubles rather than floats internally (*). This is (in 
general) slower and bigger, but more accurate. We have only tested 
on Windows and Linux so far.  Could be other on other platforms.  
Note that this changed nearly every file as the previous attempt fell 
over a Windows/Micro$oft special. 
 
(*) In fact I will distribute 32 and 64 bit builds 
 
Windows GUI Changes 
------------------- 
 
On screen controls for buttons and checks may work. 
 
------------------------------------------------------------------------ 
==John ff 
  2000 August  
================================================= 
 
SDIF support in Csound. 
 
 
For detailed information on  the Sound Description Interchange 
Format, refer to the CNMAT website:  
 
http://cnmat.CNMAT.Berkeley.EDU/SDIF 



 

 

118 

 
If the filename passed to HETRO has the extension .sdif, data will be 
written in SDIF format as 1TRC frames of additive synthesis data. 
The accompanying utility program "sdif2ads" can be used to convert 
any SDIF file containing a stream of 1TRC data to the Csound 
'adsyn' format. 'sdif2ads' allows the user to limit the number of 
partials retained, and to apply an amplitude scaling factor. This is 
often necessary, as the SDIF specification does not, to date, require 
amplitudes to be within a particular range. 'sdif2ads' reports 
information about the file to the console, including the frequency 
range. 
 
 
The main advantages of SDIF over the adsyn format, for Csound 
users, is that SDIF files are fully portable across platforms (data is 
'big-endian'), and do not have the duration limit of 32.76 seconds 
imposed by the 16bit adsyn format.This limit is necessarily imposed 
by 'sdif2ads'. It is planned to incorporate sdif reading directly into 
adsyn, thus enabling files of any length (currently memory-
permitting) to be analysed and processed. 
 
It is important to note that the SDIF formats are still under 
development, and that while the 1TRC format is now fairly well 
established, it can still change. 
 
Some other SDIF resources (including a viewer) are available via the 
NC_DREAM website: 
 
http://www.bath.ac.uk/~masjpf/NCD/dreamhome.html 
 
 
Richard Dobson 5th August 2000 
rwd@cableinet.co.uk 
------------------------------------------------------------------------ 
 
        aout mpulse kamp, kfreq[, ioffset] 
 
Generate a set of impulses of amplitude kamp at frequency kfreq.  
The first impulse is after a delay of ioffset seconds (defaulting to 
zero). The value of kfreq is read only after an impulse, so it is the 
interval to the next impulse at the time of an impulse. 
 
INITIALISATION 
 
ioffset -- defaults to zero, is the delay before the first impulse. 
If it is negative the value is taken as the negation of the number of 
samples; otherwise it is in seconds. 
 
PERFORMANCE 
 
kamp -- amplitude of the impulses generated 
 
kfreq -- frequency of the impulse train 
 
After the initial delay an impulse of kamp amplitude is generated as a 
single sample.  Immediately after generating the impulse the time of 
the next one is calculated.  If kfreq is zero there is an infinite wait to 
the next impulse.  If kfreq is negative the frequency is counted in 
samples rather than seconds. 
 
Example: 
 
Generate a set of impulses at 10 a second, after a delay of 0.05s 
instr 1 
        a1 mpulse 32000, 0.1, 0.05 
           out a1 
endin 
 
JPff: 2000 Sept 16 
------------------------------------------------------------------------ 
        kans  button inum 
        kans  checkbox inum 
 
Sense on-screen controls (cf control opcode) [Needs Windows or 
TCL/TK] 
 
INITIALISATION 

 
inum -- the number of the button or checkbox. If it does not exist it is 
made on-screen at initialisation time. 
 
PERFORMANCE 
 
If the button has been pushed since the last k-period then return 1; 
otherwise return 0 
If the checkbox is set (pushed) then return 1; if it is not pushed return 
0 
 
Example: 
increase pitch while a checkbox is set, and extend duration for each 
push of a button 
 
instr 1 
        kcps    =       cpsoct(p5) 
        k1      check   1 
        if (k1 == 1) kcps = kcps * 1.1 
        a1      oscil   p4, kcps, 1 
                out     a1 
        k2      button  1 
        if (k2 == 1) p3 = p3 + 0.1 
endin 
 
JPff: 2000 Sept 16 
------------------------------------------------------------------------ 
 
Release Notes for 4.09 
====================== 
 
Bug Fixes 
--------- 
 
Some internal strings had been changed by mistake, confusing some 
operating systems. 
 
On Windows there was a bug in sfont stuff, now fixed 
 
 
Language Changes 
---------------- 
 
It is more likely that // and /* */ comments will work in .csd files 
Peak chunks can be switched off with a -K option 
 
There is a new form in a .csd file which allows version checking.  
One can police whether the version of Csound can run a particular 
piece. 
Format is 
<CsVersion> 
Before #.#      or After #.#    or #.# 
</CsVersion> 
The last two forms are equivalent 
 
There was a simple but devastating bug in reading AIFF files  
 
Opcode Fixes 
------------ 
 
The 31-bit pseudo random number generators are now bipolar as they 
should have been. 
The sliders can now have text labels, which can be set with setctrl 
opcode, which is extended to allow case 4 (label) 
 
In sfont opcode there is a filter to stop teh printing of unprintable 
characters which was upsetting xterms on some unixes. 
 
There was a bug in expseg which I had never seen but could occur if 
a structure was reused internally. 
 
There was a fence-post problem in looping oscilators. 
 
The whole of wgpluck has been reworked.  The bug whereby teh first 
use was quiet has been fixed, and the excitation of the string moved 
to the correct place (it used to be added to outout of string not 
theinput). The loop filter has been reworked, for simpler and shorter 



 

 

119 

code, but i am still not convinced that it is correct.  It is at least no 
worse. 
 
 
New Opcodes  
----------- 
 
babo -- Ball in a Box resonator (note copyright on this) 
 
sense -- Check is a (computer) key has been pressed [Unix only at 
present] 
 
transeg -- a mixed linear and exponential envelope opcode, rather 
like in cmusic. 
 
GEN16 -- new gen to do the same as transeg 
 
 
Other Changes: 
------------- 
 
vreverb revised significantly to allow a more flexible structure 
 
The entry table has been split into two to make it more manageable, 
and in particular to allow a M68K system to be created. 
Incorporation of BeOS patches 
 
Windows GUI Changes 
------------------- 
------------------------------------------------------------------------ 
==John ff 
  2000 October 
================================================= 
 
en      ar nreverb asig, krvt, khdif [, iskip] [,inumCombs,  

ifnCombs] [,inumAlpas, ifnAlpas] 
 
INITIALIZATION 
 
inumCombs - number of filter constants in comb filter. If omitted, 
the values default to the nreverb constants. 
 
ifnCombs - function table with inumCombs comb filter time values 
directly followed the same number of comb gain values. The ftable 
should not be rescaled (use negative fgen number). 
Positive time values are in seconds. The given time is converted 
internally into number of samples, and then set to the nearest greater 
prime number. 
If time is negative, it is interpreted directly as time in sample frames, 
and no processing is done (except negation). 
 
inumAlpas, ifnAlpas - same as inumCombs/ifnCombs, for allpass 
filter. 
 
 
PERFORMANCE 
 
This is a revision of nreverb which adds the possibility of reading 
any number of comb and allpass filter constants from a ftable. 
 
EXAMPLES 
 
Orchestra: 
a1 soundin "neopren.wav" 
a2 nreverb a1, 1.5, .75, 0, 8, 71, 4, 72 
 out a1 + a2 * .4 
 
Score: 
; freeverb time constants, as direct (negative) sample, with arbitrary ; 
; gains 
f71 0 16   -2  -1116 -1188 -1277 -1356 -1422 -1491 -1557 -1617  0.8  
0.79  0.78  0.77  0.76  0.75  0.74  0.73   
f72 0 16   -2  -556 -441 -341 -225  0.7  0.72  0.74  0.76 
 
i1   0     7 
e 
------------------------------------------------------------------------ 

BABO(Csound) 
 
Babo      
 
ar,al  babo asig,ksrcx,ksrcy,ksrcz,irx,iry,irz[,idiff[,ifno]] 
 
DESCRIPTION 
Babo stands for BAll-within-the-BOx. It is a physical model 
reverberator based on the paper by Davide  Rocchesso "The  Ball  
within  the Box: a sound-processing metaphor", Computer Music 
Journal,  Vol  19,  N.4,  pp.45-47,  Winter 1995. 
 
A short description of the opcode should mention that it allows to 
define the resonator geometry along with some of its response 
characteristics, the position of the listener within the resonator, and 
the position of the source of sound. Babo then calculates early and 
later reflections by means of a tapped delay line and a circulant 
feedback delay network. 
 
INITIALIZATION 
 
irx, iry, irz – the coordinates of the geometry of the resonator (length 
of the edges in meters) 
 
idiff - is the coefficient of diffusion at the walls, which regulates the 
amount of diffusion (0-1, where 0 = no diffusion, 1 = maximum 
diffusion - default: 1) 
 
ifno - expert  values  function:  a function number that holds all the 
additional parameters of the resonator 
 
INITIALIZATION (Expert Values) 
These values are contained in a function, typically a GEN2--type 
function used in non-rescaling mode. 
       decay -       main decay of the resonator (default: 0.99) 
 
       hydecay -     high  frequency  decay  of   the   resonator 
                     (default: 0.1) 
 
       rcvx,rcvy,rcvz - 
                     the  coordinates  of  the  position  of  the 
                     receiver (=the listener) (in  meters;  0,0,0 
                     is the resonator center) 
 
       rdistance -   is  the  distance  in meters between the two 
                     pickups (i.e. your ears,  for  example...  - 
                     default: 0.3) 
 
       direct -      is  the  attenuation  of  the  direct signal 
                     (0-1, default: 0.5) 
 
       early_diff -  is the attenuation coefficient of the  early 
                     reflections (0-1, default: 0.8) 
 
PERFORMANCE 
 
ar,al - the stereo output signal 
 
asig - the input signal 
 
ksrcx,ksrcy,ksrcz -  the  virtual  coordinates  of  the source of                    
sound (i.e. the  input  signal);  these  are allowed  to  move  at k-rate 
and provide all the  necessary  variations in terms of response of the 
resonator 
 
 
EXAMPLES 
    
Orchestra File - Simple usage 
                   ; minimal babo instrument 
                   instr 1 
                   ix = p5          ; x position of source 
                   iy = p6          ; y position of source 
                   iz = p7          ; z position of source 
                   ixsize = p8          ; width  of the resonator 
                   iysize = p9          ; depth  of the resonator 
                   izsize = p10        ; height of the resonator 



 

 

120 

 
       ainput      soundin p4 
 
       al,ar       babo    ainput*0.9, ix, iy, iz, ixsize, iysize, izsize 
 
                   outs    al,ar 
 
                   endin 
 
   Score File - Simple Usage 
       ; simple babo usage: 
       ;p4     : soundin number 
       ;p5     : x position of source 
       ;p6     : y position of source 
       ;p7     : z position of source 
       ;p1     : width  of the resonator 
       ;p12    : depth  of the resonator 
       ;p13    : height of the resonator 
        
       i1  0 10 1  6  4  3     14 .39  11 .86  10 
       ;                ̂ ^^^^^    ^^^^^^^^^^^^^^^ 
       ;                                ++++++++++++: optimal room dims  
       ;    according to 
       ;   Milner and Bernard JASA 85(2), 1989 
       ;         +++++++: source position 
       e 
 
   Orchestra File - Expert usage 
                   ; full blown babo instrument with movement 
                   instr 2 
                   ixstart = p5    ; start x position of source (left-right) 
                   ixend = p8    ; end   x position of source 
                   iystart = p6    ; start y position of source (front-back) 
                   iyend = p9    ; end   y position of source 
                   izstart = p7    ; start z position of source (up-down) 
                   izend = p10  ; end   z position of source 
                   ixsize = p11  ; width  of the resonator 
                   iysize = p12  ; depth  of the resonator 
                   izsize = p13  ; height of the resonator 
                   idiff  = p14  ; diffusion coefficient 
                   iexpert = p15;power user values stored in this function 
 
       ainput      soundin p4 
       ksource_x   line    ixstart, p3, ixend 
       ksource_y   line    iystart, p3, iyend 
       ksource_z   line    izstart, p3, izend 
       al,ar babo ainput*0.9, ksource_x, ksource_y, ksource_z,                    
ixsize, iysize, izsize, idiff, iexpert 
                   outs    al,ar 
 
                   endin 
 
   Score File - Expert Usage 
       ; full blown instrument 
       ;p5         : start x position of source (left-right) 
       ;p6         : end   x position of source 
       ;p7         : start y position of source (front-back) 
       ;p8         : end   y position of source 
       ;p9         : start z position of source (up-down) 
       ;p10        : end   z position of source 
       ;p11        : width  of the resonator 
       ;p12        : depth  of the resonator 
       ;p13        : height of the resonator 
       ;p14        : diffusion coefficient 
       ;p15        : power user values stored in this function 
 
       ;         decay  hidecay rx ry rz rdistance direct early_diff 
f1  0 8 -2  0.95   0.95  0  0  0    0.3     0.5    0.8  ; brighter 
f2  0 8 -2  0.95   0.5    0  0  0    0.3     0.5     0.8  ; default (to be set as) 
f3  0 8 -2  0.95   0.01   0  0  0    0.3     0.5    0.8  ; darker 
f4  0 8 -2  0.95   0.7  0  0  0  0.3   0.1  0.4  ; to hear the effect of  

;diffusion 
f5  0 8 -2  0.9    0.5    0  0  0    0.3     2.0   0.98 ; to hear the movement 
f6  0 8 -2  0.99   0.1    0  0  0    0.3     0.5      0.8  ; default vals 
;         ----- gen. number: negative to avoid rescaling 
 
i2   10 10 1  6  4  3   6   4  3  14.39  11.86  10   1   6 ; defaults 

i2   +   4 2  6  4  3   6   4  3  14.39  11.86  10   1   1 ; hear brightness 1 
i2   +   4 2  6  4  3  -6  -4  3  14.39  11.86  10   1   2 ; hear brightness 2 
i2   +   4 2  6  4  3  -6  -4  3  14.39  11.86  10   1   3 ; hear brightness 3 
i2   +   3 2  .6 .4 .3 -.6 -.4 .3  1.439  1.186  1.0 0.0 4 ; hear diffusion 1 
i2   +   3 2  .6 .4 .3 -.6 -.4 .3  1.439  1.186  1.0 1.0 4 ; hear diffusion 2 
i2   +   4 2 12  4  3 -12  -4 -3  24.39  21.86  20   1   5 ; hear movement 
i2   +   4 1  6  4  3   6   4  3  14.39  11.86   10  1   1 ; hear brightness 1 
i2   +   4 1  6  4  3  -6  -4  3  14.39  11.86   10  1   2 ; hear brightness 2 
i2   +   4 1  6  4  3  -6  -4  3  14.39  11.86   10  1   3 ; hear brightness 3 
i2   +   3 1  .6 .4 .3 -.6 -.4 .3  1.439  1.186  1.0 0.0 4 ; hear diffusion 1 
i2   +   3 1  .6 .4 .3 -.6 -.4 .3  1.439  1.186  1.0 1.0 4 ; hear diffusion 2 
i2   +   4 1 12  4  3 -12  -4 -3 24 .39  21.86   20  1   5 ; hear movement 
;                ^^^^^^^^^^^^^^^      ^^^^^^^^^^^^  ^    ̂
;       |||||||||||||||||||||||||||||||||||     |||||||||||||||||||||||||||||||  |   --: expert values  
;     function 
;        |||||||||||||||||||||||||||||||||||     |||||||||||||||||||||||||||||||  +-- : diffusion 
;                |||||||||||||||||||||||||||||||||||           ----------------: optimal room dims  
;                 |||||||||||||||||||||||||||||||||||  according to Milner and Bernard JASA  
;     85(2), 1989 
;               ---------------------: source position start and end 
       e 
 
AUTHORS 
 
Davide Rocchesso (rocchesso@sci.univr.it) invented Babo, Padova 
1994. 
 
Paolo Filippi (paolfili@tiscalinet.it) coded the csound 
implementation, Padova 1999 
 
Nicola Bernardini (nicb@axnet.it) wrote the manual page and 
cleaned up the code, Rome 2000. 
 
------------------------------------------------------------------------ 
ksig  sense 
 
Returns the ascii code of one of the keys that has been pressed, or -1 
if no key. 
 
Note that this is not properly verified, and seems not to work at all on 
Windows. 
 
(JPff) 
 
------------------------------------------------------------------------ 
 
ar      transeg     istart, idur, itype, ivalue, [idur, itype, ivalue,]* 
kr      transeg     istart, idur, itype, ivalue, [idur, itype, ivalue,]* 
 
Constructs an envelope between istart and ivalue for a duration of 
idur seconds.  If itype is 0 then a straight line is produced; 
otherwise is creates the curve 
 
istart + (ivalue - istart) * (1 - exp( i*itype/(n-1) )) / (1 - exp(itype)) 
for n steps 
 
Thus if itype > 0  there is a slowly rising, fast decaying (convex) 
curve, while is itype < 0  the curve is fast rising, slowly decaying 
(concave). 
 
(JPff -- with assistance from a number of people) 
------------------------------------------------------------------------ 
 
GEN16  
        f # time size 16 start dur type end [dur type end ....] 
 
Creates a table from start to end of dur steps. It typoe is 0 this is a 
straight line. Otherwise it is 
 
        start + (end - start)*(1 - exp(i*type/(N-1)))/(1 - exp(type)) 
 
(JPff -- with assistance from a number of people) 
------------------------------------------------------------------------ 


