Csound

A Manual for the Audio Processing System
and
Supporting Programs
with

Tutorials

Barry Vercoe
MediaLab
M.I.T.

Copyright 1986, 1992 by the Massachusetts | ngtitute of
Technology. All rightsreserved.

Developed by Barry L. Vercoe at the Experimental Music Studio,
Media Laboratory, M.1.T., Cambridge, Massachusetts,
with partial support from the System Devel opment Foundation
and from National Science Foundation Grant # |RI-8704665.

Permission to use, copy, or modify these programsand their
documentation for educational and research purposes only and
without fee is hereby granted, provided that this copyright and

permission notice appear on al copies and supporting
documentation. For any other uses of this software, in original
or modified form, including but not limited to distribution in
whole or in part, specific prior permission from M.I.T. must be
obtained. M.|.T. makesno representations about the suitability
of thissoftwarefor any purpose. Itisprovided “asis’ without
expressor implied warranty.

CONTENTS
O.PREFACE.......coooorimmvensssssesssesssssinsseesssssssssssssssenssessis

1. ABEGINNING TUTORIAL ...coovcceerececee e
INEFOAUCHION. ...
The Orchestra File.
The SCOrE FlE.....c.ciieeeeeecceeee e
The csound ComMMaN.........ccceevrereeeeeerereseeesere e
More about the OrChestra.........ccoueveveeeeierirerisieeeeseseeeeeeens

2. SYNTAX OF THE ORCHESTRA.......ccccoovveererrenrenrenens
ORCHESTRASTATEMENT TY PES.. .
CONSTANTSAND VARIABLES........cocoveneereeneieieeenenrennenns
VALUE CONVERTERS: int, frac, abs, ftlen, i,
exp, log, sart, sin, cos, dbamp, ampdb...........cccoevvrneene
PITCH CONVERTERS: octpch, pchoct,
cpspeh, octeps, cpsoct.....
ARITHMETIC OPERATIONS.........ocontmreeeereenereesensenenenneeneenes
CONDITIONAL VALUES.....
EXPRESSIONS................
DIRECTORIES and FILES.
NOMENCLATURE.......cccoiimnrneeneeneeseseesensenenens
ASSIGNMENT STATEMENTS: =, init, tival, divz
ORCHESTRA HEADER: sr, kr, ksmps, nchnls.... .
INSTRUMENT BLOCKS: instr, endin.........cocveereeneereerennennes
PROGRAM CONTROL:
Goto, tigoto, if ... goto, timout
reinit, rigoto, MFEUMc.oveeeeererceiceeesseee s
DURATIONAL CONTROL STATEMENTS:
ihold, tUrNOFTcoviicc e
MIDI CONVERTERS: notnum, veloc, cpsmidi(b),
octmidi(b), pchmidi(b), ampmidi, ftouch, chpress,
pchbend, MIdiCH........oooeeeere e
SIGNAL GENERATORS:

Buzz, gbuzz .
adsyn, pvoc...

pluck.............
rand, randh, randi............cocccveriinnnn
SIGNAL MODIFIERS:

linen, INENF, €NVIPX.....c.cvreiecerseeeee e
port, tone, atone, reson, areson
Ipread, |preson, Ipfreson......
rms, gain, balance............ccoovveneee.
downsamp, upsamp, interp, integ, diff
delayr, delayw, delay, delayl.........cccccovrennee
deltap, deltapi...................

comb, apass, reverb.........covecccee e
OPERATIONSWITH SPECTRAL DATA TYPES:
octdown, noctdft, specsca, specaddm,

specdiff, specacem, specfilt, specdisp, specsum...............
SENSING & CONTROL:

3. STANDARD NUMERIC SCORE......ccccovvrrerriinirireenn
Preprocessing of Standard SCOres..........ovvveeenneneceecninene e
Next-P and Previous-P Symbols.

REMPING. ...

Function Table Statement..
Instrument Note Statements..
Advance Statement............
Tempo Statement....
Sections of Score.

QO bhwww

o a1

23
23
24
24
25
25
25
25
26
26
26
5. SCOT: A Score Trangdator........ccvnvninnnnnssnnsinnns 27
Orchestra Declaration...............cocenencnicinincsseeses 27
Score Encoding 27
Pitch and RNythm.........ooiicccceee e 27
Groupettes.......... 28
Slurs and Ties.... 28
MECIOS.....cviiciiii s 29
[DIAV/ES T 29
Additional FEAIUrES............cccvieinieiriirieeeees 30
6. The Unix CSOUND Command..........cccocoeveruveinninnnenennes 31
The EXtract FEatUre............ccvicinicinicnicncre s 32
Independent Preprocessing 32
Appendix 1. The Soundfile Utility Programs..........cccccovuvene. 33
intro- directories, paths, and soundfile formats
sndinfo- get basicinformation about a soundfile
hetro- hetrodynefilter analysisfor adsyn
Ipanal - Ipc analysisfor the Ip generators
pvanal - fourier analysisfor pvoc (Dan Ellis)
Appendix 2. CSCORE: A C-language Scor e Generator...... 35
Appendix 3. An Instrument Design Tutorial (R. Boulanger). 37
Appendix 4. An FOF Synthesis Tutorial (J.M. Clarke).......... 44
Appendix 5. Csound for the M acintosh (W. Gardne)........... 46
Appendix 6. Adding your own Cmodulesto Csound............ 47
Appendix 7. A CSOUND QUICK REFERENCE.................. 48

Log of changesfrom version 3.15.1Q........cccceeeevvvvvvnnnee... . 50

Editing by

LUCA PAVAN

pavan@panservice.it

0. PREFACE

Realizing music by digital computer involves synthesizing audio
signals with discrete points or samples that are representative of
continuous waveforms. There are several ways of doing this, each
affording a different manner of control. Direct synthess generates
waveforms by sampling a stored function representing a single cycle;
additive synthess loudness envelope; subtractive synthesis begins
with a complex tone and filters it. Non-linear synthess uses
frequency modulation and waveshaping to give smple sgnals
complex characterigtics, while sampling and storage of natural sound
allowsit to be used at will.

Since comprehensive moment-by-moment specification of sound can
be tedious, control is gained in two ways. 1) from the insruments in
an orchestra, and 2) from the events within a score. An orchestra is
really a computer program that can produce sound, while a score is a
body of data which that program can react to. Whether a risetime
characterigtic is a fixed congtant in an instrument, or a variable of
each note in the score, depends on how the user wantsto control it.

The instruments in a Csound orchestra are defined in a Smple syntax
that invokes complex audio processing routines. A score passed to
this orchestra contains numerically coded pitch and control
information, in standard numeric score format. Although many
users are content with this format, higher level score processing
languages are often convenient.

The programs making up the Csound system have a long history of
development, beginning with the Music 4 program written at Bell
Telephone Laboratories in the early 1960's by Max Mathews. That
initiated the stored table concept and much of the terminology that
has since enabled computer music researchers to communicate.
Vauable additions were made at Princeton by the late Godfrey
Winham in Music 4B; my own Music 360 (1968) was very indebted
to his work. With Music 11 (1973) | took a different tack: the two
diginct networks of control and audio signal processing stemmed
from my intensve involvement in the preceding years in hardware
synthesizer concepts and design. Thisdivision has been retained

in Csound.

Because it is written entirely in C, Csound is eadly ingtalled on any
machine running Unix or C. At MIT it runs on VAX/DECdtations
under Ultrix 4.2, on SUNs under OS 4.1, SGIs under 4.1, and on the
Macintosh under ThinkC 4.0. With this single language for audio
signal processing, users move easily from machine to machine.

The 1991 version included many new features. | am indebted to
others for the contribution of the phase vocoder and FOF synthesis
modules. That release also charted a new direction with the addition
of a gectral data type, holding much promise for future
devdopment. The 1992 release is even more dgnificant for its
addition of MIDI converter and control units, enabling Csound to be
run from MIDI score-files and from external MIDI keyboards. Since
the newest RISC processors bring to computer music an order of
magnitude more speed than did those on which it was born,
researchers and composers now have access to workstations on
which realtime software synthesis with sensing and control is now a
relity. This is perhaps the single most important development for
people working in the field. This new Csound is designed to take
maximum advantage of realtime audio processing, and to encourage
interactive experiments in this exciting new domain.

B.V.

1. ABEGINNING TUTORIAL

Introduction

The purpose of this section is to expose the reader to the
fundamentals of designing and using computer music instruments in
Csound. Only a small portion of the language will be covered here,
sufficient to implement some simple instrument examples.

The sections in this primary text are arranged as a Reference manual
(not a tutorial), since that is the form the user will eventualy find
most helpful when inventing instruments. Once the basic concepts
are grasped from this beginning tutorial, the reader might let himsdlf
into the remainder of the text by locating the information presented
here in the Reference entries that follow. More comprehensve
tutorials are supplied as Appendices.

The OrchestraFile

Csound runs from two basic files: an orchedtra file and a score file.
The orchestra file is a set of instruments that tell the computer how to
synthesize sound; the score file tells the computer when. An
insrument is a collection of modular statements which either
generate or modify a sgnal; dgnals are represented by symboals,
which can be “patched” from one module to another. For example,
the following two statements will generate a 440 Hz sine tone and
send it to an output channel:

adgoscil 10000, 440, 1
out asig

The firgt line sets up an oscillator whose contralling inputs are an
amplitude of 10000, a frequency of 440 Hz, and a waveform number,
and whose output is the audio signal asig. The second line takes the
signal asig and sends it to an (implicit) output channel. The two may
be encased in another pair of statements that identify the instrument
asawhole:

instr 1

asig oscil 10000, 440, 1
out asig

endin

In general, an orchestra statement in Csound consists of an action
symbol followed by a set of input variables and preceded by a result
symbol. Its action is to process the inputs and depost the result
where told. The meaning of the input variables depends on the
action requested. The 10000 above is interpreted as an amplitude
value because it occupies the first input dot of an oscil unit; 440
signifies a frequency in Hertz because that is how an oscil unit
interprets its second input argument; the waveform number is taken
to point indirectly to a stored function table, and before we invoke
this instrument in a score we must fill function table #1 with some
waveform.

The output of Csound computation is not a real audio signal, but a
stream of numbers which describe such a signal. When written onto
a sound file these can later be converted to sound by an independent
program; for now, we will think of variables such as asig as tangible
audio sgnals.

Let us now add some extra features to this instrument. First, we will
alow the pitch of the tone to be defined as a parameter in the score.
Score parameters can be represented by orchestra variables which
take on their different values on successive notes. These variables
are named sequentialy: p1, p2, p3, ...

The firgt three have a fixed meaning (see the Score File), while the
remainder are assignable by the user. Those of significance here are:

p3-duration of the current note (alwaysin seconds).
p5-pitch of the current note (in units agreed upon by score and
orchestra).

Thusin
adgoscil 10000, p5, 1

the oscillator will take its pitch (presumably in cps) from score
parameter 5.

If the score had forwarded pitch values in units other than cycles-per-
second (Hertz), then these must first be converted.

One convenient score encoding, for instance, combines pitch class
representation (00 for C, 01 for C#, 02 for D, ... 11 for B) with octave

representation (8. for middle C, 9. for the C above, etc.) to give pitch
valuessuch as 8.00, 9.03, 7.11. The expression

cpspch(8.09)

will convert the pitch A (above middle C) to its cps equivalent (440
Hz). Likewise, the expression

cpspeh(pS)

will first read a value from p5, then convert it from octave.pitch-class
units to cps. This expression could be imbedded in our orchestra
satement as

asgoscil 10000, cpspch(ps), 1
to give the score-controlled frequency we sought.

Next, suppose we want to shape the amplitude of our tone with a
linear rise from 0 to 10000. This can be done with a new orchestra
statement

amp line0, p3, 10000

Here, amp will take on values that move from 0 to 10000 over time
p3 (the duration of the note in seconds). The instrument will then
become

instr 1
amp line O, p3, 10000
asig oscil amp, cpspeh(ps), 1
out asig
endin

The dgna amp is not something we would expect to lisen to
directly. It is really a variable whose purpose is to control the
amplitude of the audio oscillator. Although audio output requires
fine resolution in time for good fidelity, a controlling signal often
does not need that much resolution. We could use another kind of
signal for thisamplitude control

kamp line 0, p3, 10000

in which the result is a new kind of signal. Signal names up to this
point have always begun with the letter a (signifying an audio
signal); this one begins with k (for control). Control signals are
identical to audio signals, differing only in their resolution in time. A
control signal changes its value less often than an audio signal, and is
thusfaster to generate.

Using one of these, our instrument would then become

instr 1

kamp line 0, p3, 10000

asig oscil kamp, cpspeh(ps), 1
out asig

endin

This would likely be indigtinguishable in sound from the first
verson, but would run a little faster. In general, instruments take
congtants and parameter values, and use calculations and signal
processng to move first towards the generation of control signals,
then finally audio sgnals. Remembering this flow will help you
write efficient instruments with faster execution times.

We are now ready to create our first orchedtra file. Type in the
following orchestra using the system editor, and name it “intro.orc”.

sr=20000 ;audiosampling rateis 20 kHz

kr =500 ; control rateis 500 Hz

ksmps=40 ; number of samplesinacontrol period (sr/kr)
nchnls=1 ; number of channels of audio output

instr 1

ketrl line 0, p3, 10000 ; amplitude envelope
adg oscl ketrl, cpspeh(p5), 1 ; audio oscillator
out asig ; end signal to channel 1
endin

It is seen that comments may follow a semi-colon, and extend to the
end of a line. There can also be blank lines, or lines with just a
comment. Once you have saved your orchestra file on disk, we can
next consider the scorefile that will driveit.

The Score File

The purpose of the score is to tell the instruments when to play and
with what parameter values. The score has a different syntax from
that of the orchestra, but smilarly permits one statement per line and
comments after a semicolon. The first character of a score statement
is an opcode, determining an action request; the remaining data
condsts of numeric parameter fields (pfields) to be used by that
action.

Suppose we want a sinetone generator to play a pentatonic scale
gdarting at C-sharp above middle-C, with notes of 1/2 second
duration. We would create the following score:

; asinewave function table

f10256101

; apentatonic scale
il 0 .5 0.801
i1 .5 . . 803
i11.0 . . 806
i115 . . 808
i120 . . 810
e

The first statement creates a stored sne table. The protocol for
generating wave tables is smple but powerful. Lines with opcode f
interpret their parameter fields asfollows:

pl - function table number being created

p2 - creation time, or time at which the table becomes readable

p3 - table size (number of points), which must be a power of
two or one greater

p4 - generating subroutine, chosen from a prescribed list.

Here the value 10 in p4 indicates a request for subroutine GEN10 to
fill the table. GEN10 mixes harmonic snusoids in phase, with
relative strengths of consecutive partials given by the succeeding
parameter fields. Our score requests just a single snusoid. An
alternative statement:

f1025610103

would produce one cycle of a waveform with a third harmonic three
timesasstrong asthefirst.

The i statements, or note statements, will invoke the pl instrument at
time p2, then turn it off after p3 seconds; it will passal of its p-fields
to that instrument. Individual score parameters are separated by any
number of spaces or tabs, neat formatting of parameters in columns
is nice but unnecessary. The dots in p-fields 3 and 4 of the last four
notes invoke a carry feature, in which values are smply copied from
the immediately preceding note of the same instrument. A score
normally endswith an e statement.

The unit of time in a Csound score is the beat. In the absence of a
Tempo statement, one beat takes one second. To double the speed of
the pentatonic scale in the above score, we could either modify p2
and p3for al the notesin the score, or smply insert the line

t012
to gpecify atempo of 120 beats per minute from beat 0.

Two more points should be noted. Firgt, neither the f-statements nor
the i-statements need be typed in time order; Csound will sort the
score automatically before use. Second, it is permissible to play
more than one note at a time with a single instrument. To play the
same notes as a three-second pentatonic chord we would create the
following:

; asine wave function
f10256101

; fivenotes at once

il 0 3 0 801
i1 0 8.03
i1 0 8.06
i1 0 8.08
i1 0 8.10
e

Now go into the editor once more and create your own scorefile.
Name it “intro.sco”. Tne next section will describe how to invoke a
Csound orchestra to perform a Csound score.

The CSOUND Command

To request your orchestra to perform your score, type the command
csound intro.orc intro.sco

The resulting performance will take place in three phases:

1) sort the score file into chronological order. |If score syntax errors
are encountered they will be reported on your console.

2) trandate and load your orchestra. The console will signal the start
of trandating each ingtr block, and will report any errors. If the error
messages are not immediately meaningful, trandate again with the
verbose flag turned on:

csound -v intro.orc intro.sco

3) fill the wave tables and perform the score. Information about this
performance will be displayed throughout in messages resembling

B 4.000..6.000 T3.000 TT 3.000 M 7929. 7929.

A message of this form will appear for every event in your score. An
event is defined as any change of state (as when a new note begins or
an old one ends). The first two numbers refer to beats in your
original score, and they ddimit the current segment of sound
synthesis between successve events (eg. from beat 4 to beat 6).
The second beat value is next restated in real seconds of time, and
reflects the tempo of the score. That is followed by the Total Time
elapsed for all sections of the score so far.

The last values on the line show the maximum amplitude of the audio
signal, measured over just this segment of time, and reported
separately for each channdl.

Console messages are printed to asis you in following the
orchestra’s handling of your score. You should aim at becoming an
intelligent reader of your console reports. When you begin working
with longer scores and your instruments no longer cause surprises,
the above detail may be excessve. You can elect to receive
abbreviated messages using the -m option of the Csound command.

When your performance goes to completion, it will have created a
sound file named test in your soundfile directory. You can now
listen to your sound file by typing

play test

If your machine is fast enough, and your Csound module includes
user access to the audio output device, you can hear your sound as it
isbeing synthesized by using acommand like

csound -0 devaudio intro.orc intro.sco
More about the Orchestra

Suppose we next wished to introduce a small vibrato, whose rate is
1/50 the frequency of the note (i.e. A440 isto have a vibrato rate of
8.8 Hz)). To do this we will generate a control signal using a second
ocillator, then add this signal to the basic frequency derived from
p5. Thismight result in the instrument

instr 1
kamp line 0, p3, 10000
kvib oscil 2.75, cpspch(p5)/50, 1
al oscil kamp, cpspeh(p5)+kvib, 1
out al
endin

Here there are two control signals, one controlling the amplitude and
the other modifying the basic pitch of the audio oscillator.

For small vibratos, this instrument is quite practical; however it does
contain a misconception worth noting. This scheme has added a sine
wave deviation to the cps value of an audio oscillator. The value
2.75 determines the width of vibrato in cps, and will cause an A440
to be modified about onetenth of one semitone in each direction
(1/160 of the frequency in cps). In redlity, a cps deviation produces a
different musical interval above than it does below. To see this,
consder an exaggerated deviation of 220 cps, which would extend a
perfect 5th above A440 but a whole octave below. To be more
correct, we should first convert p5 into a true decimal octave (not
cps), so that an interval deviation above is equivalent to that below.
In general, pitch modification is best done in true octave units rather
than pitch-class or cps units, and there exists a group of pitch
converters to make this task easer. The modified instrument would
be

instr 1
joct = octpch(p5)
kamp line 0, p3, 10000
kvib oscil 1/120, cpspch(p5)/50, 1
adg oscil kamp, cpsoct(ioct+kvib), 1
out asig
endin

This instrument is seen to use a third type of orchestra variable, an i-
variable. The variable ioct receives its value at an initialization pass
through the instrument, and does not change during the lifespan of
this note. There may be many such init time calculations in an
insrument. As each note in a score is encountered, the event space is
dlocated and the instrument is initidlized by a specid pre-
performance pass. i-variables receive ther values at this time, and
any other expressons involving just congants and i-variables are
evaluated. At this time also, modules such as line will set up their
target values (such as beginning and end points of the ling), and units
such as oscil will do phase setup and other bookkeeping in
preparation for performance. A full description of init-time and
performance-time activities, however, must be deferred to a genera
congderation of the orchestrasyntax.

2. SYNTAX OF THE ORCHESTRA

An orchestrastatement in Csound has the format:
labdl: result opcode argumentl, argument2, ...; comments

The labd is optional and identifies the basic statement that follows as
the potential target of a go-to operation (see Program Control
Statements). A label hasno effect on the statement per se.

Comments are optional and are for the purpose of letting the user
document his orchestra code. Comments aways begin with a
semicolon (;) and extend to the end of theline.

The remainder (result, opcode, and arguments) form the basic
satement. This also is optional, i.e. aline may have only alabel or
comment or be entirely blank. If present, the basic statement must be
complete on one line. The opcode determines the operation to be
performed; it usually takes some number of input values
(arguments); and it usually has a result field variable to which it
sends output values at somefixed rate.

Thereare four possiblerates:

1) once only, a orchestra setup time (effectively a permanent
assgnment);

2) once at the beginning of each note (at initiaization (init) time:
|-rate);

3) once every performancetime control loop (perf time control
rate, or K-rate);

4) once each sound sample of every control loop (perf time audio
rate, or A-rate).

ORCHESTRA STATEMENT TYPES

An orchestra program in Csound is comprised of orchestra header
satements which set various global parameters, followed by a
number of instrument blocks representing different instrument types.
An ingtrument block, in turn, is comprised of ordinary statements that
set values, control the logical flow, or invoke the various signal
processing subroutinesthat lead to audio output.

An orchestra header statement operates once only, at orchestra setup
time. It is most commonly an assgnment of some value to a global
reserved symbol, eg. s = 20000. All orchestra header statements
belong to a pseudo ingtrument 0, an init pass of which is run prior to
al other instruments at score time 0. Any ordinary statement can
serve as an orchestra header statement, eg. gifreq = cpspch(8.09),
provided it is an init-time only operation.

An ordinary statement runs at either init time or performance time or
both. Operations which produce a result formally run at the rate of
that result (that is, at init time for I-rate results;, at performance time
for K- and A-rate results), with the sole exception of the init opcode
(q.v.). Mogt generators and modifiers, however, produce signals that
depend not only on the ingtantaneous value of their arguments but
also on some preserved internal state. These performance-time units
therefore have an implicit init-time component to set up that ate.
The run time of an operation which produces no result is apparent in
the

opcode.

Arguments are values that are sent to an operation. Most arguments
will accept arithmetic expressons composed of congtants, variables,
reserved globals, value converters, arithmetic operations and
conditional values; these are described below.

CONSTANTSAND VARIABLES

congtants are floating point numbers, such as 1, 3.14159, or -73.45.
They are available continuously and do not change in value.

variables are named cdls containing numbers. They are available
continuoudy and may be updated at one of the four update rates
(setup only, I-rate, K-rate, or A-rate). |- and K-rate variables are
scalars (i.e. they take on only one value at any given time) and are
primarily used to store and recall controlling data, that is, data that
changes at the note rate (for I-variables) or at the control rate (for K-
variables). |- and K-variables are therefore useful for storing note
parameter values, pitches, durations, dow-moving frequencies,
vibratos, etc. A-variables, on the other hand, are arrays or vectors of
information. Though renewed on the same perf-time control pass as
K-variables, these array cdls represent a finer resolution of time by
dividing the

control period into sample periods (see ksmps below).

A-variables are used to store and recall data changing at the audio
sampling rate (e.g. output signalsof oscillators, filters, etc.).

A further digtinction isthat between local and global variables.

local variables are private to a particular instrument, and cannot be
read from or written into by any other instrument. Their values are
preserved, and they may carry information from pass to pass (eg.
from initidlization time to performance time) within a sngle
insrument. Local variable names begin with the letter p, i, k, or a
The same local variable name may appear in two or more different
instrument blockswithout conflict.

global variables are cells that are accessible by all instruments. The
names are ether like local names preceded by the letter g, or are
specia reserved symbols. Global variables are used for broadcasting
general values, for communicating between instruments
(semaphores), or for sending sound from one instrument to another
(e.g. mixing prior to reverberation).

Given these digtinctions, there are eight forms of local and global
variables:

type whenrenewable Local Global
reserved symbols permanent - rsymbol
score parameter fields I-time pnumber -
init variables I-time iname giname

control signals
audio sgnals

P-time, K-rate kname gkname
P-time, A-rate aname ganame

where rsymbol is a special reserved symbol (eg. &, kr), number isa
positive integer referring to a score statement pfield, and name is a
string of letters and/or digits with local or global meaning. As might
be inferred, score parameters are local |-variables whose values are
copied from the invoking score statement just prior to the Init pass
through an instrument.

VALUE CONVERTERS

ftlen(x) (init rate argsonly)

int(x) (init- or control-rate args only)
frac(x) (init- or control-rate args only)
dbamp(x) (init- or control-rate argsonly)
i(x) (control-rate argsonly)

abs(x) (no rate regtriction)

exp(x) (no rate redtriction)

log(x) (no rateredtriction)

rt(x) (norate redtriction)

sin(x) (no rate regtriction)

cos(x) (no rate redtriction)

ampdb(x) (noraterestriction)

where the argument within the parentheses may be an expression.

Value converters perform arithmetic trandation from units of one
kind to units of another. The result can then be a term in a further
expression.

ftlen(x) returnsthe size (no. of points) of stored function table no. x.
int(x) returnstheinteger part of x.

frac(x) returnsthe fractional part of x.

dbamp(x) returnsthe decibel equivalent of the raw amplitude x.

i(x) returns an Init-type equivalent of the argument, thus
permitting a K-time value to be accessed in at init-time or

reinit-time, whenever valid.
abs(x) returnsthe absolute value of x.
exp(x) returnse raised to the xth power.
log(x) returnsthe natural log of x (x positive only).

rt(x) returnsthe squareroot of X (X non-negative).
sin(x) returnsthe sine of x (x in radians).
cos(x) returnsthe cosine of x (X in radians).

ampdb(x) returnsthe amplitude equivaent of the decibel vaue x.
Thus 60 db gives 1000, 66 db gives 2000, 72 db gives 4000, 78 db
gives 8000, 84 db gives 16000 and 90 db gives 32000.

Note that for log, sort, and ftlen the argument value is restricted.
Note also that ftlen will always return a power-of-2 value, i.e. the
function table guard point (see F statement) is not included.

PITCH CONVERTERS

octpch(pch) (init or control rate argsonly)
pchoct(oct) (init- or control-rate args only)
cpspch(pch) (init- or control-rate argsonly)
octcps(cps) (init- or control-rate args only)
cpsoct(oct) (no rate redtriction)

where the argument within the parentheses may be a further
expression.

These are redlly value converters with a special function of
manipulating pitch data.

Data concerning pitch and frequency can exist in any of the
following forms:

name abbreviation
octave point pitch-class (8ve.pc) pch
octave point decimal oct
cycles per second cps

The firgt two forms consist of a whole number, representing octave
registration, followed by a specialy interpreted fractional part. For
pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct, the
fraction is interpreted as a true decimal fractional part of an octave.
The two fractional forms are thus related by the factor 100/12. In
both forms, the fraction is preceded by a whole number octave index
such that 8.00 represents Middle C,9.00 the C above, etc. Thus A440
can be represented alternatively by 440 (cps),8.09 (pch), 8.75 (oct),
or 7.21 (pch), etc. Microtonal divisons of the pch semitone can be
encoded by using more than two decimal places.

The mnemonics of the pitch converson units are derived from
morphemes of the forms involved, the second morpheme describing
the source and the first morpheme the object (result). Thus

cpspch(8.09)

will convert the pitch argument 8.09 to its cps (or Hertz) equivalent,
giving the value of 440. Since the argument is constant over the
duration of the note, this conversion will take place at I-time, before
any samples for the current note are produced. By contrast, the
conversion

cpsoct(8.75 + K1)

which gives the value of A440 transposed by the octave interval K1
will repeat the calculation every, K-period snce that is the rate at
which K1 varies.

N.B. The conversion from pch or oct into cpsis not a linear operation
but involves an exponential process that could be time-consuming
when executed repeatedly. Csound now uses a built-in table lookup
to do thisefficiently, even at audio rates.

ARITHMETIC OPERATIONS:

-a

+a

a&& b (logical AND; not audo-rate)
alb (logical OR; not audigate)
a+b

a- b

a*b

al b

where the argumentsa and b may be further expressions.

Arithmetic operators perform operations of change-sign (negate),
don’'t-change-sign, logical AND logical OR, add, subtract, multiply
and divide. Note that a value or an expresson may fall between two
of these operators, either of which could take it as its left or right
argument, asin

at+b*c.
In such casesthreerules apply:
1) * and/ bind to their neighbors more strongly than + and -.
Thus the above expression istaken as
a+(b*c),
with* taking b and ¢ and then + takingaand b * c.
2) + and - bind more strongly than &&, which in turn is stronger than

IF
a&& b-c|distakenas(a&& (b-c)) || d

3) When both operators bind equally strongly,
the operations are done left to right:
ab-cistakenas(a-b)-c.

Parentheses may be used as above to force particular groupings.

CONDITIONAL VALUES:

(@a>b ?vi:v2)
(a<b ?vi:v2)
(a>=b ?vl:v2
(a<=b ?vli:v2
(a==b ?vl:v2
(al=b ?vl:v2)

wherea, b, v1 and v2 may be expressions, but a, b not audio-rate.

In the above conditionals, a and b are first compared. If the indicated
relation istrue (a greater than b, a lessthan b, a greater than or equal
to b, aless than or equal to b, a equal to b, a not equal to b), then the
conditional expresson has the value of v1; if the relation is false, the
expression has the value of v2. (For convenience, a sole =" will
function as "= =) NB.: If v1 or v2 are expressons, these will be
evaluated before the conditiond is determined.

In terms of binding strength, all conditional operators (i. e, the
relational operators (>,<, etc.), and ?, and :) are weaker than the
arithmetic and logical operators(+, -, *, /, && and [)).

Example:
(k1< p5/2+p6?2kl: p7)

binds the terms p5/2 and p6. It will return the value k1 below this
threshold, elsethevalue p7.

EXPRESSIONS:

Expressons may be composed to any depth from the components
shown above. Each part of an expresson is evaluated at its own
proper rate. For ingtance, if the terms within a sub-expresson all
change at the control rate or dower, the sub-expresson will be
evaluated only at the control rate; that result might then be used in an
audio-rate evaluation. For example, in

k1 + abs(int(p5) + frac(p5) * 100/12 + sgrt(k1))

the 100/12 would be evaluated at orch init, the p5 expressons
evaluated at note I-time, and the remainder of the expresson
evaluated every k-period. The whole might occur in a unit generator
argument position, or be part of an assgnment statement .

DIRECTORIESand FILES:

Many generators and the csound command itself specify filenames to
be read from or written to. These are optionally full pathnames,
whose target directory is fully specified. When not fullpath,
filenames are sought in several directories in order, depending on
their type and on the setting of certain environment variables. The
latter are optional, but they can serve to partition and organize the
directories so that source files can be shared rather than duplicated in
several user directories.

The environment variables can define directories for soundfiles
(SFDIR), sound samples (SSDIR), and sound analysis (SADIR). The
search order is:

Soundfiles being written are placed in SFDIR (if it exists), else the
current directory.

Soundfiles for reading are sought in the current directory, then
SSDIR, then SFDIR.

Analysis control files for reading are sought in the current directory,
then SADIR.

NOMENCLATURE:

In Csound there are nine statement types, each of which provides a
heading for the descriptive sectionsthat follow in this chapter:

assignment statements signal generator statements
orchestra header statements ~ signal modifier statements
instrument block statements ignal diglay statements
program control statements soundfile access statements
duration control statements

Throughout this document, opcodes are indicated in boldface and
their argument and result mnemonics, when mentioned in the text,
are given in italics. Argument names are generally mnemonic (amp,
phs), and the result is denoted the letter r. Both are preceded by a
typequalifier i, k, aor x (e.g. kamp, iphs, ar).

The prefix i denotes scalar values valid at note Init time; prefixes k or
a denote control (scalar) and audio (vector) values, modified and
referenced continuoudy throughout performance (i.e. a every
control period while the instrument is active). Arguments are used at
the prefix-listed times; results are created at their listed times, then
remain available for use as inputs esewhere. The validity of inputs
is defined by the following:

arguments with prefix i must be valid at Init time;

arguments with prefix k can be either control or Init values (which
remain valid);

arguments with prefix amust be vector inputs,

arguments with prefix x may be either vector or scalar (the
compiler will ditinguish).

All arguments, unless otherwise stated, can be expressons whose
results conform to the above. Most opcodes (such as linen and oscil)
can be used in more than one mode, which one being determined by
the prefix of the result symbol.

ASSIGNMENT STATEMENTS

ir iarg
kr karg
a = xarg
kr initiarg
ar initiarg

ir tival

ir divzia ib, isubst (thesenot yet implemented)
kr divz ka, kb, ksubst
a divz xa, xb, ksubst

= (dmple assgnment) - Put the value of the expression iarg (karg,
xarg) into the named result. This provides a means of saving an
evaluated result for later use.

init - Put the value of the I-time expression iarg into a K- or A-
variable, i.e, initialize the result. Note that init provides the only
cae of an Inittime statement being permitted to write into a
Perftime (K- or A-rate) result cell; the statement has no effect at Perf-
time.

tival - Put the value of the instrument’s internal “tie-in” flag into the
named |-variable. Assigns 1 if this note has been ‘tied onto a
previoudy held note (see | Statement); assigns O if no tie actually
took place. (Seealsotigoto.)
divz - Whenever b is not zero, set the result to the value a/ b; when
biszero, set it to the value of subst instead.
Example:

keps = i2/3 + cpsoct(k2 + octpch(ps))
ORCHESTRA HEADER STATEMENTS

sr=nl
kr =n2

ksmps=n3

nchnls = n4
These datements are global value assignments, made at the
beginning of an orchestra, before any instrument block is defined.
Their function is to set certain reserved symbol variables that are
required for performance. Once set, these reserved symbols can be
used in expressions anywhere in the orchestra.

sr = (optional) - set sampling rate to nl samples per second per
channel. Thedefault valueis10000.

kr = (optional) - set control rate to N2 samples per second. The
default valueis 1000.

ksmps = (optional) - st the number of samples in a Control Period
ton3. Thisvaluemust equal sr/kr. Thedefault valueis 10.

nchnls = (optional) - set number of channels of audio output to n4.
(1 = mono, 2 = dereo, 4 = quadraphonic.) The default value is 1
(mono).

In addition, any global variable can be initialized by an init-time
assgnment anywhere before the first instr statement.

All of the above assgnments are run as instrument O (i - pass only) at
the gtart of real performance.
Example of header assgnments:
sr = 10000
kr =500
ksmps =20
gl = g2
ga init0
gitranspose = octpch(.0l)
INSTRUMENT BLOCK STATEMENTS
instr [
p bocy
of
instrument >
endin
These statements delimit an instrument block. They must aways
oceur in pairs.
ingtr - begin an instrument block defining instrumentsi, j, ...
i, j, .. must be numbers, not expressons. Any postive integer is

legal, and in any order, but excessvely high numbers are best
avoided.

endin - end the current instrument block.

Note:
There may be any number of instrument blocksin an orchestra.

Instruments can be defined in any order (but they will always be both
initialized and performed in ascending instrument number order).

Ingtrument blocks cannot be nested (i.e. one block cannot contain
another).

PROGRAM CONTROL STATEMENTS

igoto label

tigoto label

kgoto label

goto label

if iaRibigoto label
if kaR kb kgoto label
if iaR ib goto label

timout istrt, idur, label

where label is in the same instrument block and is not an expression,
and where R is one of the Relational operators (>, <, >=, <=, ==, |=)
(and = for convenience, see also under Conditional values).

These statements are used to control the order in which statements in
an instrument block are to be executed. |-time and P-time passes can
be controlled separately asfollows:

igoto - During the I-time pass only, unconditionally transfer control
to the statement labeled by label.

tigoto - amilar to igoto, but effective only during an I-time pass at
which a new note is being ‘tied’ onto a previoudy held note (see |
Statement); no-op when a tie has not taken place.

Allows an instrument to skip initialization of units according to
whether a proposed tiewasin fact successful (see alsotival, delay).

kgoto - During the P-time passes only, unconditionally transfer
control to the statement labeled by label.

goto - (combination of igoto and kgoto) Transfer control to label on
every pass.

if...igoto - conditional branch at I-time, depending on the truth value
of the logical expression “ia R ib”. The branch is taken only if the
result istrue.

if...kgoto - conditional branch during P-time, depending on the truth
value of the logical expresson “ka R kb”. The branch is taken only
if theresult istrue.

if...goto - combination of the above. Condition tested on every
pass.

timout - conditional branch during P-time, depending on elapsed
note time. istrt and idur specify time in seconds. The branch to label
will become effective at time istrt, and will remain so for just idur
seconds. Note that timout can be reinitialized for multiple activation
within a single note (see example next page).

Example:

if k3 > p5 + 10 kgoto next

reinit label
rigoto label
rireturn

These statements permit an insrument to reinitialize itsdf during
performance.

reinit - whenever this statement is encountered during a P-time pass,
performance is temporarily suspended while a specia Initialization
pass, beginning at label and continuing to rireturn or endin, is
executed. Performance will then be resumed from where it | ft off.

rigoto - smilar to igoto, but effective only during a reinit pass (i.e,
No-op at standard I-time). This statement is useful for bypassing
unitsthat are not to bereinitidized.

rireturn - terminates a reinit pass (i.e, No-op at standard I-time).
This statement, or an endin, will cause norma performance to be
resumed.

Example:

The following statements will generate an exponential control signal
whose value moves from 440 to 880 exactly ten times over the
duration p3.

reset: timout O, p3/10, contin ;after p3/10 seconds,

reinit reset ; reinit both timout
contin: expon 440, p3/10,880 ; and expon
riretum ; then resme perf

DURATION CONTROL STATEMENTS

ihold
tur noff

These statements permit the current note to modify itsown duration.

ihold - this |-time statement causes a finite-duration note to become a
held’ note. It thus has the same effect as a negative p3 (see Score |-
Statement), except that p3 here remains posdtive and the instrument
reclassifies itsdlf to being held indefinitely. The note can be turned
off explicitly with turnoff, or its space taken over by another note of
the same instrument number (i.e. it is tied into that note). Effective at
I-time only; no-op during areinit pass.

turnoff - this P-time statement enables an instrument to turn itself
off. Whether of finite duration or ‘held’, the note currently being
performed by this instrument is immediately removed from the active
notelist. No other notes are affected.

Example:

The following statements will cause a note to terminate when a
control sgnal passes a certtain threshold (here the Nyquist
frequency).
k1 expon 440, p3/10,880 ; begin glissand continue
if k1< sr/2kgoto contin ; until Nyquist detected

turnoff ; then quit

contin: al oscil al, ki, 1

MIDI CONVERTERS

ival notnum

ival veloc
icps cpsmidi
icps cpsmidib
kcps cpsmidib
ioct octmidi

ioct octmidib
koct octmidib

ipch pchmidi
ipch pchmidib
kpch pchmidib

iamp ampmidi iscal, ifn]
kaft aftouch iscal
kchpr chpress iscal
kbend pchbend iscal

ival midictrl inum
kval midictrl inum

Get a value from the MIDI event that activated this instrument, or
from a continuous MIDI controller, and convert it to a locally useful
format.

INITIALIZATION

iscal - I-time scaling factor.

ifn (optional) - function table number of a normalized trandation
table, by which the incoming value is first interpreted. The default

valueisO0, denoting no trandation.

inum - MIDI controller number.

PERFORMANCE

notnum, veloc - get the MIDI byte value (0 - 127) denoting the note
number or velocity of the current event.

cpsmidi, octmidi, pchmidi - get the note number of the current
MIDI event, expressed in cps, oct, or pch unitsfor local processing.

cpsmidib, octmidib, pchmidib - get the note number of the current
MIDI event, modify it by the current pitch-bend value, and express
the result in cps, oct, or pch units. Available as an |-time value or as
acontinuousksg value.

ampmidi - get the velocity of the current MIDI event, optionaly
pass it through a normalized trandation table, and return an
amplitude valuein therangeO - iscal.

aftouch, chpress, pchbend - get the current after-touch, channel
pressure, or pitch-bend value for this channel, rescaled to the range O
- iscal. Note that this access to pitch-bend data is independent of the
MIDI pitch, enabling the value here to be used for any arbitrary

purpose.

midictrl - get the current value (0 - 127) of a specified MIDI
controller.

SIGNAL GENERATORS

kr line ia, idurl, ib
ar line ia, idurl, ib
kr expon ia, idurl, ib
ar expon ia, idurl, ib
kr linseg ia, idurl, ib[, idur2, ic[...]]
ar linseg ia, idurl, ib[, idur2, icl...]]
kr expseg ia idurl,ib[, idur2, ic[...]]
ar expseg ia idurl,ib[,idur2, ic[...]]

Output values kr or ar trace a draight line (exponential curve) or a
series of line segments (exponential segments) between specified
points.

INITIALIZATION
ia- gtarting value. Zeroisillegal for exponentials.

ib, ic, etc. - value after durl seconds, etc. For exponentials, must be
non-zero and must agreein sign withia.

idurl - duration in seconds of first segment. A zero or negative value
will cause all initialization to be skipped.

idur2, idur3, etc. - duration in seconds of subsequent segments.

A zero or negative value will terminate the initialization process with
the preceding point, permitting the last-defined line or curve to be
continued indefinitely in performance. The default is zero.

PERFORMANCE

These units generate control or audio sgnals whose values can pass
through 2 or more specified points. The sum of dur values may or
may not equal the ingsrument’'s performance time a shorter
performance will truncate the specified pattern, while a longer
onewill cause the last-defined segment to continue on in the same
direction.

Example:
k2 expseg 440, p3/2,880, p3/2,440
This statement creates a control signal which moves exponentially

from 440 to 880 and back, over the duration p3.

kr phasor
ar phasor

kepd[, iphs]
xcpg[, iphs]

10

Produce a normalized moving phase value.
INITIALIZATION

iphs (optional) - initial phase, expressed as a fraction of a cycle (0 to
1). A negative value will cause phase initialization to he skipped.
The default valueis zero.

PERFORMANCE

An internal phase is successively accumulated in accordance with the
cps frequency to produce a moving phase value, normalized to lie in
therange 0. <= phs< 1.

When used as the index to a table unit, this phase (multiplied by the
desred function table length) will cause it to behave like an
oxcillator.

Note that phasor is a special kind of integrator, accumulating phase
incrementsthat represent frequency settings.

Example:
phasor 1 ; cycle once per second
kpch table k1* 12,1 ; through 12note pch table
al ol p4, cpspeh(kpeh), 2 ; with continuous sound
ir table indx, ifn[, ixmode][, ixoff][, iwrap]
ir tablei indx, ifn[, ixmode][, ixoff][, iwrap]
kr table kndx, ifn[, ixmode][, ixoff][, iwrap]
kr tablei kndx, ifn[, ixmode][, ixoff][, iwrap]
ar table andx, ifn[, ixmode][, ixoff][, iwrap]
ar tablei andx, ifn[, ixmode][, ixoff][, iwrap]
kr oscill idd, kamp, idur, ifn
kr oscilli ide, kamp, idur, ifn

Tablevaluesare accessed by direct indexing or by incremental
sampling.

INITIALIZATION

ifn - function table number. tablei, oscilli require the extended guard
point.

ixmode (optional) - ndx data mode. O = raw ndx, 1 = normalized (O
to 1). Thedefault valueisO.

ixoff (optional) - amount by which ndx is to be offset. For a table
with origin at center, use tablesze/2 (raw) or .5 (normalized). The
default valueisO.

iwrap (optional) - wraparound ndx flag. 0 = nowrap (ndx < O treated
as ndx=0; ndx > tablesze sticks at ndx=size), 1 = wraparound. The
default valueisO.

idel - delay in seconds before oscil 1 incremental sampling begins.

idur - duration in seconds to sample through the oscill table just
once. A zero or negative value will cause al initialization to be

kipped.
PERFORMANCE

table invokes table lookup on behalf of init, control or audio indices.
These indices can be raw entry numbers (0,1,2...5ze - 1) or scaled
values (0 to 1-e). Indices are first modified by the offset value then
checked for range before table lookup (see iwrap). If ndx is likely to
be full scale, or if interpolation is being used, the table should have
an extended guard point. table indexed by a periodic phasor (see
phasor) will smulate an oscillator.

oscil1l accesses values by sampling once through the function table at
a rate determined by idur. For the first idel seconds, the point of scan
will reside at the first location of the table; it will then begin moving
through the table at a constant rate, reaching the end in another idur

seconds; from that time on (i.e. after idel + idur seconds) it will
remain pointing at the last location. Each value obtained from
sampling is then multiplied by an amplitude factor kamp before
being written into the result.

tablei and oscilli are interpolating units in which the fractional part
of ndx is used to interpolate between adjacent table entries. The
smoothness gained by interpolation is at some small cost in execution
time (see also ocili, etc.), but the interpolating and non-interpolating
units are otherwise interchangeable. Note that when tablei uses a
periodic index whose modulo n is less than the power of 2 table
length, the interpolation process requires that there be an (n + 1)th
tablevaluethat is arepeat of the 1t (see F statement in Score).

kr oscil kamp, keps, ifn[, iphg]
kr oscili kamp, keps, ifn[, iphg]
ar oscil xamp, xcps, ifn[, iphg]
ar oscili xamp, xcps, ifn[, iphg]
ar foscil xamp, keps, kear, kmod, kndx, ifn[, iphs]
ar foscili xamp, keps, kear, kmod, kndx, ifn[, iphs]

Table ifn is incrementally sampled modulo the table length and the
value obtained ismultiplied by amp.

INITIALIZATION

ifn - function table number. Requiresa wrap-around guard point.

iphs (optional) - initial phase of sampling, expressed as a fraction of
acycle (0to 1). A negative value will cause phase initialization to be
skipped. The default valueisO.

PERFORMANCE

The oscil units output periodic control (or audio) signals consisting
of the value of kamp(xamp)times the value returned from control rate
(audio rate) sampling of a stored function table. The internal phaseis
smultaneoudy advanced in accordance with the cps input value.
While the amplitude and frequency inputs to the K-rate oscils are
scalar only, the corresponding inputs to the audio-rate oscils may
each be either scalar or vector, thus permitting amplitude and
frequency

modulation at either sub-audio or audio frequencies.

foscil is a composite unit that effectively banks two oscils in the
familiar Chowning FM setup, wherein the audio-rate output of one
generator is used to modulate the frequency input of another (the
“carrier”). Effective carrier frequency = kcps * kcar, and modulating
frequency = keps * kmod. For integral values of kcar and kmod, the
perceived fundamental will be the minimum positive value of kcps *
(kcar - n * kmod), n = 1,1,2,... The input kndx is the index of
modulation (usually time-varying and ranging O to 4 or so) which
determines the spread of acoudtic energy over the partial positions
givenby n=0,1,2,.., etc. ifn should point to a stored Snewave.

oscili and foscili differ from oscil and foscil respectively in that the
standard procedure of using a truncated phase as a sampling index is
here replaced by a process that interpolates between two successive
lookups. Interpolating generators will produce a noticeably cleaner
output signal, but they may take as much as twice as long to run.
Adequate accuracy can aso be gained without the time cost of
interpolation by using large stored function tables of 2K, 4K or 8K
pointsif the spaceisavailable.

Example:
k1 oscil 10,5,1 ; 5 cpsvibrato
al oscil 900,440 + k1,1 ;around A440 +-10 cps
arl [ar2] loscil xamp, keps, ifn[, ibas][,imodl,ibegl,iendl][,

imod2,ibeg2,iend?]

11

Read sampled sound (mono or stereo) from a table, with optional
sustain and release |ooping.

INITIALIZATION

ifn - function table number, typically denoting an AIFF sampled
sound segment with prescribed looping points. The source file may
be mono or stereo.

ibas (optional) - base frequency in cps of the recorded sound.

This optionally overrides the frequency given in the AIFF file, but is
required if the file did not contain one. The default value is 0 (no
override).

imodl, mod2 (optional) - play modes for the sustain and release
loops. A value of 1 denotes normal looping, 2 denotes forward &
backward looping, O denotes no looping. The default value (-1) will
defer to the mode and the looping points given in the sourcefile.

ibegl, iendl, ibeg2, iend2 (optional, dependent on modl, mod2) -
begin and end points of the sustain and release loops. These are
measured in sample frames from the beginning of the file, so will
look the same whether the sound segment is monaural or stereo.

PERFORMANCE

loscil samples the ftable audio at a rate determined by kcps, then
multiplies the result by xamp. The sampling increment for kcps is
dependent on the table’'s basenote frequency ibas, and is
automatically adjusted if the orchestra s value differs from that at
which the source was recorded. In this unit, ftable is always sampled
with interpolation.

If sampling reaches the sustain loop endpoint and looping is in effect,
the point of sampling will be modified and loscil will continue
reading from within that loop segment. Once the instrument has
receved a turnoff signal (from the score or from a MIDI noteoff
event), the next sustain endpoint encountered will be ignored and
sampling will continue towards the release loop end-point, or
towardsthe last sample (henceforth to zeros).

loscil isthe basic unit for building a sampling synthesizer.

Given a sufficient set of recorded piano tones, for example, this unit
can resample them to smulate the missing tones. Locating the sound
source nearest a desired pitch can be done via table lookup. Once a
sampling instrument has begun, its turnoff point may be
unpredictable and require an external release envelope; this is often
done by gating the sampled audio with linenr, which will extend the
duration of a turned-off instrument by a specific period while it
implements a decay.

Example:

inum notnum

icps cpsmidi

iamp ampmidi 3000, 1

ifno table inum, 2 ;notnum to choose an audio
sample

ibastable inum, 3

kamp linenr iamp, O, .05, .01 ;at noteoff, extend by 50
millisecs

asg loscil kamp, icps, ifno, cpsoct(ibag/12. + 3)
ar buzz xamp, xcps, knh, ifn[, iphs]

ar gbuzz xamp, xcps, knh, kih, kr, ifn[, iphs]

Output isaset of harmonically related cosine partials.
INITIALIZATION

ifn - table number of a stored function containing (for buzz) a sine

wave, or (for gbuzz) a cosine wave. In either case a large table of at
least 8192 pointsis recommended.

iphs (optional) - initial phase of the fundamental frequency,
expressed as a fraction of a cycle (0 to 1). A negative value will
cause phaseinitialization to be skipped. The default valueis zero.

PERFORMANCE

These units generate an additive set of harmonically related cosine
partials of fundamental frequency xcps, and whose amplitudes are
scaled so thelr summation pesk equals xamp. The sdection and
drength of partials is determined by the following control
parameters:

knh - total number of harmonicsrequested. Must be positive.

klh - lowest harmonic present. Can be positive, zero or negative. In
ghbuzz the set of partials can begin at any partial number and proceeds
upwards, if klh is negative, al partials below zero will reflect as
positive partials without phase change (snce cosne is an even
function), and will add constructively to any podtive partials in the
St

kr - specifies the multiplier in the series of amplitude coefficients.
This is a power series: if the kihth partial has a strength coefficient of
A, the (klh + n)th partial will have a coefficient of A * (kr ** n), i.e.
strength values trace an exponential curve. kr may be postive, zero
or negative, and isnot restricted to integers.

buzz and gbuzz are useful ascomplex sound sourcesin subtractive
synthesis. buzz is a specia case of the more general gbuzz in which
klh = kr = 1; it thus produces a set of knh equal-strength harmonic
partials, beginning with the fundamental. (This is a band-limited
pulse train; if the partials extend to the Nyquigt, i.e. knh=int (sr/2/
fundamental freg.), the result is a real pulse train of amplitude xamp.)
Although both knh and klh may be varied during performance, their
internal values are necessarily integer and may cause “pops’ due to
discontinuities in the output; kr, however, can be varied during
performance to good effect. Both buzz and gbuzz can be amplitude-
and/or frequency-modulated by either control or audio signals.

N.B. These two units have their analogs in GEN11, in which the
same st of cosnes can be stored in a function table for sampling by
an ogcillator. Although computationally more efficient, the stored
pulse train has a fixed spectral content, not a time-varying one as
above.

kamod, kfmod, ksmod, ifilcod
ktimpnt, kfmod, ifilcod [, ispecwp]

ar adsyn
ar pvoc

Output is an additive set of individually controlled sinusoids,
using either an oscillator bank or phase vocoder resynthes's.

INITIALIZATION

ifilcod - integer or character-string denoting a control-file derived
from analysis of an audio signal. An integer denotes the suffix of a
file adsyn.m or pvoc.m; a character-string (in double quotes) gives a
filename, optionally a full pathname. If not fullpath, the file is
sought firgt in the current directory, then in the one given by the
environment variable SADIR (if defined). adsyn control contains
breakpoint amplitude- and frequency-envelope values organized for
oxtillator resynthess, while pvoc control contains smilar data
organized for fft resynthess. Memory usage depends on the size of
the files involved, which are read and held entirely in memory during
computation but are shared by multiple calls (see dso Ipread).

ispecwp (optional) - if non-zero, attempts to preserve the spectral
envelope whileits frequency content isvaried by kfmod.
The default valueis zero.

12

PERFORMANCE

adsyn synthesizes complex time-varying timbres through the method
of additive synthess. Any number of sinusoids, each individualy
controlled in frequency and amplitude, can be summed by high-speed
arithmetic to produce a high-fidelity result.

Component sinusoids are described by a control file describing
amplitude and frequency tracksin millisecond breakpoint fashion.
Tracks are defined by sequences of 16-bit binary integers:

-1, time, amp, time, amp,...

-2, time, freg, time, freg,...
such as from hetrodyne filter analysis of an audio file. (For details
see the Appendix on hetro) The ingtantaneous amplitude and
frequency values are used by an internal fixed-point oscillator that
adds each active partial into an accumulated output signal. While
there is a practical limit (currently 50) on the number of contributing
partials, there is no redtriction on their behavior over time. Any
sound that can be described in terms of the behavior of snusoids can
be synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during
resynthess. The sgnals kamod, kfmod, ksmod will modify the
amplitude, frequency, and speed of contributing partials. These are
multiplying factors, with kfmod modifying the cps frequency and
ksmod modifying the speed with which the millisecond bread-point
line-segments are traversed. Thus .7, 1.5, and 2 will give rise to a
softer sound, a perfect fifth higher, but only half aslong. The values
1,1,1 will leave the sound unmodified. Each of these inputs can be a
control signal.

pvoc implements signal reconstruction using an fft-based phase
vocoder. The control data stems from a precomputed analyss file
with a known frame rate. The passage of time through this file is
specified by ktimpnt, which represents the time in seconds.

ktimpnt must always be podtive, but can move forwards or
backwards in time, be stationary or discontinuous, as a pointer into
the analysis file. kfmod is a control-rate transposition factor: a value
of 1 incurs no trangposition, 1.5 trangposes up a perfect fifth, and .5
down an octave.

Thisimplementation of pvoc waswritten by Dan Ellis. Itis
based in part on the system of Mark Dolson, but the pre-analysis
concept isnew.

ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec,
iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]

Audio output is a succession of sinusoid bursts initiated at frequency
xfund with a spectral peak at xform. For xfund above 25 Hz these
burgts produce a speech-like formant with spectral characterigtics
determined by the k-input parameters. For lower fundamentals this
generator providesa special form of granular synthesis.

INITIALIZATION

iolaps - number of preallocated spaces needed to hold overlapping

burst data. Overlaps are frequency dependent, and the space required
depends on the maximum value of xfund * kdur. Can be over-
estimated at no computation cost. Uses less than 50 bytes of memory

per iolap.

ifna, ifnb - table numbers of two stored functions. The first is a sine
table for sneburst synthess (size of at least 4096 recommended).
The second is a rise shape, used forwards and backwards to shape the
sineburst rise and decay; this may be linear (GENO7) or perhaps a
sigmoid (GEN19).

itotdur - total time during which thisfof will be active.
Normally set to p3. No new sineburst is created if it cannot complete
itskdur within the remaining itotdur.

iphs (optional) - initial phase of the fundamental, expressed as a
fraction of acycle (0to 1). Thedefault valueis 0.

ifmode (optional) - formant frequency mode. If zero, each sineburst
keeps the xform frequency it was launched with. If non-zero, each is
influenced by xform continuously. The default valueisO.

PERFORMANCE

xamp - peak amplitude of each sineburst, observed at the true end of
its rise pattern. The rise may exceed this value given a large
bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund - the fundamental frequency (in Hertz) of theimpulsesthat
create new sinebursts.

xform - the formant frequency, i.e. freq of the sinusoid burst induced
by each xfund impulse. This frequency can be fixed for each burst or
can vary continuoudly (see ifmode).

koct - octaviation index, normally zero. If greater than zero, lowers
the effective xfund frequency by attenuating odd-numbered
snebursts. Whole numbersarefull octaves, fractionstransitional.

kband - the formant bandwidth (at -6dB), expressed in Hz. The
bandwidth determines the rate of exponential decay throughout the
sineburst, before the envel oping described below is applied.

kris, kdur, kdec - rise, overall duration, and decay times (in seconds)
of the snusoid burst. These values apply an enveloped duration to
each burgt, in smilar fashion to a Csound linen generator but with
rise and decay shapes derived from the ifnb input. kris inversey
determines the skirtwidth (at -40 dB) of the induced formant region.
kdur affects the dendty of sineburst overlaps, and thus the speed of
computation. Typical valuesfor vocal imitation are .003,.02,.007.

Csound's fof generator is loosely based on Michael Clarke's C-
coding of IRCAM’s CHANT program (Xavier Rodet et a.). Each
fof produces a single formant, and the output of four or more of these
can be summed to produce a rich vocal imitation. fof synthesisis a
special form of granular synthess, and this implementation aids
transformation between vocal imitation and granular textures.
Computation speed depends on kdur, xfund, and the dendgty of any
overlaps.

ar pluck kamp, keps, icps, ifn, imeth [, iparml, iparm2]

Audio output is a naturally decaying plucked string or drum sound
based on the Karplus-Strong algorithms.

INITIALIZATION

icps - intended pitch value in cps, used to set up a buffer of 1 cycle of
audio samples which will be smoothed over time by a chosen decay
method. icps normally anticipates the value of kcps, but may be set
artificially high or low to influence the size of the sample buffer.

ifn - table number of a stored function used to initialize the cyclic
decay buffer. If ifn = 0, arandom sequence will be used instead.

imeth - method of natural decay. There are Sx, some of which use
parametersvaluesthat follow.

1 - smple averaging. A smple smoothing process, uninfluenced by
parameter values.

2 - gretched averaging. As above, with smoothing time stretched by
afactor of iparml (>=1).

3 - smple drum. The range from pitch to noise is controlled by a
‘roughness factor’ in iparml (O to 1). Zero gives the plucked string
effect, while 1 reverses the polarity of every sample (octave down,
odd harmonics). The setting .5 gives an optimum snare drum.

4 - gretched drum. Combines both roughness and sretch factors.
iparml isroughness (0 to 1), and iparm2 the stretch factor (>=1).

13

5 - weighted averaging. As method 1, with iparml weighting the
current sample (the status quo) and iparm2 weighting the previous
adjacent one. iparml + iparm2 must be<= 1.

6 - 1t order recursve filter, with coefs .5. Unaffected by parameter
values.

iparml, iparm2 (optional) - parameter values for use by the
smoothing algorithms (above). The default valuesare both 0.

PERFORMANCE

An internal audio buffer, filled at I-time according to ifn, is
continually resampled with periodicity kcps and the resulting output
is multiplied by kamp. Peralld with the sampling, the buffer is
smoothed to smulate the effect of natural decay.

Plucked strings (1,2,5,6) are best realized by starting with a random
noise source, which is rich in initial harmonics. Drum sounds
(methods 3,4) work best with a flat source (wide pulse), which
produces a deep noise attack and sharp decay.

The original Karplus-Strong algorithm used a fixed number of
samples per cycle, which caused serious quantization of the pitches
available and their intonation. This implementation resamples a
buffer at the exact pitch given by kcps, which can be varied for
vibrato and glissando effects. For low values of the orch sampling
rate (eg. s = 10000), high frequencies will store only very few
samples (& / icps). Since this may cause noticeable noise in the
resampling process, the interna buffer has a minimum size of 64
samples. This can be further enlarged by setting icps to some
artificially lower pitch.

kr rand xampl, iseed]
kr randh kamp, kcpd, iseed]
kr randi kamp, kepd, iseed]
ar rand xampl, iseed]
ar randh xamp, xcpd, iseed]
ar randi xamp, xcps, iseed]

Output is a controlled random number series between +amp and -
amp

INITIALIZATION

iseed (optional) - seed value for the recursve psuedo-random
formula. A value between 0 and +1 will produce an initial output of
kamp * iseed A negative value will cause seed re-initialization to be
skipped. The default seed valueis .5.

PERFORMANCE

The internal psuedo-random formula produces values which are
uniformly distributed over the range kamp to -kamp. rand will thus
generate uniform white noise with an R.M.S value of kamp / root 2.

The remaining units produce band-limited noise: the cps parameters
permit the user to specify that new random numbers are to be
generated at a rate less than the sampling or control frequencies.
randh will hold each new number for the period of the specified
cycle; randi will produce straightline interpolation between each new
number and the next.

Example:
i1 = octpch(p5) ; center pitch, to be modified
k1 randh 1,10 ;10 time/sec by random displacements up to 1
octave
al oscil 5000, cpsoct(il+kl), 1

SIGNAL MODIFIERS

kr linen kamp, irise, idur, idec
ar linen xamp, irise, idur, idec
kr linenr kamp, irise, idec, iatdec

ar linenr xamp, irise, idec, iatdec
kr envipx kamp, irise, idur, idec, ifn, iatss, iatdec],ixmod]
ar envipx xamp, irise idur, idec, ifn, iatss, iatdec],ixmod]

linen - apply a straight line rise and decay pattern to an input amp
signal.

linenr - apply a straight line rise, then an exponential decay while the
note is extended in time.

envipx - apply an envelope consgting of 3 segments: 1) stored
function rise shape, 2) modified exponential “pseudo steady state”,

3) exponential decay

INITIALIZATION

irise - rise time in seconds. A zero or negative value signifies no rise
modification.

idur - overal duration in seconds. A zero or negative value will
causeinitialization to be skipped.

idec - decay time in seconds. Zero means no decay. An idec > idur
will cause a truncated decay.

ifn - function table number of stored rise shape with extended guard
point.

iatss - attenuation factor, by which the last value of the envipx rise is
modified during the note's pseudo “steady state” A factor > | causes
an exponential growth, and < | an exponential decay. A 1 will
maintain a true steady tate at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sengtive to a
note's duration. However, if iatss is negative (or if “steady state”’ < 4
k-periods) a fixed attenuation rate of abg(iatss) per second will be
used. Oisillegal.

iatdec - attenuation factor by which the closing “ steady state” valueis
reduced exponentially over the decay period. This value must be
positive and is normally of the order of .01. A large or excessvely
small value is apt to produce a cutoff which isaudible. A zero or neg
valueisillegal.

ixmod (optional, between +- .9 or s0) - exponential curve modifier,
influencing the “steepness’ of the exponential trajectory during the
“geady dtate” Values less than zero will cause an accelerated growth
or decay towards the target (e.g. subito piano). Values greater than
zero will cause a retarded growth or decay. The default value is zero
(unmodified exponential).

PERFORMANCE

Rise modifications are applied for the first irise seconds, and decay
from time idur - idec. If these periods are separated in time there will
be a “steady state” during which amp will be unmodified (linen) or
modified by the first exponential pattern (envipx). If linen rise and
decay periods overlap then both modifications will be in effect for
that time; in envipx that will cause a truncated decay. |f the overall
duration idur is exceeded in peformance, the final decay will
continue on in the same direction, going negative for linen but
tending

asymptotically to zero in envipx.

linenr is unique within Csound in containing a note-off sensor and
release time extender. When it senses either a score event termination
or a MIDI noteoff, it will immediately extend the performance time
of the current instrument by idec seconds then execute an
exponential decay towards the factor iatdec. For two or more unitsin
an instrument, extension isby the greatest idec.

kr port ksig, ihtim[, isig]
ar tone adg, khp[, istor]
ar atone adg, khp[, istor]
ar reson adg, kcf, kbw[, iscl, istor]
ar areson adg, kcf, kbw[, iscl, istor]
A control or audio signal is modified by a low- or band-pass

recursivefilter with variable frequency response.

14

INITIALIZATION

idgg - initial (i.e. previous) value for internal feedback. The default
valueisO.

igor - initial digpodtion of internal data space. Since filtering
incorporates a feedback loop of previous output, the initial status of
the storage space used is significant. A zero value will clear the
pace;, a non-zero value will allow previous information to remain.
The default valueisO.

iscl - coded scaling factor for resonators. A value of 1 signifies a
pesk response factor of 1, i.e. al frequencies other than kcf are
attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overal RMS value
equals 1. (This intended equalization of input and output power
assumes all frequencies are physically present; hence it is most
applicable to white noise) A zero value sgnifies no scaling of the
signal, leaving that to some later adjustment (e.g. see balance). The
default valueisO.

PERFORMANCE

port applies portamento to a step-valued control signal. At each new
step value, ksg is low-pass filtered to move towards that value at a
rate determined by ihtim. ihtim is the “half-time” of the function (in
seconds), during which the curve will traverse half the distance
towards the new value, then half as much again, etc., theoreticaly
never reaching its asymptote.

tone implements a first-order recursive low-pass filter in which the
variable khp (in cps) determines the response curve's half-power
point. Half power isdefined aspeak power / root 2.

reson is a second-order filter in which kcf controls the center
frequency, or cps position of the peak response, and kbw controls

its bandwidth (the cps difference between the upper and lower half -

power points).

atone, areson are filters whose trandfer functions are the
complements of tone and reson. atone is thus a form of high-pass
filter and areson a notch filter whose transfer functions represent the
“filtered out” aspects of their complements. Note, however, that
power scaling is not normalized in atone, areson, but remains the true
complement of the corresponding unit. Thus an audio sgnal, filtered
by paralld matching reson and areson units, would under addition
smply reconstruct the origina spectrum. This property is
particularly useful for controlled mixing of different sources (e.g.,
seelpreson).

Complex response curves such as those with multiple peaks can be
obtained by usng a bank of suitable filters in series. (The resultant
response is the product of the component responses.) In such cases,
the combined attenuation may result in a serious loss of signal power,
but this can be regained by the use of balance.

krmsr,krmso,kerr,kcps
inpoleg][,ifrmrate]

Ipread ktimpnt, ifilcod[,
ar Ipreson asig
ar Ipfreson asig, kfrgratio

These units, used as a read/reson pair, use a control file of time-
varying filter coefficients to dynamically modify the spectrum of an
audio signal.

INITIALIZATION

ifilcod - integer or character-string denoting a control-file (reflection
coefficients and four parameter values) derived from n-pole linear
predictive spectral analyss of a source audio signal. An integer
denotes the suffix of a file Ip.m; a character-string (in double quotes)
gives a filename, optionally a full pathname. If not fullpath, the file
is sought firgt in the current directory, then in that of the environment
variable SADIR (if defined). Memory usage depends on the size of
thefile, which isheld entirely in memory during computation but
shared by multiple cdls (see aso adsyn, pvoc).

inpoles, ifrmrate (optional) - number of poles, and frame rate per
second in the Ipc analysis. These arguments are required only when
the control file does not have a header; they are ignored when a
header isdetected. The default value for both iszero.

PERFORMANCE

Ipread accesses a control file of time-ordered information frames,
each containing n-pole filter coefficients derived from linear
predictive analysis of a source signal at fixed time intervals (eg.
1/100 of a second), plusfour parameter values:

krmsr - root-mean-square (rms) of theresidual of analys's,

krmso - rmsof the original signal,

kerr - the normalized error sgnal,

keps - pitchincps.
Ipread gets its values from the control file according to the input
value ktimpnt (in seconds). If ktimpnt proceeds at the analyss rate,
time-normal synthesis will result; proceeding at a faster, dower, or
variable rate will result in time-warped synthesis. At each K-period,
Ipread interpolates between adjacent frames to more accurately
determine the parameter values (presented as output) and the filter
coefficient settings (passed internally to a subsequent Ipreson).

The error signal kerr (between O and 1) derived during predictive
analyss reflects the determinigtic/random nature of the analyzed
source. This will emerge low for pitched (periodic) material and
higher for noisy material. The trandtion from voiced to unvoiced
speech, for example, produces an error signal value of about .3.
During synthesis, the error signal value can be used to determine the
nature of the Ipreson driving function: for example, by arbitrating
between pitched and non-pitched input, or even by determining a mix
of the two. In normal speech resynthesis, the pitched input to Ipreson
is a wideband periodic signal or pulse train derived from a unit such
as buzz, and the nonpitched source is usually derived from rand.
However, any audio signal can be used as the driving function, the
only assumption of the analysisbeing that it hasa flat response.

Ipfreson is a formant shifted Ipreson, in which kfrgratio is the (cps)
ratio of shifted to original formant postions. This permits synthesis
in which the source object changes its apparent acougtic sze.
Ipfreson with kfrgratio = 1 isequivalent to Ipreson.

Generally, Ipreson provides a means whereby the timevarying
content and spectral shaping of a composite audio signal can be
controlled by the dynamic spectral content of another. There can be
any number of Ipread/ipreson (or Ipfreson) pairs in an instrument or
in an orchestra; they can read from the same or different control files
independently.

kr rms adgl, ihp, istor]
nr gan asig, krmg, ihp, istor]
ar balance asig, acompl, ihp, istor]

The rms power of asig can be interrogated, set, or adjusted to match
that of a comparator sgnal.

INITIALIZATION

ihp (optional) - half-power point (in cps) of a specia internal low-
passfilter. Thedefault valueis10.

istor (optional) - initial digpogtion of internal data space (see reson).
The default valueisO.

PERFORMANCE

rms output values kr will trace the rms value of the audio input asig.
This unit is not a sgnal modifier, but functions rather as a sgnal

power-guage.

gain provides an amplitude modification of asig so that the output ar
has rms power equal to krms. rms and gain used together (and given
matching ihp values) will provide the same effect as balance.

balance outputs a version of asg, amplitude-modified so that its rms
power is equal to that of a comparator signal acomp. Thus a signal

15

that has suffered loss of power (eg., in passing through a filter bank)
can be restored by matching it with, for instance, its own source. It
should be noted that gain and balance provide amplitude
modification only - output signalsare not altered in any other respect.

Example:
asrc buzz 10000,440, sr/440, 1 ; band-limited pulse train
al reson asrc, 1000,100 ; sent through
a2 reson al,3000,500 ; 2filters
afinbalance a2, asrc ; then balanced with
source
kr downsamp adg[, iwlen]
ar upsamp ksig
ar interp ksig[, istor]
kr integ ksig[, istor]
ar integ adg[, istor]
kr diff ksig[, istor]
ar diff adsg[, istor]
kr samphold xsg, kgate], ival, ivstor]
ar samphold adg, xgate], ival, ivstor]
Modify a s€gna by up- or down-sampling, integration, and
differentiation.
INITIALIZATION

iwlen (optional) - window length in samples over which the audio
signal is averaged to determine adownsampled value. Maximum
lengthisksmps; 0 and 1 imply no window averaging. The default
valueisO.

istor (optional) - initial digpogtion of internal save space (see reson).
The default valueisO.

ival, ivstor (optional) - controls initial disposition of internal save
space. If ivetor is zero the internal “hold” valueis st toival ; dseit
retainsits previousvalue. Defaultsare0,0 (i.e. init to zero).

PERFORMANCE

downsamp converts an audio signal to a control signal by
downsampling. It produces one kval for each audio control period.
The optional window invokes a smple averaging process to suppress
foldover.

upsamp, interp convert a control sgnal to an audiosignal. The

first does it by smple repetition of the kval, the second by linear
interpolation between successive kvals. upsamp is a dightly more
efficient form of the assignment, "asig = ksig'.

integ, diff perform integration and differentiation on an input control
sgnal or audio sgnal. Each is the converse of the other, and
applying both will recongtruct the original signal. Since these units
are special cases of low-pass and high-pass filters, they produce a
scaled (and phase shifted) output that is frequency-dependent. Thus
diff of a gne produces a cosine, with amplitude 2 * sin(pi * cps/ &)
that of the original (for each component partial); integ will inversely
affect the magnitudes of its component inputs. ~ With this
understanding, these units can provide useful signal modification.

samphold performs a sample-and-hold operation on its input
according to the value of gate. If gate > 0, the input samples are
passed to the output; If gate <= 0, the last output value is repeated.
The controlling gate can be a congtant, a control signal, or an audio
signal.

Example:
asrc buzz 10000,440,20, 1 ; bandimited pulsetrain
adif diff asrc ; emphasize the highs
anew baance adif, asrc ; but retain the power
agate reson asrc,0,440 ; use alowpass of the original

asamp samphold anew, agate ; to gate the new audiosig

aout tone asamp,100 ; smooth out the rough edges

ar delayr idlt], istor]
delayw asig

ar delay adg,idlt[, istor]

ar delayl asigf,istor]

A signa can be read from or written into a delay path, or it can be
automatically delayed by sometimeinterval.

INITIALIZATION

idlt - requested delay time in seconds. This can be as large as
available memory will permit. The space required for n seconds of
dedlay is4n * g bytes. It isallocated at the time the instrument is first
initialized, and returned to the pool at the end of a score section.

igtor (optional) - initial dispostion of delay-loop data space (see
reson). Thedefault valueisO.

PERFORMANCE

delayr reads from an automatically established digital delay line, in
which the signal retrieved has been resident for idlt seconds. This
unit musgt be paired with and precede an accompanying delayw unit.
Any other Csound statements can intervene.

delayw writes asig into the delay area established by the preceding
delayr unit. Viewed as a pair, these two units permit the formation of
modified feedback loops, etc. However, there is a lower bound on
thevalue of idlt, which must be at least 1 control period (or 1/kr).

delay is a composite of the above two units, both reading from and
writing into its own storage area. It can thus accomplish signal time-
shift, although modified feedback isnot possible.

Thereisno minimum delay period.

delayl is a special form of delay that serves to delay the audio signal
asg by just one sample. It is thus functionally equivalent to “delay
asg, U/s” but is more efficient in both time and space. This unit is
particularly useful in the fabrication of generalized non-recursive
filters.

Example:
tigoto contin

a2 dday al,.050
contin:

; except on atie,
; begin 50 msec clean delay of sig

ar deltap kdit
ar deltapi xdit

Tapadelay lineat variable offset times.
PERFORMANCE

These units can tap into a delayr/delayw pair, extracting delayed
audio from the idit seconds of stored sound. There can be any
number of deltap and/or deltapi units between a read/write pair.

Each receives an audio tap with no change of original amplitude.

deltap extracts sound by reading the stored samples directly; deltapi
extracts sound by interpolated readout. By interpolating between
adjacent stored samples deltapi represents a particular delay time
with more accuracy, but it will take about twice aslong to run.

The arguments kdlt, xdit specify the tapped delay time in seconds.
Each can range from 1 Control Period to the full delay time of the
read/write pair; however, since there is no internal check for
adherence to this range, the user is wholly responsible. Each
argument can be a congtant, a variable, or a time-varying signal; the

16

xdit argument in deltapi implies that an audio-varying delay is
permitted there.

These units can provide multiple delay taps for arbitrary delay path
and feedback networks. They can deliver ether congtant-time or
timevarying taps, and are useful for building chorus effects,
harmonizers, and doppler shifts. Constant-time delay taps (and some
dowly changing ones) do not need interpolated readout; they are well
served by deltap.

Medium-paced or fast varying dit's, however, will need the extra
services of deltapi.

N.B. K-rate delay times are not internally interpolated, but rather lay
down stepped time-shifts of audio samples; this will be found quite
adequate for dowly changing tap times. For medium to fastpaced
changes, however, one should provide a higher resolution audio-rate
timeshift asinput.

Example:
asource buzz 1,440, 20, 1
aime linseg 1, p3/2,.01, p3/2,1 ;trace adistancein secs
ampfac = l/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delays asource ; the listener

out amove* ampfac

ar comb asig, krvt, ilpt[, istor]
ar alpass asig, krvt, ilpt], istor]
a reverb adg, krvt[, istor]

An input sgnal is reverberated for krvt seconds with “colored”
(comb), flat (alpass), or “natural room” (reverb) frequency response.

INITIALIZATION

ilpt - loop time in seconds, which determines the “echo dendty” of
the reverberation. This in turn characterizes the “color” of the comb
filter whose frequency response curve will contain ilpt * /2 peaks
spaced evenly between 0 and s/2 (the Nyquist frequency). Loop
time can be as large as available memory will permit. The space
required for an n second loop is 4n * s bytes. comb and alpass delay
gpaceis allocated and returned asin delay.

igtor (optional) - initial disposition of delay-loop data space (cf.
reson). Thedefault valueisO.

PERFORMANCE

These filters reiterate input with an echo densty determined by loop
time ilpt. The attenuation rate is independent and is determined by
krvt, the reverberation time (defined as the time in seconds for a
signal to decay to 1/1000, or 60dB down from its original amplitude).
Output from a comb filter will appear only after ilpt seconds; alpass
output will begin to appear immediately.

A dandard reverb unit is composed of four comb filters in parallel
followed by two alpass units in series. Looptimes are set for optimal
“natural room response.” Core storage requirements for this unit are
proportional only to the sampling rate, each wunit requiring
approximately 3K wordsfor every 10KC.

The comb, alpass, delay, tone and other Csound units provide the
means for experimenting with alternate reverberator designs.

Since output from the standard reverb will begin to appear only after
1/20 second or so of delay, and often with less than three-fourths of
the original power, it is normal to output both the source and the
reverberated signal. Also, since the reverberated sound will persst
long after the cessation of source events, it is normal to put reverb in
a separate instrument to which sound is passed via a global variable,
and to leave that instrument running throughout the performance.

Example:
gal init0 ; init an audio receiver/mixer
instr 1 ; instr (there may be many copies)

al oscili 8000, cpspeh(p5), 1 ; generate a source signal

out al ; output the direct sound
gal = gal+al; andadd toaudio receiver
endin
instr 99 ; (highest instr number executed |ast)

a3 reverb gal, 1.5 ; reverberate whatever isin gal

out al ; and output the result
gal= 0 ; empty the receiver for the next pass
endin

OPERATIONSUSING SPECTRAL DATA-TYPES

These units generate and process non-standard signal data types, such
as down-sampled time-domain control signals and audio sgnals, and
their frequency-domain (spectral) representations. The new data
types (d-, w-) are self-defining, and the contents are not processable
by any other Csound units. These unit generators are experimental,
and subject to change between releases;, they will also be joined by
otherslater.

dsig octdown xsig, iocts, isampg], idisprd]
wsighoctdft dsig, iprd, ifrgs, iq[, ihann, idbout, idsines]

INITIALIZATION

idisprd (optional) - if non-zero, display the output every idisprd
seconds. The default valueisO (no display).

ihann, idbout, idsnes (optional) - if non-zero, then respectively:
apply a hanning window to the input; convert the output magnitudes
to dB; display the windowed sinusoids used in DFT filtering. The
default values are 0,0,0 (rectangular window, magnitude output, no
sinusoid display).

PERFORMANCE

octdown - put signa asg or ksdg through iocts successve
applications of octave decimation and downsampling, and preserve
isamps down-sampled values in each octave. Optionally display the
composite buffer every idisprd seconds.

noctdft - generate a congtant-Q, exponentially-spaced DFT across all
octaves of the multiply-downsampled input dsg. Every iprd
seconds, each octave of dsig is optionally windowed (ihann non-
zero), filtered (using ifrgs parale filters per octave, exponentialy
spaced, and with frequency/bandwidth Q of ig), and the output
magnitudes optionally converted to dB (idbout non-zero). This unit
produces a sdf-defining spectral datablock wsg, whose
characterigtics are readable by any units that receive it as input, and
for which it becomesthe template for

output. The information used in producing this wsig (iprd, iocts,
ifrgs) is passed via the data block to al derivative wsigs, and is thus
available to subsequent spectral operatorsif needed.

Example:
asg in ; get external audio

dsamp octdown asig, 6, 180, 0 ; downsamplein 6 octaves
wsigl noctdft dsamp, .02, 12, 33, 0, 1, 1; and calc 72point dft (dB)

wsig specaddm wsigl, wsg2[, imul2]
wsig specdiff wsigin

wsig specscal wsigin, ifscale, ifthresh
wsig spechist wsigin

wsig specfilt wsigin, ifhtim

17

INITIALIZATION

imul2 (optional) - if non-zero, scale the wsig2 magnitudes before
adding. The default valueisO.

PERFORMANCE

specaddm - do a weighted add of two input spectra For each
channel of the two input spectra, the two magnitudes are combined
and written to the output according to: magout = maglin + mag2in *
imul2. The operation is performed whenever the input wsigl is
sensed to be new. This unit will (at Initidlization) verify the
consgtency of the two spectra (equal size, equal period, equal mag
types).

specdiff - find the pogtive difference values between consecutive
spectral frames. At each new frame of wsigin, each magnitude value
is compared with its predecessor, and the postive changes written to
the output spectrum. Thisunit isuseful as an energy onset detector.

specscal - scale an input spectral datablock with spectral envel opes.
Function tables ifthresh and ifscale are initially sampled across the
(logarithmic) frequency space of the input spectrum; then each time a
new input spectrum is sensed the sampled values are used to scale
each of its magnitude channels as follows: if ifthresh is non-zero,
each magnitude is reduced by its corresponding table-value (to not
less than zero); then each magnitude is rescaled by the corresponding
ifscale value, and the resulting spectrum written towsig.

spechist - accumulate the values of successive spectral frames.

At each new frame of wdgin, the accumulationsto-date in each
magnitude track arewritten to the output spectrum. Thisunit

thus provides a running histogram of spectral distribution.

specfilt - filter each channd of an input spectrum. At each new
frame of wsigin, each magnitude value is injected into a 1st-order
lowpass recursive filter, whose half-time congtant has been initially
set by sampling the ftable ifhtim across the (logarithmic) frequency
space of the input spectrum. This unit effectively applies a
persstence factor to the data occurring in each spectral channel, and
is useful for smulating the energy integration that occurs during
auditory perception. It may also be used as a time-attenuated running

histogram of the spectral
distribution.
Example:
wsg2 specdiff wsigl ; sense onsets
wsg3 specfilt wsig2,2 ; absorb slowly
specdisp wsig2, .1 ; & display both spectra
specdisp wsig3, .1
koct specptrk wsig, inptls, irolloff, iodd[, interp, ifprd, iwtflg]

ksum specsum wsig[, interp]
specdisp wsig, iprd[, iwtflg]

INITIALIZATION

interp (optional) - if non-zero, interpolate the output signal (koct or
ksum). The default value is O (repeat the signal value between
changes).

iford (optional) - if non-zero, display the internally computed
fundamental spectrum. The default valueisO (no display).

iwtflg (optional) - wait flag. If non-zero, hold each display
until released by the user. The default valueisO (no wait).

PERFORMANCE

specptrk - estimate the pitch of the most prominent complex tone in
the spectrum. At note initialization this unit creates a set of inptls
harmonically related partials (odd if iodd non-zero) with amplitude
rolloff to the fraction irolloff per octave. Then at each new frame of
wdg, the spectrum is cross-correlated with this set, and the result at

each point added to an internal copy of the spectrum (optionaly
displayed). A pitch is then estimated, and the result is released in
decimal octave form.

Between frames, the output is either repeated or interpolated at
theK-rate.

specsum - sum the magnitudes across all channels of the spectrum.

At each new frame of wsig, the magnitudes are summed and released

as a scalar ksum dgnal. Between frames, the output is ether
repeated or interpolated at the K-rate. This unit produces a k-signal
summation of the magnitudes present in the spectral data, and is
thereby a running measure of its moment-to-moment overall
strength.

specdisp - display the magnitude values of spectrum wsig every iprd
seconds (rounded to some integral number of wsig's originating
iprd).

Example:

ksum specsum wsig, 1
ksmooth

if ksum< 2000 kgoto zero ;if sufficient amplitude

koct specptrk wsig ; pitchtrack the signal

kgoto contin

zero: koct= 0O

contin:

; sum the spec bins, and

; else output zero

SENSING & CONTROL

Ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim,

ixfdbak, istartempo, ifn[, idisprd, itweek]
Edtimate the tempo of beat patternsin acontrol signal.
INITIALIZATION

iprd - period between analyses (in seconds).
seconds.

Typicaly about .02

imindur - minimum duration (in seconds) to serve as a unit of tempo.
Typically about .2 seconds.

imemdur - duration (in seconds) of the kin short-term memory buffer
which will be scanned for periodic patterns. Typicaly about 3
seconds.

ihp - half-power point (in cps) of a low-pass filter used to smooth
input kin prior to other processng. This will tend to suppress
activity that movesmuch faster. Typically 2 cps.

ithresh - loudness threshold by which the low-passed kin is center-
clipped before being placed in the short-term buffer as tempo-
relevant data. Typically at the noisefloor of the incoming data.

ihtim - half-time (in seconds) of an internal forward-masking filter
that masks new kin data in the presence of recent, louder data
Typically about .005 seconds.

ixfdbak - proportion of this unit's anticipated value to be mixed with
theincoming kin prior to al processing. Typically about .3.

istartempo - initial tempo (in beats per minute). Typicaly 60.

ifn - table number of a stored function (drawn left-to-right) by which
the short-term memory data isattenuated over time.

idisprd (optional) - if non-zero, display the short-term past and future
buffers every idisprd seconds (normally a multiple of iprd). The
default valueis 0 (no display).

itweek (optional) - fine-tune adjust this unit so that it is stable when
analyzing events controlled by its own output. The default value is 1
(no change).

18

PERFORMANCE

tempest examines kin for amplitude periodicity, and egtimates a
current tempo. The input is first low-pass filtered, then center-
clipped, and the resdue placed in a short-term memory buffer
(attenuated over time) where it is analyzed for periodicity using a
form of autocorrelation. The period, expressed as a tempo in beats
per minute, isoutput asktemp.

The period is also used internally to make predictions about future
amplitude patterns, and these are placed in a buffer adjacent to that of
the input. The two adjacent buffers can be periodicaly displayed,
and the predicted values optionally mixed with the incoming signal
to smulate expectation.

This unit is useful for sensing the metric implications of any k-signal
(eg- the RMS of an audio signal, or the second derivative of a
conducting gesture), before sending to atempo statement.

Example:

ksum specsum wsignal, 1 ; sum the amps of a spectrum
ktemp tempest ksum, .02, .1, 3, 2, 800, .005, 0, 6, 4, .1, .995 ; and
;look for beats

kx, Ky Xyin

tempo ktempo, istartempo

Sense the cursor postion in an input window. Apply tempo control
to an uninterpreted score.

INITIALIZATION
iprd - period of cursor sensing (in seconds). Typicaly .1 seconds.

Xmin, xmax, ymin, ymax - edge valuesfor the x-y coordinates of a
cursor in theinput window.

ixinit, iyinit (optional) - initial x-y coordinates reported; the default
values are 0,0. If these values are not within the given min-max
range, they will be coerced into that range.

istartempo - initial tempo (in beats per minute). Typicaly 60.
PERFORMANCE

xyin samples the cursor x-y postion in an input window every iprd
seconds. Output values are repeated (not interpolated) at the K-rate,
and remain fixed until a new change is registered in the window.
There may be any number of input windows. This unit is useful for
Realtime control, but continuous motion should be avoided if iprd is
unusually small.

tempo allowsthe performance speed of Csound scored events to be
controlled from within an orchestra. It operates only in the presence
of the csound -t flag. When that flag is set, scored events will be
performed from their uninterpreted p2 and p3 (beat) parameters,
initially at the given command-line tempo.

When a tempo statement is activated in any instrument (ktempo >
0.), the operating tempo will be adjusted to ktempo beats per minute.
There may be any number of tempo statements in an orchestra, but
coincident activation isbest avoided.

Example:

kx,ky xyin.05, 30,0, 120, 0, 75 ; sample the cursor

tempo kx, 75 ; and control the tempo of
performance

SOUND INPUT & OUTPUT

al in
al, a2 ins
al, a2, a3, a4 inq
al soundin ifilcod[, iskptim][, iformat]
al, a2 soundin ifilcod[, iskptim][, iformat]
al, a2, a3, a4 soundin ifilcod[, iskptim][, iformat]
out asig
outsl asig
outs2 asig
outs asigl, asig2
outql asig
outq2 asig
outq3 asig
outqd asig
outq asigl, asig2, asig3, asigd

These units read/write audio data from/to an external device or
stream.

INITIALIZATION

filcod - integer or character-gtring denoting the source soundfile
name. An integer denotes the file soundinfilcod ; a character-string
(in double quotes, spaces permitted) gives the filename itsdlf,
optionally a full pathname. If not a full path, the named file is sought
first in the current directory, then in that given by the environment
variable SSDIR (if defined) then by SFDIR. See also GENOL.

iskptim (optional) - time in seconds of input sound to be skipped.
The default valueisO.

iformat (optional) - specifies the audio data file format (1 = 8-bit
signed char, 2 = 8-bit A-law bytes, 3 = 8-bit U-law bytes, 4 = 16-hit
short integers, 5 = 32bit long integers, 6 = 32-hit floats). If iformat =
0 it is taken from the soundfile header, and if no header from the
csound -0 command flag. The default valueisO.

PERFORMANCE

in, ins, inq - copy the current values from the standard audio input
buffer. If the command-line flag -i is set, sound is read continuoudy
from the audio input stream (e.g. stdin or a soundfile) into an internal
buffer. Any number of these units can read freely from this buffer.

soundin is functionally an audio generator that derives its signal
from a pre-exigting file. The number of channels read in is set by the
number of result cells, al, a2, etc. A soundin unit opens this file
whenever the host instrument is initialized, then closes it again each
timetheinstrument is turned off.

There can be any number of soundin units within a single instrument
or orchestra; also, two or more of them can read smultaneoudy from
the same externa file.

out, outs, outq send audio samples to an accumulating output buffer
(created at the beginning of performance) which serves to collect the
output of al active instruments before the sound is written to disk.
There can be any number of these output unitsin an instrument. The
type (mono, stereo, or quad) must agree with nchnls, but units can be
chosen to direct sound to any particular channd: outsl sends to
stereo channel 1, outq3 to quad channel 3, etc.

al, a2,a3,ad pan asig, kx, ky, ifn[, imode][, ioffset]

Digribute an audio signal amongst four channels with localization
control.

INITIALIZATION

ifn - function table number of a stored pattern describing the
amplitude growth in a speaker channd as sound moves towards it
from an adjacent speaker. Requires extended guard-point.

imode (optional) - mode of the kx, ky postion values. 0 signifies
raw index mode, 1 means the inputs are normalized (0 - 1). The
default valueisO.

19

ioffset (optional) - offset indicator for kx, ky. O infers the origin to
be at channd 3 (l€ft rear); 1 requests an axis shift to the quadraphonic
center. Thedefault valueisO.

PERFORMANCE

pan takes an input sgnal asig and digtributes it amongst four outputs
(essentially quad speakers) according to the controls kx and ky. For
normalized input (mode=1) and no offset, the four output locations
are in order: left-front at (0,1), right-front at (1,1), left-rear at the
origin (0,0), and right-rear at (1,0).

In the notation (kx, ky), the coordinates kx and ky, each ranging O -
1, thus contral the ‘rightness’ and ‘forwardness' of asound location.

Movement between speakers is by amplitude variation, controlled by
the stored function table ifn. As kx goes from 0 to 1, the strength of
the right-hand signals will grow from the left-mogt table value to the
right-most, while that of the left-hand signals will progress from the
right-most table value to the left-most. For a smple linear pan, the
table might contain the linear function O - 1. A more correct pan that
maintains constant power would be obtained by storing the first
quadrant of a sinusoid. Since pan will scale and truncate kx and ky
in smple table lookup, a medium-large table (say 8193) should be
used. kx, ky values are not restricted to O - 1. A circular motion
passing through all four speakers (enscribed) would have a diameter
of root 2, and might be defined by a circle of radius R = root 1/2 with
center at (.5.5). kx, ky would then come from Rcogangle),
Rsin(angle), with an implicit origin at (.5,.5) (i.e ioffsst = 1).
Unscaled raw values operate smilarly.

Sounds can thus be located anywhere in the polar or cartesian plane;
points lying outside the speaker square are projected correctly onto
the square' s perimeter asfor a listener at the center.

Example:

instr 1

k1 phasor 1/p3 ; fraction of circle

k2 tablei k1,1,1 ; sin of angle (sinusoid in f1)

k3 tablei Kk1,1,1,.25 1 ; cos of angle (sin offset 1/4
circle)

al oscili 10000,440, 1 ;audiosignal..

al,a2,a3,a4 pan al, k2/2, k3/2, 2, 1,1;sent in acircle (f2=1st quad sin)
outq al, a2, a3, a4
endin

SIGNAL DISPLAY

print iarg[, iarg,...]
display xsig, iprd[, iwtflg]
dispfft xsig, iprd, iwsiz[, iwtyp][, idbouti][, iwtflg]

These units will print orchestra Init-values, or produce graphic
display of orchegtra control signals and audio signals. Uses X11
windows if enabled, ese (or if -g flag is set) displays are
approximated in ascii characters.

INITIALIZATION

iprd - the period of display in seconds.

iwsz - gze of the input window in samples. A window of iwsiz
points will produce a Fourier transform of iwsiz/2 points, spread
linearly in frequency from O to /2. iwsiz must be a power of 2. The

windows are permitted to overlap.

iwtyp (optional) - window type. O = rectangular, 1 = hanning.
The default valueisO (rectangular).

idbout (optional) - units of output for the Fourier coefficients.
0 = magnitude, 1 = decibels. Thedefault is 0 (magnitude).

iwtflg (optional) - wait flag. If non-zero, each display is held until
released by the user. Thedefault valueis O (no wait).

PERFORMANCE

print - print the current value of the I-time arguments (or
expressions) iarg at every |-passthrough the instrument.

display - display the audio or control sgnal xsig every iprd seconds,
asan amplitude vs. time graph.

dispfft - display the Fourier Transform of an audio or control signal
(asig or ksdg) every iprd seconds using the Fast Fourier Transform
method.

Example:
k1l envipx |1,.03,p3,.051,.5,.01 ;generate anote envelope
display k1, p3 ; and display entire shape

3. THE STANDARD NUMERIC SCORE

A score is a data file that provides information to an orchestra about
its performance. Like an orchedtra file, a score file is made up of
statements in a known format. The Csound orchestra expects to be
handed a score comprised mainly of ascii numeric characters.
Although most users will prefer a higher level score language such as
provided by Cscore, Scot, or another score-generating program, each
resulting score must eventually appear in the format expected by the
orchestra. A Standard Numeric Score can be created and edited
directly by the beginner usng standard text editors, indeed, some
users continue to prefer it. The purpose of this section is to describe
this

format in detail.

Thebasic format of a standard numeric score statement is:

opcode p1 p2 p3 p4... ;comments

The opcode is a sngle character, always aphabetic. Legal opcodes
aref, i, a t, s, and e the meanings of which are described in the
following pages. The opcode is normally the first character of a line;
leading spaces or tabs will be ignored. Spaces or tabs between the
opcode and p1 are optional.

pl, p2, p3, etc... are parameter fields (pfields). Each contains a
floating point number comprised of an optional sign, digits, and an
optional decimal point. Expressons are not permitted in Standard
Score files. pfields are separated from each other by one or more
spaces or tabs, all but one space of which will beignored.

Continuation lines are permitted. If the first printing character of a
new scoreline is not an opcode, that line will be regarded as a
continuation of the pfieldsfrom the previous scoreline.

Comments are optional and are for the purpose of permitting the user
to document his score filee Comments always begin with a
semicolon (;) and extend to the end of the line. Comments will not
affect the pfield continuation feature.

Blank linesor comment-only linesarelegal (and will be ignored).
Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-
ordered sections by the s statement. Before being read by the
orchestra, a scoreis preprocessed one section at atime.

Each section is normally processed by 3 routines: Carry, Tempo, and
Sort.

1. Carry - within a group of consecutive i statements whose pl
whole numbers correspond, any pfield left empty will take its value
from the same pfield of the preceding statement. An empty pfield
can be enoted by asingle point (.) delimited by spaces.

No point is required after the last nonempty pfield. The output of
Carry preprocessing will show the carried values explicitly.

20

The Carry Feature is not affected by intervening comments or blank
lines; it is turned off only by a non-i statement or by an i statement
with unlike p1 whole number.

An additional feature is available for p2 alone. The symbol + in p2
will be given the value of p2 + p3 from the preceding i statement.
This enables note action times to be automatically determined from
the sum of preceding durations. The + symbol can itself be carried.
Itislegal only in p2.

E.g. thesatements

il 0 5 100
i. +
i

will resultin
il 0 5 100
il15 5 100
i1 1 5 100

The Carry feature should be used liberally. Its use, especialy in
large scores, can greatly reduce input typing and will smplify later
changes.

2. Tempo - this operation time warps a score section according to
the information in a t statement. The tempo operation converts p2
(and, for i statements, p3) from original beats into real seconds, snce
those are the units required by the orchestra. After time warping,
score files will be seen to have orchestrareadable format
demonstrated by thefollowing:

i p1 p2beats p2seconds p3besats p3seconds p4 p5 ...

3. Sort - this routine sorts al actiontime satements into
chronological order by p2 value. It also sorts coincident events into
precedence order. Whenever an f statement and an i statement have
the same p2 value, the f statement will precede.

Whenever two or more i statements have the same p2 value, they will
be sorted into ascending pl value order. If they also have the same
pl value, they will be sorted into ascending p3 value order. Score
sorting is done section by section (see s statement). Automatic
sorting implies that score statements may appear in any order within
asection.

N.B. The operations Carry, Tempo and Sort are combined in a
3-phase sngle pass over a score file, to produce a new file in
orchestra-readable format (see the Tempo example). Processing can
be invoked ether explicitly by the scsort command, or implicitly by
csound which processes the score before calling the orchestra
Sourceformat files and orchestra-readable files are both in ascii
character form, and may be either perused or further modified by
standard text editors. Userwritten routines can be used to modify
score files before or after the above processes, provided the final
orchestra-readable statement format is not violated. Sections of
different formats can be sequentially batched; and sections of like
format can be merged for automatic sorting.

Next-P and Previous-P Symbols

At the close of any of the above operations, three additional score
features are interpreted during file writeout: next-p, previous-p, and
ramping.

i statement pfields containing the symbols npx or ppx (where X is
some integer) will be replaced by the appropriate pfield value found
on the next i statement (or previous i statement) that has the same p1.
For example, the symbol np7 will be replaced by the value found in
p7 of the next note that is to be played by this instrument. np and pp
symbols are recursive and can reference other np and pp symbols
which can reference others, etc.

References must eventually terminate in a real number or a ramp
symbol (see below). Closed loop references should be avoided.

np and pp symbols are illegal in pl,p2 and p3 (athough they may
reference these). np and pp symbols may be Carried. np and pp
references cannot cross a Section boundary. Any forward or

backward reference to a non-existent note-statement will be given

the value zero.

E.g. thedaements
i1 0 1 10
i111 20
il11 1 30

will resultin
i1 0 1 10 20 O
il 1 1 20 3020
il12 1 300 30

np4 pp5

np and pp symbols can provide an instrument with contextual
knowledge of the score, enabling it to glissando or crescendo,

for ingtance, toward the pitch or dynamic of some future event
(which may or may not be immediately adjacent). Note that while
the Carry feature will propagate np and pp through unsorted
statements, the operation that interprets these symbols is acting on a
time-warped and fully sorted version of the score.

Ramping

i statement pfields containing the symbol < will be replaced by
values derived from linear interpolation of atime-based ramp.
Ramps are anchored at each end by thefirst real number found in
the same pfield of apreceding and following note played by the
sameinstrument.

E.g. thedaements

il 0 1 100
i11 1 <
i1 2 1 <
il 3 1 400
i1 4 1 <
il5 10
will resultin
il 0 1 100
il 1 1 200
il 2 1 300
il 3 1 400
il 4 1 200
il5 10

Ramps cannot cross a Section boundary. Ramps cannot be anchored
by an np or pp symbol (although they may be referenced by these).
Ramp symbols are illegal in pl, p2 and p3. Ramp symbols may be
Carried. Note, however, that while the Carry feature will propagate
ramp symbols through unsorted <tatements, the operation that
interprets these symbols is acting on a time-warped and fully sorted
verson of the score. In fact, time-based linear interpolation is based
on warped scoretime, so that a ramp which spans a group of
accelerating notes will remain linear with respect to drict
chronological time.

F STATEMENT (or FUNCTION TABLE STATEMENT)
f pl p2 p3 p4..
This causes a GEN subroutine to place values in a stored function
table for use by instruments.
PFIELDS
pl Table number (from 1 to 200) by which the stored function will
be known.
A negative number requests that the table be destroyed.
p2 Actiontimeof function generation (or destruction) in beats.
p3 Sizeof function table (i.e. number of points).
Must be apower of 2, or a power-of-2 plus 1 (see below).

Maximum table sizeis 16777216 (2**24) points.

p4 Number of the GEN routineto be called (see GEN ROUTINES).
A negative vduewill cause rescaling to be omitted.

pS |

21

p6 | Parameters whose meaning is determined by the particular
GEN routine.
I
I

SPECIAL CONSIDERATIONS

Function tables are arrays of floating-point values. Arrays can be of
any length in powers of 2; space allocation always provides for 2**n
points plus an additional guard point. The guard point value, used
during interpolated lookup, can be automatically set to reflect the
table's purpose: If size is an exact power of 2, the guard point will be
a copy of the first point; this is appropriate for interpolated wrap-
around lookup as in oscili, etc., and should even be used for non-
interpolating oscil for safe consstency. If Szeis st to 2**n + 1, the
guard point value automatically extends the contour of table values,
this is appropriate for single-scan functions such in envipx, oscill,
ocilli, etc.

Table space is alocated in primary memory, along with instrument
data space. The maximum table number has a soft limit of 200; this
can be extended if required.

An exiging function table can be removed by an f satement
containing a negative pl and an appropriate action time. A function
table can also be removed by the generation of another table with the
same pl. Functions are not automatically erased at the end of a score
section.

p2 action time is treated in the same way as in i statements with
respect to sorting and modification by t statements. If an f statement
and an i statement have the same p2, the sorter gives the f statement
precedence so that the function table will be available during note
initialization.

An f 0 statement (zero pl, postive p2) may be used to create an
action time with no associated action. Such time markers are useful
for padding out ascore section (see s statement).

| STATEMENT (INSTRUMENT or NOTE STATEMENT)
i pl p2 p3 p4 ..

This statement calls for an instrument to be made active at a specific
time and for a certain duration. The parameter field values are
passed to that instrument prior to its initialization, and remain valid
throughout its Performance.

PFIELDS

pl Instrument number (from 1 to 200), usualy a non-negative
integer.
An optional fractional part can provide an additional tag for
specifying ties between particular notes of consecutive clusters.
A negative pl (including tag) can be used to turn off a particular
“held’ note.

p2 Starting timein arbitrary units called bests.

p3 Durationtimein beats (usualy positive). A negative vaue will
initiate aheld note (see dsoihold). A zero value will invoke an
initialization pass without performance (see d o ingtr).

p4 |
p5 |
instrument.
|
|

SPECIAL CONSIDERATIONS

Parameterswhose sgnificance is determined by the

Beats are evaluated as seconds, unless there is a t statement in this
score section or a-t flag in the command line.

Starting or action times are relative to the beginning of a section (see
sstatement), which isassigned time 0.

Note statements within a section may be placed in any order.

Before being sent to an orchestra, unordered score statements must
first be processed by Sorter, which will reorder them by ascending p2
value. Notes with the same p2 value will be ordered by ascending
pl; if the same p1, then by ascending p3.

Notes may be stacked, i.e, a sngle insrument can perform any
number of notes simultaneoudy. (The necessary copies of the
ingrument's data space will be allocated dynamically by the
orchestra loader.) Each note will normaly turn off when its p3
duration has expired, or on receipt of a MIDI noteoff sgnal. An
insrument can modify its own duration either by changing its p3
value during note initialization, or by prolonging itself through the
action of alinenr unit.

An insrument may be turned on and left to perform indefinitely
either by giving it a negative p3 or by including an ihold in its I-time
code. If a held note is active, an i statement with matching pl will
not cause a new allocation but will take over the data space of the
held note. The new pfields (including p3) will now be in effect, and
an |-time pass will be executed in which the units can either be newly
initialized or allowed to continue as required for a tied note (see
tigoto). A held note may be succeeded either by another held note or
by a note of

finite duration. A held note will continue to perform across section
endings (see s dtatement). It is halted only by turnoff or by an i
statement with negative matching p1 or by an e statement.

A STATEMENT (or ADVANCE STATEMENT)
a pl p2 p3
This causes score time to be advanced by a specified amount without
producing sound samples.
PFIELDS
pl carriesno meaning. Usualy zero

p2 Actiontime, in beats, at which advance isto begin.
p3 Durational span (distance in beats) of time advance.

p4 |
PS5 |

SPECIAL CONSIDERATIONS

These carry no meaning.

This statement allows the beat count within a score section to be
advanced without generating intervening sound samples. This can be
of use when a score section is incomplete (the beginning or middle is
missing) and the user does not wish to generate and listen to a lot of
slence.

p2 action time and p3 distance are treated as in i statements, with
respect to sorting and modification by t statements.

An a statement will be temporarily inserted in the score by the Score
Extract feature when the extracted segment begins later than the start
of a Section. The purpose of this is to preserve the beat count and
time count of the original score for the benefit of the peak amplitude
messages which are reported on the user console.

Whenever an a statement is encountered by a performing orchestra,
its presence and effect will be reported on the user’s console.

T STATEMENT (TEMPO STATEMENT)

tpl p2 p3 pd .. (unlimited)
This statement sets the tempo and specifies the accelerations and
decelerations for the current section. This is done by converting
beatsinto seconds.

PFIELDS

pl must be zero

22

p2 initial tempo in beats per minute
p3, p5, p7, ... timesin besats (in non-decreasing order)
p4, p6, p8, ... tempi for the referenced besat times

SPECIAL CONSIDERATIONS

Time and Tempo-for-that-time are given as ordered couples that
define points on a “tempo vs time” graph. (The time-axis here isin
beats s0 is not necessarily linear.) The beat-rate of a Section can be
thought of as a movement from point to point on that graph: motion
between two points of equal height signifies constant tempo, while
motion between two points of unequal height will cause an
accelarando or ritardando accordingly. The graph can contain
discontinuities: two points given equal times but different tempi will
cause an immediate tempo change.

Motion between different tempos over non-zero time is inverse
linear. That is, an accelerando between two tempos M1 and M2
proceeds by linear interpolation of the single-beat durations from
60/M1 to 60/M2.

Thefirst tempo given must befor beat O.

A tempo, once assgned, will remain in effect from that time-point
unless influenced by a succeeding tempo, i.e. the last specified
tempo will be held to the end of the section.

A t statement applies only to the score section in which it appears.
Only one t statement is meaningful in a section; it can be placed
anywhere within that section. If a score section contains no t
Statement, then beats are interpreted as seconds (i.e. with an implicit t
0 60 statement).

N.B. If the csound command includes a -t flag, the interpreted tempo
of al score t statements will be overridden by the command-line
tempo.

SSTATEMENT

s anything

The s statement marks the end of a section.

PFIELDS

All pfidldsareignored.

SPECIAL CONSIDERATIONS

Sorting of the i, f and a statements by action time is done section by
section.

Timewarping for thet statement is done section by section.

All action timeswithin a section are relative to its beginning.

A section statement establishes a new relative time of 0, but has no
other reinitializing effects (e.g. stored function tables are preserved
across section boundaries).

A ection is conddered complete when all action times and finite
durations have been satisfied (i.e, the “length” of a section is
determined by the last occurring action or turn-off). A section can be
extended by the use of anf O statement.

A section ending automatically invokes a Purge of inactive
instrument and data spaces.

N.B. Since score statements are processed section by section, the
amount of memory required depends on the maximum number of
score statements in a section. Memory allocation is dynamic, and the
user will be informed as extra memory blocks are requested during
score processing.

For the end of the final section of a score, the s statement is optional;
the e statement may be used instead.

E STATEMENT
eanything

This statement may be used to mark the end of the last section of the
score,

PFIELDS

All pfidldsareignored.

SPECIAL CONSIDERATIONS

The e datement is contextually identicall to an s statement.
Additionally, the e datement terminates all signal generation
(including indefinite performance) and closes al input and output
files.

If an e statement occurs before the end of a score, all subsequent
scorelineswill beignored.

The e statement is optional in a score file yet to be sorted. If a score
file has no e statement, then Sort processing will supply one.

4. GEN ROUTINES

The GEN subroutines are function-drawing procedures called by f
datements to construct stored wavetables. They are available
throughout orchestra performance, and can be invoked at any point in
the score as given by p2. pl assigns a table number, and p3 the table
Sze (see f dtatement). p4 specifies the GEN routine to be called;
each GEN routine will assign special meaning to the pfield values
that follow.

GENO1
Thissubroutine transfers datafrom asoundfile into afunction table.
f # time sze 1 filcod skiptime format

size - number of points in the table. Ordinarily a power of 2 or a
power-of-2 plus 1 (see f datement); the maximum tablesize is
16777216 (2**24) points. If the source soundfile is of type AlFF,
alocation of table memory can be deferred by setting this parameter
to 0; the dze alocated is then the number of points in the file
(probably not a power-of-2), and the table is not usable by normal
ocillators, but it isusable by aloscil unit.

An AIFF source can aso be mono or stereo.

filcod - integer or character-gtring denoting the source soundfile
name. An integer denotes the file soundin.filcod ; a character-string
(in double quotes, spaces permitted) gives the filename itsdf,
optionally a full pathname. If not a full path, the file is sought first in
the current directory, then in that given by the environment variable
SSDIR (if defined) then by SFDIR. See also soundin.

skiptime - begin reading at skiptime secondsinto thefile.
format - specifiesthe audio datafile format:
1- 8-bit signed character 4 - 16-bit short integers
2- 8-hit A-law bytes 5- 32-hit long integers
3- 8-hit U-law bytes 6- 32-hit floats

If format = O the sample format is taken from the soundfile header, or
by default from the csound -0 command flag.

Reading stops at end-of-file or when the table is full. Table locations
not filled will contain zeros.

23

Note:

If p4 is podtive, the table will be post-normalized (rescaled to a
maximum absolute value of 1 after generation). A negative p4 will
cause rescaling to be skipped.

f 10819212304

f 200-1 “trumpet A#5" 0 4

The tables are filled from 2 files, “soundin.23” and “trumpet A#5”,
expected in SSDIR or SFDIR. The firg table is pre-allocated; the
second isallocated dynamically, and its rescaling is inhibited.

GENO02

This subroutine transfers data from immediate pfields into a function
table.

f # time size 2 vl v2 v3 . ..
size - number of points in the table. Must be a power of 2 or a
power-of-2 plus 1 (see f statement). The maximum tablesize is
16777216 (2**24) points.
vl, v2, v3, ... - values to be copied directly into the table space. The
number of values is limited by the compiletime variable PMAX,
which controls the maximum pfields (currently 150). The values
copied may include the table guard point; any table locations not
filled will contain zeros.
Note:
If p4 is podtive, the table will be post-normalized (rescaled to a
maximum absolute value of 1 after generation). A negative p4 will
cause rescaling to be skipped.
Example:

f1016-2012345678910110
This calls upon GENO2 to place 12 values plus an explicit wrap-
around guard value into a table of sze next-highest power of 2.
Rescaling isinhibited.
GENO3

This subroutine generates a stored function table by evaluating a

polynomial in x over a fixed inter- val and with specified
coefficients.
f # time size 3 xval xvd2 cO cl c2 ... cn

size - number of points in the table. Must be a power of 2 or a
power-of-2 plus 1 (seef statement).

xvall, xval2 - left and right values of the x interval over which the
polynomial is defined (xvall < xval2). These will produce the 1st
stored value and the (power-of-2 plus I)th stored value respectively in
the generated function table.

0, 1, c2, ... cn - coefficients of the nth-order polynomial

c0+clx+c2x2+. . . +cnxn

Coefficients may be positive or negative real numbers, a zero denotes
a missing term in the polynomial. The coefficient list begins in p7,
providing a current upper limit of 144 terms.

Note:

The defined segment [fn(xval1),fn(xval2)] isevenly distributed.

24

Thus a 512-point table over the interval [-1,1] will have its origin at
location 257 (at the start of the 2nd half). Provided the extended
guard point is requested, both fn(-1) and fn(1) will exist in the table.

GENO3 is useful in conjunction with table or tablei for audio
waveshaping (sound modification by non-linear distortion).

Coefficients to produce a particular formant from a snusoidal lookup
index of known amplitude can be determined at preprocessing time
using algorithms such as Chebyshev formul ae.

Seealso GEN13.

Example:

f1010253-11543221

This calls GENOS to fill a table with a 4th order polynomial function
over the x-interval -1 to 1. The origin will be at the offset postion
512. Thefunction ispost-normalized.

GENO04

This subroutine generates a normalizing function by examining the
contents of an existing table.

f # time sze 4 source# sourcemode

size - number of pointsin the table. Should be power-of-2 plus
1. Must not exceed (except by 1) the size of the sourcetable
being examined; limited to just half that size if the sourcemode
isof type offset (see below).

source# - table number of stored function to be examined.

sourcemode - a coded val ue, specifying how the source tableisto

be scanned to obtain the normalizing function. Zero indicates that
the source is to be scanned from left to right. Non-zero indicates that
the source has a bipolar structure; scanning will begin at the mid-
point and progress outwards, looking at pairs of points equidistant
from the center.

Note:

The normalizing function derives from the progressve absolute
maxima of the source table being scanned. The new table is created
|eft-to-right, with stored values equal to 1/(absolute maximum so far
scanned). Stored values will thus begin with 1/(first value scanned),
then get progressvely smaller as new maxima are encountered. For
a source table which is normalized (values <= 1), the derived values
will range from L/(first value scanned) down to 1. If the first value
scanned is zero, that inversewill be set to 1.

The normalizing function from GENO4 isnot itself normalized.
GENO04 is useful for scaling a table-derived signal so that it has a
condgtent peak amplitude. A particular application occurs in

waveshaping when the carrier (or indexing) signal is less than full
amplitude.

Example:

f205124 11

This creates a normalizing function for use in connection with the
GENO3 table 1 example. Midpoint bipolar offset is specified.

GENO5, GENO7

These subroutines are used to congtruct functions from segments of
exponential curves (GENO5) or straight lines (GENO7).

f# time sze 5 anl bn2c...
f# time sze 7 anl bn2c...

Size - number of points in the table. Must be a power of 2 or power-
of-2 plus1 (seef statement).

a, b, c, etc. - ordinate values, in odd-numbered pfields p5, p7, po, . .
For GENO5 these must be nonzero and must be aike in sign. No
such regtrictions exist for GENO7.

nl, n2, etc. - length of segment (no. of storage locations), in even-
numbered pfields. Cannot be negative, but a zero is meaningful for
specifying discontinuous waveforms (e.g. in the example below).
The sum n1 + n2 + ... will normally equal sze for fully specified
functions. If the sum is smaller, the function locations not included
will be set to zero; if the sum is greater, only the first size locations
will be stored.

Note:

If p4 is podtive, functions are post-normalized (rescaled to a
maximum absolute value of 1 after generation). A negative p4 will
cause rescaling to be skipped.

Discrete-point linear interpolation implies an increase or decrease
aong a segment by equal differences between adjacent locations,
exponential interpolation implies that the progresson is by equal
ratio. In both forms the interpolation from ato b is such as to assume
that the value b will be attained in the n + 1th location. For
discontinuous functions, and for the segment encompassng the end
location, this value will not actually be reached, athough it may
eventually appear asaresult of final scaling.

Example:
f 1026 70128 10-1128 0

This describes a single-cycle sawtooth whose discontinuity is mid-
way in the stored function.

GENO06

This subroutine will generate afunction comprised of segments of
cubic polynomials, spanning specified points just three at atime.

f# time sze 6 anl bn2cn3d.

Size - number of points in the table. Must be a power off or power-
of-2 plus1 (seef satement).

a C € .. - loca maxima or minima of successve segments,
depending on the relation of these points to adjacent inflexions. May
be either positive or negative.

b, d, f, ... - ordinate values of points of inflexion at the ends of
successive curved segments. May be positive or negative.

nl, n2, n3.. - number of stored values between specified points.
Cannot be negative, but a zero is meaningful for specifying
discontinuities. The sum nl + n2 + ... will normally equal size for
fully specified functions. (for details, see GENO5).

Note:

GENO06 congructs a gored function from segments of cubic
polynomial functions. Segments link ordinate values in groups of 3:
point of inflexion, maximum/minimum, point of inflexion. The first
complete segment encompasses b,c,d and has length n2 + n3, the
next encompasses def and has length nd + n5, etc. The firg
segment (a,b with length nl) is partial with only one inflexion; the
last segment may be partial too. Although the inflexion points b,d,f
. each figure in two segments (to the left and right), the dope of the
two segments remains independent at that common point (i.e. the 1st
derivative will
likely be discontinuous). When a,ce... are aternately maximum and
minimum, the inflexion joins will be reativedy smooth; for
successve maxima or successve minima the inflexions will be
comb-like.

Example:
f 10 6 6016 5 16 1 16 0 16-1

This creates a curve running 0 to 1 to -1, with a minimum, maximum
and minimum at these values respectively. Inflexions are at .5 and
0, and are relatively smooth.

GENO08

This subroutine will generate a piecewise cubic spline curve, the
smoothest possible through all specified points.

f # time size 8 a nl b n2 ¢ n3d...

size - number of pointsin the table. Must be a power of 2 or
power-of-2 plus 1 (seef statement).

a, b, c... - ordinate values of the function.

nl, n2, n3 ... - length of each segment measured in stored
values. May not be zero, but may befractional. A particular
segment may or may not actually store any values, stored values
will be generated at integral pointsfrom the beginning of the
function. Thesumnl + n2 + ... will normally equal sizefor
fully specified functions.

Note:

GENO8 congtructs a stored table from segments of cubic polynomial
functions. Each segment runs between two specified points but
depends as well on their neighbors on each sde. Neighboring
segments will agree in both value and dope at their common point.
(The common dope is that of a parabola through that point and its
two neighbors). The dope at the two ends of the function is
congtrained to be zero (flat).

Hint: to make a discontinuity in dope or value in the function as
stored, arrange a series of points in the interval between two stored
values, likewisefor a non-zero boundary slope.

Examples:

f 1065 8 0 16 0 16 1 16 016 O

This example creates a curve with a smooth hump in the middie,
going briefly negative outside the hump then flat at itsends.
f206580160.101591 1590 .10160

Thisexampleissimilar, but does not go negetive.

25

GENO09, GEN10, GEN19

These subroutines generate composite waveforms made up of
weighted sums of smple sinusoids. The specification of each
contributing partial requires 3 pfields usng GENQ9, 1 using GEN10,
and 4 using GEN19.

f # time sze 9 pna dra phsa pnb strb phsb . . .
f # timesize 10 strl str2 str3 str4
f # time dze 19 pna dstra phsa dcoa pnb strb phsb cob. .

size - number of points in the table. Must be a power of 2 or power-
of-2 plus1 (seef satement).

pna, pnb, etc. - partial no. (relative to a fundamental that would
occupy Size locations per cycle) of snusoid a, sinusoid b, etc. Must
be postive, but need not be a whole number, i.e, non-harmonic
partialsare permitted. Partialsmay bein any order.

sra, srb, etc. - strength of partials pna, pnb, etc. These are relative
dsrengths, since the composite waveform may be rescaled later.
Negative values are permitted and imply a 180 degree phase shift.

phsa, phsb, etc. - initial phase of partials pna, pnb, etc., expressed in
degrees.

dcoa, dcob, etc. - DC offset of partialspna, pnb, etc. This
isapplied after strength scaling, i.e. avalue of 2 will lift a
2-gtrength sinusoid from range [-2,2] to range [0,4] (before
later rescaling).

srl, str2, sir3, etc. - relative strengths of the fixed harmonic partial
numbers 1,2,3, etc., beginning in p5. Partials not required should be
given a strength of zero.

Note:

These subroutines generate stored functions as sums of snusoids of
different frequencies. The two major restrictions on GEN10Nthat the
partials be harmonic and in phaseNdo not apply to GENO9 or
GEN19.

In each case the composite wave, once drawn, is then rescaled to
unity if p4 was pogditive. A negative p4 will cause rescaling to be
skipped.

1024 9 1 3 0 3 1 0 9 .3333 180
1024 19 5 1270 1

f 1 combines partials |, 3 and 9 in the relative strengths in which they
are found in a square wave, except that partial 9 isupside down. f 2
createsarising sigmoid [0 - 2]. Both will be rescaled.
GEN11
This subroutine generates an additive set of cosine partials, in the
manner of Csound generators buzz and gbuzz.

f # time size 11 nh Ih r
Size - number of points in the table. Must be a power of 2 or power-
of-2 plus1 (seef satement).
nh - number of harmonicsrequested. Must be positive.
Ih (optional) - lowest harmonic partial present. Can be postive, zero
or negative. The set of partials can begin at any partial number and

proceeds upwards; if 1h is negative, al partials below zero will reflect
in zero to produce podtive partials without phase change (snce

cosne is an even function), and will add congructively to any
positive partialsin the set. The default valueis 1.

r (optional) - multiplier in an amplitude coefficient series. This is a
power series: if the hth partial has a strength coefficient of A the (Ilh
+ n)th partial will have a coefficient of A * r**n, i.e. strength values
trace an exponential curve. r may be positive, zero or negative, and
isnot restricted to integers. The default valueis 1.

Note:

This subroutine is a non-time-varying version of the csound buzz and
gbuzz generators, and is smilarly useful as a complex sound source
in subtractive synthesis. With |h and r present it paralels gbuzz;
with both absent or equal to 1 it reduces to the smpler buzz (i.e. nh
equal-strength harmonic partials beginning with the fundamental).

Sampling the stored waveform with an oscillator is more efficient
than using dynamic buzz units. However, the spectral content is
invariant, and care is necessary lest the higher partials exceed the
Nyquist during sampling to produce foldover.

Examples:

f1 0 2049 11 4

f2 0 2049 11 4 1 1

f3 0 2049-11 7 3 5

The first two tables will contain identical band-limited pulse waves
of four egual-grength harmonic partials beginning with the
fundamental. The third table will sum seven consecutive harmonics,
beginning with the third, and at progressively weaker strengths (1, .5,
.25,.125. .). It will not be post-normalized.

GEN12

This generates the log of a modified Bessal function of the second
kind, order O, suitable for usein amplitude-modulated FM.

f # time size -12 xint

size - number of points in the table. Must be a power of 2 or a
power-of-2 plus 1 (see f statement). The normal value is power-of-2
plusl.

xint - specifies the x interval [0 to +int] over which the function is
defined.
Note:

This subroutine draws the natural log of a modified Bessdl function
of the second kind, order 0 (commonly written as | subscript 0), over
thex-interval requested. The call should have rescaling inhibited.

The function is useful as an amplitude scaling factor in cycle-
synchronous amplitude-modulated FM. (See Palamin & Palamin, J.
Audio Eng. Soc., 36/9, Sept. 1988, pp.671-684.) The algorithm is
interesting because it permits the normally symmetric FM spectrum
to be made asymmetric around a frequency other than the carrier, and
is thereby useful for formant postioning. By using a table lookup
index of I(r - 1/r), where | is the FM modulation index and r is an
exponential parameter affecting partial strengths, the Palamin
algorithm becomes relatively efficient, requiring only oscil’s, table
lookups, and a single exp call.

Example:
f 1 0 2049 -12 20

Thisdrawsan unscaled In(10(x)) from O to 20.

GEN13, GEN14

26

These subroutines use Chebyshev coefficients to generate stored
polynomial functions which, under waveshaping, can be used to split
a snusoid into harmonic partials having a predefinable spectrum.

f # time size 13 xint xamp M hl h2 ... hn
f # time dze 14 xint xamp hO hl h2 ... hn

size - number of points in the table. Must be a power of 2 or a
power-of-2 plus 1 (see f statement). The normal value is power-of-2
plusl.

xint - provides the left and right values [-xint, +xint] of the x interval
over which the polynomial is to be drawn. These subroutines both
call GENO3 to draw their functions, the p5 value here is therefor
expanded to a negative-positive p5,p6 pair before GENO3 is actually
caled. Thenormal valueis1.

xamp - amplitude scaling factor of the sinusoid input that is expected
to produce the following spectrum.

ho, hl, h2, ... hn - reative strength of partials 0 (DC), 1
(fundamental), 2 ... that will result when a sinusoid of amplitude
xamp * int(sze/2)/xint is waveshaped using this function table.
These values thus describe a frequency spectrum associated with a
particular factor xamp of theinput signal.

Note:

GEN13 is the function generator normaly employed in standard
waveshaping. It stores a polynomial whose coefficients derive from
the Chebyshev polynomials of the firs kind, so that a driving
snusoid of strength xamp will exhibit the specified spectrum at
output. Note that the evolution of this spectrum is generally not
linear with varying xamp. However, it is bandlimited (the only
partials to appear will be those specified at generation time); and the
partials will tend to occur and to develop in ascending order (the
lower partials dominating at low xamp, and the spectral richness
increasing for higher values of xamp). A negative hn value implies a
180 degree phase shift of that partial; the requested full-amplitude
spectrum will not be affected by this shift, although the evolution of
several of its component partials may be. The pattern +,+,-,-,+,+,...
for hO,h1,h2... will minimize the normalization problem for low
xamp values (see above), but does not necessarily provide the
smoothest pattern of evolution.

GEN14 dores a polynomial whose coefficients derive from
Chebyshevs of the second kind.

Example:
f 1 01025 13 11 0 5 0 3 01
This creates a function which, under waveshaping, will split a
sinusoid into 3 odd-harmonic partials of relative strength 5:3:1.
GEN15
This subroutine creates two tables of stored polynomia functions,

suitable for usein phase quadrature operations.

f # time dze 15 xint xamp hO phsO hl phsl h2 phs2 . .

size - number of points in the table. Must be a power of 2 or a
power-of-2 plus 1 (see f statement). The normal value is power-of-2
plusl.

xint - provides the left and right values [-xint, +xint] of the x interval
over which the polynomial is to be drawn. This subroutine will
eventually call GENO3 to draw both functions, this p5 value is

therefor expanded to a negative-positive p5, p6 pair before GENO3 is
actually called. Thenormal valueis 1.

xamp - amplitude scaling factor of the sinusoid input that is expected
to produce the following spectrum.

ho, hl, h2, .. hn - relative drength of partials 0 (DC), 1
(fundamental), 2 ... that will result when a sinusoid of amplitude
xamp * int(sze/2)/xint is waveshaped using this function table.
These values thus describe a frequency spectrum associated with a
particular factor xamp of the input signal.

phsO, phsl, ... - phase in degrees of desired harmonics hO, hi, ...
when the two functions of GEN15 are used with phase quadrature.

Note:

GEN15 creates two tables of equal sze, labdled f # and f # + 1.
Table # will contain a Chebyshev function of the first kind, drawn
usng GENO3 with partial strengths hOcos(phsD), hlcog(phsl), ...
Table #+1 will contain a Chebyshev function of the 2nd kind by
calling GEN14 with partials hlsin(phsl), h2sin(phs2),... (note the
harmonic displacement). The two tables can be used in conjunction
in a waveshaping network that exploits phase quadrature.

GEN17

This subroutine creates a step function from given x -y pairs.

f # time size 17 x1ax2bx3c...

size - number of points in the table. Must be a power of 2 or a
power-of-2 plus 1 (see f statement). The normal value is power-of-2
plusl.

x1, X2, x3, etc. - x-ordinate values, in ascending order, Ofirst.

a b, ¢, ec. - y-values at those x-ordinates, held until the next x-
ordinate.

This subroutine creates a step function of x-y pairs whose y-values
are held to the right. The right-most y-value is then held to the end
of the table. The function is useful for mapping one set of data
values onto another, such as MIDI note numbers onto sampled sound
ftable numbers (seeloscil).

Example:

f10128-17 01 122 243 364 485606 727 84 8

This describes a step function with 8 successively increasing levels,
each 12 locations wide except the last which extends its value to the
end of the table. Rescaling is inhibited. Indexing into this table with
a MIDI note-number would retrieve a different value every octave up
to the eighth, above which the val ue returned would remain the same.

5. SCOT: A Score Translator

Scot is a language for describing scores in a fashion that parallds
traditional music notation. Scot is also the name of a program which
trandates scores written in this language into standard numeric score
format so that the score can be performed by Csound. The result of
this trandation is placed in a file called score. A score file written in
Scot (named filesc, say) can be sent through the trandator by the
command

scot filesc

The resulting numeric score can then be examined for errors, edited,
or performed by typing

27

csound fileorc score
Alternatively, the command
csound fileorc -Sfilesc

would combine both processes by informing Csound of the initial
score format.

Internally, a Scot score has at least three parts a section to define
instrument names, a section to define functions, and one or more
actual score sections. It is generally advisable to keep score sections
short to facilitate finding errors. The overall layout of a Scot score
has three main sections:

orchestra{ ... }
functions{}
scoref ... }

Thelast two sections may be repeated as many times as desired.

The functions section is also optional. Throughout this Scot
document, bear in mind that you are free to break up each of these
divisons into as many lines as seem convenient, or to place a
carriage return anywhere you are allowed to insert a space, including
before and after the curly brackets. Furthermore, you may use as
many spaces or tabs as you need to make the score easy to read. Scot
imposes no formatting restrictions except that numbers, instrument
names, and keywords (for example, orchestra) may not be broken
with spaces. You may insert comments (such as measure numbers)
anywhere in the score by preceding them with a semicolon. A
semicolon causes Scot to ignore therest of aline.

Orchestra Declaration Section

The orchestra section of a Scot score serves to designate instrument
names for use within the score. This is a matter of convenience,
since an orchestra knows instruments only by numbers, not names.
If you declare three instruments, such as:

orchestra { flute=1 cello=2 trumpet=3 }

Csound will neither know nor care what you have named the note
lists. However, when you use the name $flute, Scot will know you
are referring to instr 1 in the orchestra, $cello will refer to instr 2, and
$trumpet will be instr 3. You may meaningfully skip numbers or
give several ingruments the same number. It is up to you to make
sure that your orchestra has the correct instruments and that the
asociation between these names and the instruments is what you
intend. There is no limit (or a very high one, at least) as to how
many instrumentsyou can declare.

Function Declaration Section

The major purpose of this divison is to alow you to declare function
tables for waveforms, envelopes, etc. These functions are declared
exactly as specified for Csound. In fact, everything you type
between the brackets in this section will be passed directly to the
resulting numeric score with no modification, so that mistakes will
not be caught by the Scot program, but rather by the subsequent
performance. You can use this section to write notes for instruments
for which traditional pitch-rhythm notation is inappropriate. The
most common example would be turning on a reverb instrument.
Ingruments referenced in this way need not appear in the Scot
orchestra declaration.

Hereisa possible function declaration:

functions {

f102561010.50.3
f202567064164.7640
i90-13 ;thisturnsoninstr 9

}
Scor e Section

The Scot statements contained insde the braces of each score
Statement is trandated into a numeric score Section (q.v.). It iswise

to keep score sections small, say seven or eight measures of five
voices at atime. This avoids overloading the system, and simplifies
error checking.

The beginning of the score section is specified by typing:
score{

Everything which follows until the braces are closed is within a
single section. Within this section you write measures of notes in
traditional pitch and rhythm notation for any of the instrument names
listed in your orchestra declaration. These notes may carry additional
information such as durs, ties and parameter fields. Let us now
congider theformat for notes entered in a Scot score.

The firgt thing to do is hame the instrument you want and the desired
meter. For example, to write some 4/4 measuresfor the cello, type:

$cello
Iti “4/4”

The dollar sgn and exclamation point tell Scot that a special
declarator follows. The time signature declarator is optional; if
resent, Scot will check the number of beatsin each measure for you.

Pitch and Rhythm

The two basic components of a note statement are the pitch and
duration. Pitch is specified using the aphabetic note name, and
duration is specified usng numeric characters. Duration is indicated
at the beginning of the note as a number representing the division of
a whole beat. You may aways find the number specifying a given
duration by thinking of how many times that duration would fit in a
4/4 measure. Also, if the duration is followed by a dot (*.’) it is
increased by 50%, exactly as in traditional notation. Some sample
durations are listed below:

whole note 1
half note 2
double dotted quarter 4..
dotted quarter note 4.

quarter note 4
half notetriplet 6

eighth note 8
eighth note triplet 12
sixteenth note 16

thirty-second note 32

Pitch is indicated next by first (optionally) specifying the register and
then the note name, followed by an accidental if desired. Normally,
the “octave following” feature is in effect. This feature causes any
note named to lie within the interval of an augmented fourth of the
previous note, unless a new register is chosen. The first note you
write will always be within a fourth of middle ¢ unless you choose a
different register.

For example, if the first note of an instrument part is notated g flat,
the scot program assigns the pitch corresponding to the g flat below
middle c. On the other hand, if the first note is f sharp, the pitch
assgned will bethef sharp above middie c.

Changes of register are indicated by a preceding apostrophe for each
octave displacement upward or a preceding comma for each octave
displacement downward. Commas and apostrophes always displace
the pitch by the desired number of octaves starting from that note
which iswithin an augmented fourth of the previous pitch.

If you ever get logt, prefacing the pitch specification with an "=
returns the reference to middle c. It is usually wise to use the equals
sign in your first note statement and whenever you fedl uncertain as
to what the current regigtration is. Let us now write two measures for
the cello part, the first starting in the octave below middle ¢ and the
second repeating but starting in the octave above middle c:

$cello
Iti “4/4”
4=g4e4d 4c/ 4='gdedd 4c

28

As you can see, a dash indicates a new measure and we have chosen
to use the dummy middle ¢ to indicate the new register. A more
convenient way of notating these two measures would be to type the
following:

$cello
Iti “4/4”
4=gedc/‘‘gedc

You may observe in this example that the quarter note duration
carries to the following notes when the following durations are |eft
ungpecified. Also, two apostrophes indicate an upward pitch
displacement of two octaves from two g's below middle ¢, where the
pitch would have fallen without any modification. It is important to
remember three things, then, when specifying pitches:

1) Note pitches specified by letter name only (with or without
accidental) will always fall within an interval of a fourth from the
preceding pitch.

2) These pitches can be octave displaced upward or downward by
preceding the note letter with the desired number of apostrophes or
commas.

3) If you are unsure of the current register, you may begin the pitch
component of the note with an eguals sign which acts as a dummy
middlec.

The pitch may be modified by an accidental after the note name:

n natural

sharp

- (hyphen) flat

H double sharp

-- (double hyphen) doubleflat

Accidentals are carried throughout the measure just as in traditional
music notation. However, an accidental specified within a measure
will hold for that note in all registers, in contrast with traditional
notation. Therefore, make sure to specify n when you no longer want
an accidental applied to that pitch-class.

Pitches entered in the Scot score are trandated into the appropriate
octave point pitch-class value and appear as parameter p5 in the
numeric score output. This means you must design your instruments
to accept p5 aspitch.

Rests are notated just like notes but using the letter r instead of a
pitch name. 4r therefore indicates a quarter rest and 1r a whole rest.
Durations carry from rest to rest or to following pitches as mentioned
above.

The tempo in beats per minute is specified in each section by
choosing a single instrument part and using tempo statements (e.g.
t90) at the various points in the score as needed. A quarter note is
interpreted as a single beat, and tempi are interpolated between the
intervening beats (see score t statement).

Scot Examplel

A Scot encoding of this score might appear asfollows:

; A BASIC Tune

orchestra{ guitar=1 bass=2}
functions {
f10512101.5.25.126
f20256 711201801281
}

score { ;sectionl

$guitar

Iti “4/4"

4=c8de fr4='c/

8b 16aag g-f 4e- ¢/

$bass

2=,c'al

g =c

}

score { ;section2
$guitar

Iti “4/4”
6="crc4..ci## 16e-/
of rf 4.f## 16b/
$bass
4=,c'g,c'd

2=a g/

}

The score resulting from this Scot notation is shown at the end of this

chapter.
Groupettes
Duration numbers can have any integral value; for instance,

Itime “ 4/4”
Scdefg/

would encode a measure of 5 in the time of 4 quarter notes.

However, specification of arbitrary rhythmic groupings in this way is
at best awkward. Instead, arbitrary portions of the score section may
be enclosed in groupette brackets. The durations of all notes insde
groupette brackets will be multiplied by a fraction n/d, where the
musical meaning isd in thetime of n.

Assuming d and n here are integers, groupette brackets may take
these several forms:

{dn: ... :} dinthetimeof n
{d:.. 3} nwill be the largest power of 2 less than d
{: ... d=3, =2 (normal triplets)

It can be seen that the second and third form are abbreviations for the
more common kinds of groupettes. (Observe the punctuation of each
form carefully.) Groupettes may be nested to a reasonable depth.
Also, groupette factors apply only after the written duration is carried
from note to note. Thus, the following example is a correct
specification for two measures of 6/8 time:

Itime “6/8" 8cde {4:3: fgab:} / crc4.c/

The notes inside the groupette are 4 in the space of 3 8th notes, and
the written-8th-note duration carries normally into the next measure.
This closely parallels the way groupette brackets and note durations
interact in standard notation.

Slursand Ties

Now that you understand part writing in the Scot language, we can
start discussing more elaborate features. Immediately following the
pitch specification of each note, one may indicate a dur or atie into
the next note (assuming there is one), but not both smultaneoudy.
The dur is typed as a single underscore ("_’) and a tie as a double
underscore (__'). Despite the surface smilarity, there is a
subgtantial differencein the effect of these modifiers.

For purposes of Scot, tied notes are notes which, although comprised
of several graphic symbols, represent only a single musical event.
(Tied notes are necessary in standard music notation for severa
reasons, the most common being notes which span a measure line
and notes with durations not specifiable with a single symbol, such as
quarter note tied to a sxteenth). Notes which are tied together are
summed by duration and output by Scot as a single event. This
means you cannot, for example, change the parameters of a note in
the middle of a tie (see below). Two or more notes may be tied
together, as in the following example, which plays an f# for eeven
beats:

Iti “4/4”
14 I1f4 [2.f#4r/

By contrast, durred notes are treated as distinct notes at the Csound
level, and may be of arbitrary pitch. The presence of a dur is
reflected in parameter p4, but the dur has no other meaning beyond
theinterpretation of p4 by your instrument.

Since instrument design is beyond the scope of this manual, it will
suffice for now to explain that the Scot program gives sets p4 to one
of four values depending on the existence of a dur before and after
the note in question. This means Scot pays attention not only to the
dur attached to a given note, but whether the preceding note
specified a dur. The four possbilities are as follows, where the p4
valuesare taken to apply to the note d’:

4c d (no slur) p4d=0
4c d_ (durafteronly) p4=1
4c_d (slur beforeonly) p4=2
4c_d_ (before & after) p4=3

Parameters

The information contained in the Scot score notation we have
consdered so far is manifested in the output score in parameters pl
through p5 in thefollowing way:

pl: instrument number

p2: initidization time of instrument

p3: duration

p4: dur information

p5: pitch information in octave point pitch-class notation

Any additional parameters you may want to enter are listed in
brackets as the last part of a note specification. These parameters
sart with p6 and are separated from each other with spaces. Any
parameters not specified for a particular note have their value carried
from the most recently specified value. You may choose to change
some parameters and not others, in which case you can type a dot
(.") for parameters whose values don't change, and new values for
those that do. Alternatively, the congtruction N:, where N is an
integer, may be used to indicate that the following parameter
specifications apply to successive parameters starting with parameter
N. For example:

4¢[15000 3 4 12:100 150] g_d_[10000.5] ¢

Here, for the firs two quarter notes p6, p7, p8, pl2, and pl3
respectively assume the values 15000, 3, 4, 100, and 150. The values
of p9 through pll are either unchanged, or implicitly zero if they
have never been specified in the current section. On the third quarter
note, the value of p6 is changed to 10000, and the value of p8 is
changedto 5. All othersare unchanged.

Normally, parameter values are treated as globalsNthat is, a value
specification will carry to successve notes if no new vaue is
specified. However, if a parameter specification begins with an
apostrophe, the value applies locally to the current note only, and
will not carry to successive notes either horizontally or verticaly (see
divis below).

Pfield M acros

Scot has a macro text substitution facility which operates only on the
pfield specification text within brackets. It allows control values to
be specified symbolically rather than numerically. Macro definitions
appear indde brackets in the orchestra section. A single bracketed
lig of macro definitions preceding the first instrument declaration
defines macros which apply to al instruments. An additional
bracketed list of

definitions may follow each instrument to specify macros that apply
tothat particular instrument.

orchestra {
[pp=2000 p=4000 mp=7000 mf=10000 f=20000 ff=30000
modi =11: w=1x=2y=32z=4
vib="10:1" novib ="10:01"
]

violin=1 [pizz=" 20:1" arco=" 20:0"]
serpent=3 [ff =25000sfz = ‘f sffz = 'ff]

score{

$violin=4c[mf modi z.y novib] dea[‘f vib3] /
8 b[pizz]c 4d[f] 2c[ff arco] /

$serpent =, 4.c[mp modi y.x] 8b 2c/
‘of 1, c[ff]/

As can be seen from this example, a macro definition consists of the
macro name, which is a string of alphabetic characters, followed by
an equal sign, followed by the macro value. As usual, spaces, tabs,
and newlines may be used freely. The macro value may contain
arbitrary characters, and may be quoted if spacing characters need to
beincluded.

When a macro name is encountered in bracketed pfidd ligts in a
score section, that name is replaced with the macro text with no
additional punctuation supplied. The macro text may itself invoke
other macros, although it is a serious error for a macro to contain
itsdf, directly or indirectly. Since macro names are identified as
srings of alphabetic characters, and no additional spaces are
provided when a macro is expanded, macros may easly perform
such concatenations as found in the first serpent note above, where
the integer and fractional parts of a single pfield are constructed.
Also, a macro may do no more than define a symbolic pfield, as in
the definition of modi. The primary intention of macros isin fact not
only to reduce the number of characters required, but also to enable
symbolic definitions of parameter numbers and parameter values.
For ingtance, a particular instrument’s interpretation of the dynamic
ff can be changed merely by changing a macro value, rather than
changing all occurrences of that particular valuein the score.

Divisi

Notes may be stacked on top of each other by usng a back arrow
(°<') between the notes of the divis. Each time Scot encounters a
back arrow, it understands that the following note is to start at the
sametime asthe note to the [ft of the back arrow.

Durations, accidentals and parameters carry from left to right through
the divis. Each time these are given new values, the notes to the
right of the back arrows also take on the new values unless they are
specified again.

When writing divis you can stack compound events by enclosing
them in parentheses. Also, divis which occur at the end of the
measure must have the proper durations or the scot program will mis-
interpret the measure duration length.

Scot Examplell

Scot encoding:

orchegtra{ right=1 left=2}

functions{ f1 0 256 10 1}

score{

$right 'key “-b”

; Sincep5 ispitch, p7 is set to the pitch of next note

Iti “2/4”

Inext p5 “p7” ;since p5is pitch, p7 refersto pitch of next note
Inext p6 “p8” ;If p6isvol, say, then p8 refersto vol of next note
t90

8r c[3 np5]<e<='gr c<f<a/t90r d<g<br =c[5]<f<a__ /

Iti “4/4”

t80

4d_<f__<(8ag_) 4c<(8fe)<4g 4.c<f<f 8r/

$left 'key “-b”

Inext p5 “p7”

Inext p6 “p8”

Iti “2/4”

8=,c[3np5] rfr/erfr/

Iti “4/4"

2b_[5]<(4=,b_c) 4.a<f 8r/
}

30

Notice in this example that tempo statements occurred in instrument
‘right' only. Also, al notes had p6=3 until the third measure, at
which point p6 took on the value 5 for all notes. The next parameter
option used is described in Additional Features. The output score is
given at theend.

Additional Features

Several options can be included in any of the individual instrument
parts within a section. A sample statement follows the description of
each option. The keyword which follows the *I" in these statements
may be abbreviated to thefirst two characters.

Key Signatures

Any desired key signature is specified by lising the accidentals as
they occur in a key sgnature statement. Thereafter, all notes of that
instrument part are sharpened or flattened accordingly. For example,
for thekey of D, type

Ikey “#c"
Accidental Following

Accidental following may be turned on or off as needed. When
turned off, accidentals no longer carry throughout the measure as in
traditional notation. This convention is sometimes used in
contemporary scores.

laccidentals “ of f”
Octave Following

Turning off octave following indicates that pitches stay in the same
absolute octave register until explicitly moved. An absolute octave
gtarts at pitch ¢ and ends at the b above it. The octave middle-c-to-b
is indicated with an eguals sign ('=') and octave displacement is
indicated with the appropriate number of commas or apostrophes.
These displacements are cummulative. For example,

loctaves “ of f”
4='cgb‘c

gartsat the ¢ above middle c and ends at two ¢’'s above middie c.
Vertical Following

Turning off vertical following means that durations, register, and
parameters only carry horizontally from note to note and not
vertically as described in the section on divisi.

Ivertical “off”
Trangposition

Any instrument part can be transposed to another key by indicating
the intervalic difference between the notated key and the desired key.
This difference is aways taken with reference to middle ¢ - to
transpose a whole step upward, for example, type

Itranspose “d”

This indicates that the part is trangposed by the interval difference
between middle c and d.

Next-value and Previous-value Parameteres

In order to play a note, it is sometimes necessary for an instrument to
know what value one or more parameters will have for the next note.
For ingance, an instrument might be designed which glisses during
the last portion of its performance (perhaps only when a dur is
indicated) from its written pitch to the pitch of the next note. This
can only be done, of course, if the instrument can know what the
pitch of the next notewill be.

The necessary information can be provided usng next-value
parameters. A next value parameter might be declared by

Inext p5 “p6”

which is interpreted to mean that for the current instrument, p6 will
contain the next note's p5 value. This holds true globally for all
occurences of this instrument until further modifications. If for any
reason you wish to override this value, p6 may be filled in explicitly.
This is sometimes useful for the last note of a section, for which p6
will otherwise assume the p5 value for the current note. The next-
valuefeatureisillustrated in the Scot example 1.

The necessary information may also be provided using standard
numeric score next-value parameters. A parameter argument
containing the symbol npx (where x is an integer) will subgtitute
parameter number x of thefollowing note for that instrument.

Similarly, the value of a parameter occurring during the previous
note may be referenced with the symbol ppx (where X is an integer).
Details of the next- and previousvalue parameter feature may be
found in the Numeric Scores section.

Ramping

Pfields containing the symbol < will be replaced by values derived
from linear interpolation of a time-based ramp. Ramp endpoints are
defined by the first real number found in the same pfield of a
preceding and following note played by the same instrument. Details
of the ramping feature are likewise found in the Numeric Scores
section.

fO Statements

In each score section, Scot automatically produces an fO statement
with a p2 equal to the ending time of the last note or rest in the
section. Thus, “dead time' at the end of a section for reverberation
decay or whatever purpose may be specified musically by rests in
one or more parts. See the eighth rest at the end of Scot example Il
and its output score shown below.

Output Scores
Output file score from Scot Examplel.

f10512101.5.25.126
f20256 711201801281
i1.010108.00
i1.0110508.02
i1.011.50508.03
i1.0120.508.05
i1.013109.00
i1.0140.7508.10

i1.01 4.750.2508.09
i1.0150.2508.08

i1.01 5.250.25 0 8.07
i1.015.50.2508.06
i1.015.750.2508.05
i1.016108.03
i1.017108.00
i2.010206.00
i2.012206.08
i2.014206.07
i2.016207.00

t0 60

fo8

S

i1.01 0 0.6667 0 9.00
i1.01 1.33330.6667 0 9.00
i1.0121.7509.02
i1.013.750.2509.03
i1.01 4 0.6667 0 9.05
i1.01 5.33330.6667 0 9.05
i1.0161.7509.07

i1.01 7.750.2509.09
i2.010106.00
i2011106.07

31

i2.012106.00
i2.013106.07
i2014207.08
i2016207.07
t0 60

fo8

S

Output file score from Scot Examplell.

f10256101

crln75

crln86

i1.01 0.5000 0.5000 08.0038.00 3
i1.02 0.5000 0.500008.04 38.053
i1.03 0.5000 0.5000 08.07 38.09 3
i1.01 1.5000 0.500008.0038.01 3
i1.02 1.5000 0.5000 0 8.0538.07 3
i1.03 1.5000 0.500008.0938.10 3
i1.01 2.5000 0.500008.0138.005
i1.02 2.5000 0.500008.0738.055
11.03 2.5000 0.5000 0 8.1038.095
i1.01 3.5000 0.500008.0058.025
i1.02 3.5000 0.500008.0558.055
i1.01 4.0000 1.000018.0258.005
i1.03 3.5000 1.000008.0958.075
i1.01 5.0000 1.000028.0058.005
i1.02 4.0000 1.5000 0 8.0558.04 5
i1.02 5.5000 0.500008.0458.055
i1.03 4.5000 1.500008.0758.055
i1.01 6.0000 1.500008.0058.005
i1.02 6.0000 1.500008.0558.055
i1.03 6.0000 1.500008.0558.055
cran75

cr2n86

i2.01 0.0000 0.500007.0037.053
i2.01 1.0000 0.500007.0537.04 3
i2.01 2.0000 0.500007.0437.053
i2.01 3.0000 0.500007.0537.105
i2.01 4.0000 2.00001 7.1057.095
i2.02 4.0000 1.000016.1057.005
i2.02 5.0000 1.00002 7.0057.055
i2.01 6.0000 1.50002 7.0957.095
i2.02 6.0000 1.500007.0557.055
t0 60 0.0000 90.0000 2.0000 90.0000 4.0000 80.0000 4.0000
90.0000

f0 8.0000

s

e

6. The Unix CSOUND Command

csound is a command for passng an orchestra file and score file to
Csound to generate a soundfile. The score file can be in one of many
different formats, according to user preference.

Trandation, sorting, and formatting into orchestra-readable numeric
text is handled by various preprocessors, all or part of the score is
then sent on to the orchestra. Orchestra performance is influenced by
command flags, which set the level of displays and console reports,
specify 1/0 filenames and sample formats, and declare the nature of
realtime sensing and control.

The format of acommand is:
csound [-flags] orchname scorename

where the arguments are of 2 types flag arguments (beginning with a
“-"), and name arguments (such as filenames). Certain flag
arguments take a following name or numeric argument. The
availableflagsare:

-1, -n
-iName, -oName
-bNumb, -BNumb, -h

sound output inhibitors
sound 1/O filenames
audio buffers & header control

-A, -C,-a -U,-s -1, -f
-v, -mNumb, -d, -g
-S, -xName, -tNumb
-LName

stream
-MName, -FName, -PNumb MIDI event streams
-N, -T notify or terminate when done

audio output formats

message & display levels

score formats & tempo control
line-oriented realtime event

Flags may appear anywhere in the command line, either separately or
bundled together. A flag taking a Name or Number will find it in
that argument, or in the immediately subsequent one. The following
are thus equivalent commands:

csound -nm3 orchname -Sxxfilename scorename
csound -n -m 3 orchname -x xfilename -S scorename

All flagsand names are optional. The default values are:

csound -s -otet -b1024 -B1024 -m7 -P128 orchname

scorename

where orchname is a file containing Csound orchestra code, and
scorename is a file of score data in standard numeric score format,
optionally presorted and time-warped. |If scorename is omitted, there
are two default options: 1) if realtime input is expected (-L, -M or -
F), a dummy scorefile is subgtituted consisting of the single
satement ‘f 0 3600° (i.e. listen for RT input for one hour); 2) dse
cound uses the previoudy processed scorest in the current
directory.

Csound reports on the various stages of score and orchestra
processing as it goes, doing various syntax and error checks along the
way. Once the actual performance has begun, any error messages
will derive from either the instrument loader or the unit generators
themselves. A csound command may include any rational
combination of the following flag arguments, with default values as
described:

csound -|

I-time only. Allocate and initialize al instruments as per the score,
but skip all P-time processing (no k-signals or a-signals, and thus no
amplitudes and no sound). Provides a fast validity check of the score
pfieldsand orchestrai-variables.

csound -n
Nosound. Do all processing, but bypasswriting of sound to disk.
Thisflag does not change the execution in any other way.

csound -i isfname

Input soundfile name. If not a full pathname, the file will be ought
firgt in the current directory, then in that given by the environment
variable SSDIR (if defined), then by SFDIR. The name stdin will
cause audio to be read from standard input. If RTAUDIO is enabled,
the name devaudio will request sound from the host audio input
device.

csound -0 osfname

Output soundfile name. If not a full pathname, the soundfile will be
placed in the directory given by the environment variable SFDIR (if
defined), ese in the current directory. The name stdout will cause
audio to be written to standard output. If no name is given, the
default name will be test. If RTAUDIO is enabled, the name
devaudio will send to the host audio output device.

csound -b Numb

Number of audio sample-frames per soundio software buffer. Large
is efficient, but small will reduce audio I/O delay. The default is
1024. In realtime performance, Csound waits on audio 1/0 on Numb
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundariess. The two can be made
synchronous. For convenience, if Numb = -N (is negative) the
effective value is ksmps * N (audio synchronous with k-period
boundaries). With N small (eg. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

csound -B Numb

32

Number of audio sample-frames held in the DAC hardware buffer.
This is a threshold on which software audio I/O (above) will wait
before returning. A small number reduces audio 1/0 delay; but the
value is often hardware limited, and small values will risk data lates.
The default is 1024.

csound -h
No header on output soundfile. Don't write a file header, just binary
samples.

csound {-c, -, -u, -s, -, -f}
Audio sampleformat of the output soundfile. One of:
¢ 8hit sgned character
a 8hitalaw
u 8hitu-law
S short integer
| long integer
f singleprecision float (not playable, but can be read
by -i, soundin and GENO1)

csound -A
Write an AIFF output soundfile. Redtricts the above formatsto ¢, s,
orl.

csound -v
Verbose trandate and run. Prints details of orch trandation and
performance, enabling errorsto be more clearly located.

csound -m Numb

Message level for standard (terminal) output. Takes the sum of 3
print control flags, turned on by the following values. 1 = note
amplitude messages, 2 = samples out of range message, 4 = warning
messages. The default valueism?7 (all messageson).

csound -d
Suppressall displays.

csound -g
Recast graphic displays into ascii characters, suitable for any
terminal.

csound -S
Interpret scorename as a Scot file and create a standard score file
(named “scor€”) fromiit, then sort and perform that.

csound -x xfile
Extract a portion of the sorted score scorest, according to xfile (see
extract below).

csound -t Numb

Use the uninterpreted beats of score.srt for this performance, and set
the initial tempo at Numb beats per minute. When thisflag is s, the
tempo of score performance is aso controllable from within the
orchestra (see the tempo unit).

csound -L devname

Read Line-oriented realtime score events from device devname. The
name gtdin will permit score events to be typed at your terminal, or
piped from another process. Each line-event is terminated by a
carriage-return. Events are coded jugt like those in a standard
numeric score, except that an event with p2=0 will be performed
immediately, and an event with p2=T will be performed T seconds
after arrival. Events can arrive at any time, and in any order. The
score carry feature is legal here, as are held notes (p3 negative) and
string arguments, but rampsand pp or np references are not.

csound -M devname
Read MIDI eventsfrom device devname.

csound -F mfname
Read MIDI events from midifile mfname.

csound -P Numb

Set MIDI sustain pedal threshold (0 - 128). The official switch value
of 64 isnormally too low, and is more realistic above 100.

The default value of 128 will block all pedal info.

csound -N
Notify (ring the bell) when score or miditrack isdone.

csound -T
Terminate the performance when miditrack isdone.

The EXTRACT feature

This feature will extract a segment of a sorted numeric score file
according to ingtructions taken from a control file. The control file
contains an instrument list and two time points, from and to, in the
form:

instruments1 2 from 1:27.5 to 2:2

The component labels may be abbreviated as i, f and t. The time
points denote the beginning and end of the extract in terms of:

[sectionno.] : [beat no.].

each of the three parts is also optional. The default values for
missingi, for tare:

all instruments, beginning of score, end of score.

extract reads an orchestrareadable score file and produces an
orchestra-readable result. Comments, tabs and extra spaces are
flushed, w and a statements are added and an fO reflecting the extract
length is appended to the output. Following an extract process, the
abbreviated score will contain al function table statements, together
with just those note statements that occur in the from-to interval
specified. Notes lying completely in the interval will be unmodified;
notes that lie only partly within will have their p3 durations truncated
as necessary.

Independent Preprocessing

Although the result of all score preprocessing is retained in the file
scorest after orchestra performance (it exists as soon as score
preprocessing has completed), the user may sometimes want to run
these phasesindependently. The command

scot filename

will process the Scot formatted filename, and leave a standard
numeric score result in a file named score for perusal or later
processing.

The command
scscort < infile > outfile

will put a numeric scoreinfile through Carry, Tempo, and Sort
preprocessing, leaving theresult in outfile.

Likewise extract, also normally invoked as part of the csound
command, can be invoked as astandalone program:

extract xfile < score.sort > score.extract
This command expects an aready sorted score. An unsorted score
should first be sent through scsort then piped to the extract

program:

scsort < scorefile | extract xfile > score.extract

Appendix 1: The Soundfile Utility Programs

The Csound Utilities are soundfile preprocessng programs that
return information on a soundfile or create some analyzed version of
it for use by certain Csound generators. Though different in goals,
they share a common soundfile access mechanism and are

describable as a set. The Soundfile Utility programs can be invoked
intwo equivalent forms:

csound-U utilname [flags] filenames . ..
utilname [flags] filenames ...

In the firgt, the utility is invoked as part of the Csound executable,
while in the second it is called as a standalone program. The second
is smaller by about 200K, but the two forms are identical in function.
The firgt is convenient in not requiring the maintenance and use of
several independent programsiNone program does all. When using
this form, a -U flag detected in the command line will cause all
subsequent flags and names to be interpreted as per the named utility;
i.e. Csound

generation will not occur, and the program will terminate at the end
of utility processing.

Directories. Filenames are of two kinds, source soundfiles and
resultant analysis files. Each has a hierarchical naming convention,
influenced by the directory from which the Utility is invoked.
Source soundfiles with a full pathname (begins with dot (.), dash (/),
or for ThinkC includes a colon (:)), will be sought only in the
directory named. Soundfiles without a path will be sought firgt in the
current directory, then in the directory named by the SSDIR
environment variable (if defined), then in the directory named by
SFDIR. An unsuccessful search will return a* cannot open” error.

Reaultant analysis files are written into the current directory, or to the
named directory if a path isincluded. It istidy to keep analysis files
separate from sound files, usually in a separate directory known to
the SADIR variable. Analyss is conveniently run from within the
SADIR directory. When an analysis file is later invoked by a
Csound generator (adsyn, Ipread, pvoc) it is sought first in the current
directory, then in the directory defined by SADIR.

Soundfile Formats. Csound can read and write audio files in a
variety of formats. Write formats are described by Csound command
flags. On reading, the format is determined from the soundfile
header, and the data automatically converted to floating-point during
internal processng. When Csound is ingtalled on a host with local
soundfile conventions (SUN, NeXT, Macintosh) it may conditionally
include local packaging code which creates soundfiles not portable to
other hosts. However, Csound on any host can aways generate and
read AIFF files, which is thus a portable format. Sampled sound
libraries are typically AIFF, and the variable SSDIR usually points to
a directory of such sounds. If defined, the SSDIR directory is in the
search path during soundfile access. Note that some AlFF sampled
sounds have an audio looping feature for sustained performance; the
analysisprogramswill traverse any loop segment once only.

For soundfiles without headers, an SR value may be supplied by a
command flag (or its default). If both header and flag are present, the
flag value will over-ride.

When sound is accessed by the audio Analysis programs (below),
only a single channd is read. For stereo or quad files, the default is
channel one; aternate channels may be obtained on request.

SNDINFO - get basic information about one or more soundfiles.

csound -U sndinfo soundfilenames . ..
or
sndinfo soundfilenames . ..

sndinfo will attempt to find each named file, open it for reading, read
in the soundfile header, then print a report on the basic information it
finds. The order of search across soundfile directories is as described
above. If thefileisof type AIFF, somefurther detailsare listed firgt.
EXAMPLE

csound -U sndinfo test Bosendorfer/”BOSEN mf AO st” foo foo2

where the environment variables SFDIR = /u/bv/sound, and SSDIR =
/so/bv/Samples, might produce the following:

util SNDINFO:

/u/bv/sound/test:
srate 22050, monaural, 16 bit shorts, 1.10 seconds
headersiz 1024, datasiz 48500 (24250 sample frames)

/so/bv/Samples/Bosendorfer/BOSEN mf AO st: AIFF, 197586 stereo
samples, base Frq 261.6 (midi 60), sustnLp: mode 1, 121642 to
197454, relesLp: mode 0

AIFF soundfile, looping with modes 1, 0

srate 44100, stereo, 16 bit shorts, 4.48 seconds

headersiz 402, datasiz 790344 (197586 sample frames)

/u/bv/sound/foo:
no recognizable soundfile header

/u/bv/sound/foo2:
couldn’t find

HETRO - hetrodynefilter analysisfor the Csound adsyn generator.

csound -U hetro [flags] infilename outfilename
or hetro [flags] infilename outfilename

hetro takes an input soundfile, decomposes it into component
sinusoids, and outputs a description of the components in the form of
breakpoint amplitude and frequency tracks. Analyss is conditioned
by the control flags below. A space is optional between flag and
value.

-s<gate> sampling rate of the audio input file. This will over-ride
the srate of the soundfile header, which otherwise applies. If neither
is present, the default is 10000. Note that for adsyn synthesis the
srate of the source file and the generating orchestra need not be the
same.

-c<channel> channel number sought. Thedefaultis 1.

-b<begin> beginning time (in seconds) of the audio segment to be
analyzed. Thedefaultis 0.0

-d<duration> duration (in seconds) of the audio segment to be
analyzed. Thedefault of 0.0 meansto the end of thefile.
Maximum length is32.766 seconds.

-f<begfrec> estimated garting frequency of the fundamental,
necessary toinitializethefilter analysis. The default is 100

(cps).

-h<partials> number of harmonic partials sought in the audio file.
Default is 10, maximum 50.

-M<maxamp> maximum amplitude summed across all concurrent
tracks.
The default is 32767.

-m<minamp> amplitude threshold below which a single pair of
amplitude/frequency tracks is conddered dormant and will not
contribute to output summation. Typical values: 128 (48 db down
from full scale), 64 (54 db down), 32 (60 db down), O (no
thresholding). The default threshold is64 (54 db down).

-n<brkpts> initial number of analysis breakpoints in each
amplitude and frequency track, prior to thresholding (-m) and linear
breakpoint consolidation. The initial points are spread evenly over
theduration. The default is 256.

-I<cutfregq> subdtitute a 3rd order Butterworth low-pass filter with
cutoff frequency cutfreq (in cps), in place of the default averaging
comb filter. Thedefaultis O (don't use).

EXAMPLE
hetro -s44100 -b.5 -d2.5 -h16 -M24000 audiofiletest adsynfile7

This will analyze 2.5 seconds of channd 1 of a file “audiofile.tes”,
recorded at 44.1 KHz, beginning .5 seconds from the start, and place
the result in a file “adsynfile7”. We request just the first 16
harmonics of the sound, with 256 initial breskpoint values per

amplitude or frequency track, and a peak summation amplitude of
24000. The fundamental is estimated to begin at 100 Hz. Amplitude
thresholding isat 54 db down.

The Butterworth LPF isnot enabled.

FILE FORMAT

The output file contains time-sequenced amplitude and frequency
values for each partial of an additive complex audio source. The
information is in the form of breakpoints (time, value, time, value,
....) usng 16-bit integers in the range 0 - 32767. Time is given in
milliseconds, and frequency in Hertz (cps). The breakpoint data is
exclusvely non-negative, and the values -1 and -2 uniquely signify
the dart of new amplitude and frequency tracks. A track is
terminated by the value 32767.

Before being written out, each track is data-reduced by amplitude
thresholding and linear breakpoint consolidation.

A component partial is defined by two breakpoint sets: an amplitude
s, and a frequency set. Within a compodte file these sets may
appear in any order (amplitude, frequency, amplitude ...; or
amplitude, amplitude..., then frequency, frequency,...). During adsyn
resynthesis the sets are automatically paired (amplitude, frequency)
from the order in which they were found. There should be an equal
number of each.

A legal adsyn control file could have following format:

-1 timel valuel ... timeK vaueK 32767 ; amplitude breakpoints

; for partial 1

-2 timel valuel ... timeL valueL 32767 ; frequency breskpoints
; for partial 1

-1 timel valuel ... timeM vdueM 32767 ; amplitude breakpoints
; for partial 2

-2 timel valuel ... timeN valueN 32767 ; frequency breskpoints
; for paial 2

-2 timel valuel

-2 timel valuel ; pairable tracks for partials 3 and 4

-1 timel valuel

-1 time2 valuel

LPANAL - linear predictive analysisfor the Csound |p generators

csound -U Ipanal [flags] infilename outfilename
or
Ipanal [flags] infilename outfilename

Ipanal performs both Ipc and pitch-tracking analysis on a soundfile to
produce a time-ordered sequence of frames of control information
suitable for Csound resynthess. Analyss is conditioned by the
control flags below. A space is optional between the flag and its
value.

-s<grate> sampling rate of the audio input file. This will over-ride
the srate of the soundfile header, which otherwise applies. If neither
is present, the default is 10000.

-c<channel> channel number sought. Thedefaultis1.

-b<begin> beginning time (in seconds) of the audio segment to be
analyzed. Thedefaultis 0.0

-d<duration> duration (in seconds) of the audio segment to be
analyzed. Thedefault of 0.0 meansto the end of thefile.

-p<npoles>
maximum 50.

number of poles for analyss. The default is 34, the

-h<hopsize> hop size (in samples) between frames of analysis. This
determines the number of frames per second (srate / hopsize) in the
output control file. The analyss framesize is hopsize * 2 samples.
The default is 200, the maximum 500.

-C<dring> text for the commentsfield of the Ipfile header.
The default isthe null string.

-P<mincps> lowest frequency (in cps) of pitch tracking. -PO
means no pitch tracking.

-Q<maxcps> highest frequency (in cps) of pitch tracking. The
narrower the pitch range, the more accurate the pitch estimate.
The defaults are -P70, -Q200.

-v<verbosty> level of terminal information during anadyss. 0 =
none, 1 = verbose, 2 = debug. The default is 0.

EXAMPLE
Ipana -p26 -d2.5 -P100 -Q400 audicfiletest Ipfil22

will analyze the firgt 2.5 seconds of file “audiofiletest”, producing
sate/200 frames per second, each containing 26-pole filter
coefficients and a pitch estimate between 100 and 400 Hertz. Output
will be placed in “Ipfil22” in the current directory.

FILE FORMAT

Output is a file comprised of an identifiable header plus a set of
frames of floating point analysis data. Each frame contains four
values of pitch and gain information, followed by npoles filter
coefficients. Thefileisreadable by Csound’ slpread.

Ipana is an extensve modification of Paul Lanksy’s Ipc analysis
programs.

PVANAL - Fourier analysisfor the Csound pvoc generator

csound-U pvanal [flags] infilename outfilenam
or pvana [flagg infilename outfilename

pvana converts a soundfile into a series of short-time Fourier
transform (STFT) frames at regular timepoints (a frequency-domain
representation). The output file can be used by pvoc to generate
audio fragments based on the original sample, with timescales and
pitches arbitrarily and dynamically modified. Analyss is
conditioned by the flags below. A space is optional between the flag
and itsargument.

-s<gate> sampling rate of the audio input file. This will over-ride
the srate of the soundfile header, which otherwise applies. If neither
is present, the default is 10000.

-c<channel> channel number sought. Thedefaultis 1.

-b<begin> beginning time (in seconds) of the audio segment to be
analyzed. Thedefaultis 0.0

-d<duration> duration (in seconds) of the audio segment to be
analyzed. Thedefault of 0.0 meansto the end of thefile.

-n<frmsz> STFT frame sze, the number of samples in each
Fourier analysis frame. Must be a power of two, in the range 16 to
16384. For clean reaults, a frame must be larger than the longest
pitch period of the sample. However, very long frames result in
temporal “smearing” or reverberation. The bandwidth of each STFT
bin is determined by sampling rate / frame size The default
framesize is the smallest power of two that corresponds to more than
20 milliseconds of the source (e.g. 256 points at 10 kHz sampling,
giving a 25.6 msframe).

-w<windfact> Window overlap factor. Thiscontrolsthe number of
Fourier transform frames per second. Csound's pvoc will interpolate
between frames, but too few frames will generate audible distortion;
too many frames will result in a huge analysis file A good
compromise for windfact is 4, meaning that each input point occurs
in 4 output windows, or conversdy that the offset between
successve STFT frames is framesize/4. The default value is 4. Do
not usethisflag with -h.

-h<hopsize> STFT frame offset. Converse of above, specifying the
increment in samples between successive frames of analysis (see also
Ipcanal). Do not usewith -w.

EXAMPLE
pvana asound pvfile

35

will analyze the soundfile “asound” using the default frmsiz and
windfact to producethefile “pvfile’ suitable for use with pvoc.

FILES

The output file has a special pvoc header containing details of the
source audio file, the analysisframe rate and overlap.

Frames of analysis data are stored as float, with the magnitude and
‘frequency’ (in Hz) for the first N/2 + 1 Fourier bins of each framein
turn. ‘Frequency’ encodes the phase increment in such a way that for
strong harmonics it gives a good indication of the true frequency.
For low amplitude or rapidly moving harmonicsit isless meaningful.

DIAGNOSTICS
Printstotal number of frames, and frames completed on every 20th.

AUTHOR: Dan Ellis, dpwe@media-lab.mediamit.edu

Appendix 2: CSCORE

Cscore is a gtandalone program for generating and manipulating
numeric score files. It comprises a number of function subprograms,
called into operation by a user-written main program. The function
programs augment the C language library functions, they can
optionally read standard numeric score files, can massage and expand
the data in various ways, then write the data out as a new score file to
be read by a Csound orchestra.

The user-written main program is aso in C. It is not essentia to
know the C language well to write a main program, since the
function calls have a smple syntax, and are powerful enough to do
mogt of the complicated work. Additional power can come from C
later asthe need arises.

Events, Lists, and Operations

An event in Cscore is equivalent to one statement of a standard
numeric score. It is either created or read in from an existing score
file. An event is comprised of an opcode and an array of pfield
values stored somewhere in memory. Storage is organized by the
following structure:

struct event {
cher op;
char tnum;
short pent;
float p[PMAX+1];

b

Any function subprogram that creates, reads, or copies an event
function will return a pointer to the storage structure holding the
event data. The event pointer can be used to access any component
of the tructure, in the form of e->op or e->p[n].

Each newly stored event will give rise to a new pointer, and a
sequence of new events will generate a sequence of digtinct pointers
that must themselves be stored. Groups of event pointers are stored
inalist, which hasits own structure:

/* opcode */

I* pfields*/

struct evlist {

int ndlots; [* sizeof thislist ~ */

struct event *€[1]; /* list of event pointers*/
b

Any function that creates or modifies a list will return a pointer to the
new list. The list pointer can be used to access any of its component
event pointers, in theform of a->¢{n].
Event pointers and list pointers are thus primary tools for
manipulating the data of a scorefile.

Pointers and lists of pointers can be copied and reordered without
modifying the data values they refer to. This means that notes and
phrases can be copied and manipulated from a high level of control.
Alternatively, the data within an event or group of events can be
modified without changing the event or list pointers. Cscore

provides a library of programming methods or function subprograms
by which scores can be created and manipulated in this way.

In the following summary of Cscore function calls, some smple
naming conventions are used:

the symbolse, f are pointersto events (notes);

thesymbolsa, b are pointersto lists (arrays) of such events;

the letters ev at the end of a function name signify operation on an
event;

theletter | at the start of afunction name signifies operation on alist.

caling syntax description
e= createv(n); creste ablank event with n pfields
e=defev(“...”); defines an event as per the character string ...
e= copyev(f); make a new copy of event f
e=getev(); read the next event in the score input file

putev(e); write event e to the score output file
putstr(“...”); write the character string ... to score output

a=lcreat(n); create an empty event list with n slots
a=lappev(ae); appendeventetolista

n = Icount(a); count the events now in list a

a= lcopy(b); copy thelist b (but not the events)
a=lcopyev(b); copy the eventsof b, making anew list
a=lget(); read events from score input (to next s or €)
Iput(a); write the events of list ato score output
a=Isepf(b); separatethe f statementsfrom list binto list a
a=lcat(ab); corcatenate (append) thelist b onto thelist a
Isort(a); sort thelist ainto chronological order by p[2]
a=Ixins(b,”..."); extract notes of instruments ... (N0 hew events)
a= Ixtimev(b,from,to) ; extract notes of time-span, creating new

events
relev(e); release the space of event e
Irel(a); release the space of list a (but not events)
Irelev(a); release the eventsof list a, and the list space

Writing a Main program.
The general format for a main program is:

#include <csound/cscore.h>
main()

/* VARIABLE DECLARATIONS */

/* PROGRAM BODY ~ */
}

The include statement will define the event and list structures for the
program. The following C program will read from a standard
numeric score, up to (but not including) the first s or e statement,
then write that data (unaltered) as output.

#include <csound/cscore.h>
main()

{
sructevlist *a; /* aisallowed to point to an event list */

a=Ilget(); /* read eventsin, return the list pointer */
lput(a); /* writethese events out (unchanged)*/
putstr(“€e”); /* writethe string e to output */

}

After execution of Iget(), the variable a points to a list of event
addresses, each of which points to a stored event. We have used that
same pointer to enable another list function (Iput) to access and write
out al of the events that were read. |If we now define another symbol
eto be an event pointer, then the statement

e=a>d4];
will set it to the contents of the 4th dot in the evlig structure. The

contents is a pointer to an event, which is itself comprised of an array
of parameter fiedd values. Thus the term e->p[5] will mean the value

of parameter fidd 5 of the 4™ event in the evlist denoted by a. The
program below will multiply the value of that pfield by 2 before
writing it out.

#include <csound/cscore.h>

main()
struct event *e; /* apointer to an event */
struct evlist *&;
a=Ilget(); /* read ascore as alist of events */

e=a>d4]; [* point to event 4 in event list\fla\fR */
e->p[5] *=2; /* find pfield 5, multiply itsvalue by 2 */
Iput(a); /* write out the list of events */
putstr(“€”); /* add a"“scoreend” statement */

}

Now consider the following score, in which p[5] contains frequency
incps.

f10257101
f20257703001212.8
i 113044010000

i 1430256 10000

i 173088010000

e

If this score were given to the preceding main program, the resulting
output would look likethis:

f10257101

f20257703001212 .8

i 1130440 10000

1143051210000 ; p[5] hasbecome 512 instead of 256.
i 1730880 10000

e

Note that the 4th event isin fact the second note of the score.

So far we have not digtinguished between notes and function table
setup in a numeric score. Both can be classed as events. Also note
that our 4th event has been stored in €/4] of the structure.

For compatibility with Csound pfield notation, we will ignore p[0]
and /0] of the event and ligt structures, storing pl in p[1], event 1 in
€[1], etc. The Cscorefunctionsall adopt this convention.

As an extenson to the above, we could decide to use a and e to
examine each of the eventsin the list. Note that e has not preserved
the numeral 4, but the contents of that dot. To inspect p5 of the
previouslisted event we need only redefine e with the assignment

e=a>d3];

More generally, if we declare a new variable f to be a pointer to a
pointer to an event, the statement

f=&a>d4];

will set f to the address of the fourth event in the event list a, and *f
will sgnify the contents of the dot, namely the event pointer itsef.
The expression

(*f)->p[5],

like e->p[5], sgnifies the fifth pfied of the selected event. However,
we can advance to the next dot in the evlist by advancing the pointer
f. In Cthisisdenoted by f++.

In the following program wewill use the same input score. This

time we will separate the ftable statements from the note statements.
We will next write the three note-events stored in the list a, then
create a second score section congisting of the original pitch set and a
transposed verson of itsdf. This will bring about an octave
doubling.

By pointing the variable f to the first note-event and incrementing f
indde a while block which iterates n times (the number of events in
the ligt), one statement can be made to act upon the same pfield of
each successve event.

#include <csound/cscore.h>

main()

{
struct event *e* *f; /* declarations. see pp.89 inthe*/
sruct evlist *a*b; [* C language programming manual */
intn;
a=lget(); [* read scoreinto event list “a’ */
b = Isepf(a); [* separate f statements */
Iput(b); [* write f statements out to score */
Irlev(b); [* and rdease the spacesused */
e=defev("t0120"); /* define event for tempo statement */
putev(e); [* write tempo statement to score */
Iput(a); [* write the notes */
putstr(“s’); [* section end */
putev(e); [* write tempo statement again */
b = Icopyev(a); /* make acopy of the notesin“a’ */
n =lcount(b); /* and count the number copied */
f=&a>d1];
while (n--) [* iteratethe following line n times: */

(*f++)->p[5] *=.5; /* transpose pitch down one octave */
a =cht(b,a); /* now add these notes to original pitches
*/

Iput(a);
putstr(“€”);

}

The output of thisprogramis:

f10257101

f20257703001212 .8

t0120

i 1130440 10000

i 1430 256 10000

i 173088010000

s

t0120

i 1130440 10000

i 1430 256 10000

i 173088010000

i 1130220 10000

i 143012810000

i 1730440 10000

e

Next we extend the above program by using the while statement to

look at p[5] and p[6]. In the original score p[6] denotes amplitude.
To create a diminuendo in the added lower octave, which is
independent from the original set of notes, a variable called dim will
be used.

#include <csound/cscore.n>
main()

struct event *e**f;

struct evlist *a,*b;

int n, dim; [* declare new variable asinteger */

a=lget();

b = Isepf(a);

Iput(b);

Irelev(b);

e= defev(“t 0120");

putev(e);

Iput(a);

putstr(*s’);

putev(e);

b = Icopyev(a);

n = Icount(b);

dim=0;

f=&a>d1];

while (n-){
(*f)y>p[6] -= dim; /* subtract current valueof dim */
(*f++)>p[5] *=.5; /* trangpose, movef to next event */
dim += 2000; /* increase dim for each note */

}

[* write out another tempo statement */

/* initidizedimto 0 */

37

a=lcat(b,a);

Iput(a);

putstr(“€”);
}

The increment of f in the above programs has depended on certain
precedence rules of C. Although this keeps the code tight, the
practice can be dangerous for beginners. Incrementing may
aternately be written as a separate statement to make it morecl ear.

while (n-){
(*f->p(6] -= dim;
(*f>pl5] *=.5;
dim += 2000;
f++;

}

Using the same input score again, the output from this program
is

f10257101
f20257703001212.8
t0120

i 113044010000
i 1430256 10000
i 173088010000
S

t0120

i 1130440 10000
i 1430 256 10000
i 173088010000
i 113022010000
i 14301288000

i 1730440 6000
e

; Three original notes at
; beats 1,4 and 7 with no dim.

; three notes transposed down one octave
; dso at beats 1,4 and 7 with dim.

In the following program the same three-note sequence will be
repeated at various time intervals. The gtarting time of each group is
determined by the values of the array cue. This time the dim will
occur for each group of notes rather than each note.

Note the position of the statement which increments the variable dim
outside theinner while block.

#include <csound/cscore.h>

int cue[3]={0,10,17}; [* declare array of 3 integers*/
main()
{
struct event * e, **f;
struct evlist *a, *b;
int n, dim, cuecount, holdn; /* declare new variables*/
a= Iget();
b = Isepf(a);
Iput(b);
Irelev(b);
e=defev(“t 0120");
putev(e);
n = lcount(a);
holdn = n; /* hold the value of “n” to reset below
*/
cuecount = 0;
dim=0;
while (cuecount <= 2) {
“while” */

/* initilize cuecount to “0” */
/* count 3 iterations of inner
f = &={1]; [* reset pointer to first event of list “@’
*/
n = holdn;
count */
while (n+-) {
(*f)>pl6] = dim;
(*f)}>p[2] += cuecuecount];
f++;

/* reset value of “n” to original note

/* add values of cue */

printf(*; diagnostic: cue = %dn”, cuefcuecount]);
cuecount++;

dim += 2000;
Iput(a);

putstr(“€”);
}

Here the inner while block looks at the events of list a (the notes) and
the outer while block looks at each repetition of the events of list a
(the pitch group repetitions). This program also demonstrates a
useful trouble-shooting device with the printf function. The semi-
colon is firgt in the character string to produce a comment statement
in the resulting score file. In this case the value of cue is being
printed in the output to insure that the program is taking the proper
array member at the proper time. When output data is wrong or error
messages are

encountered, the printf function can help to pinpoint the problem.

Using theidentical input file, the C program above will generate:

f10257101
f20257703001212.8
t0120

; diagnogtic: cue=0
i 1130440 10000
i 1430 256 10000
i 173088010000

; diagnogtic: cue=10
i 111 304408000
i 114302568000
i 117 308808000

; diagnogtic: cue= 17
i 128304404000

i 131302564000

i 134308804000

e

Further development of these scores will lead the composer to
techniques of score manipulation which are smilar to seria
techniques of composition. Pitch sets may be altered with regard to
any of the parameter fields. The programing alows transpositions,
time warping, pitch retrograding and dynamic controls, to name a
few.

Compiling a Cscore program

A Cscore program example.c is compiled and linked with its library
modules by the command:

$ cc -omyprog example.c -Icscore

The resulting executable file myprog isrun by typing:

$ myprog (no input, output printed onthe screen)
$ myprog < scorin (input score named \flscorin\fR, output on
Screen)

$ myprog < scorin > scorout (input as above, output into afile)

Appendix 3: An Instrument Design Tutorial

Richard Boulanger
Berklee College of Music

Csound instruments are created in an “orchestra’ file, and the list of
notesto play iswritten in aseparate “score” file.

Both are created usng a standard word processor. When you run
Csound on a specific orchestra and score, the score is sorted and
ordered in time, the orchedtra is trandated and loaded, the wavetables
are computed and filled, and then the score is performed. The score
drives the orchestra by telling the specific instruments when and for
how long to play, and what parameters to use during the course of
each note event.

38

Unlike today’s commercial hardware synthesizers, which have a
limited set of oscillators, envelope generators, filters, and a fixed
number of ways in which these can be interconnected, Csound's
power is not limited. If you want an insrument with hundreds of
oxtillators, envelope generators, and filters you just type them in.
More important is the freedom to interconnect the modules, and to
interrelate the parameters which control them. Like acougtic
ingruments, Csound ingtruments can exhibit a sendtivity to the
musical context, and display a level of “musical intelligence’” to
which hardware synthesizers can only aspire.

Because the intent of this tutorial is to familiarize the novice with the
syntax of the language, we will design several smple instruments.
You will find many instruments of the sophistication described above
in various Csound directories, and a study of these will reveel
Csound'sreal power.

The Csound orchestrafile has two main parts:
1. the “header” section - defining the sample rate, control rate,
and number of output channels.
2. the “instrument” section - in which the instruments are
designed.

The Header Section: A Csound orchestra generates signals at two
rates - an audio sample rate and a control sample rate. Each can
represent signals with frequencies no higher than half that rate, but
the digtinction between audio signals and sub-audio control signalsis
useful since it alows dower moving signals to require less compute
time. In the header below, we have specified a sample rate of 16kHz,
a control rate of 1kHz, and then calculated the number of samplesin
each control period usng theformula: ksmps=sr/ kr.

s o= 16000
kr = 1000
ksmps = 16
nchnls = 1

In Csound orchestras and scores, spacing is arbitrary. It is important
to be conggtent in laying out your files, and you can use spaces to
help this. In the Tutoria Instruments shown below you will see we
have adopted one convention. The reader can choose his or her own.

The Instrument Section: All instruments are numbered and are
referenced thus in the score. Csound ingtruments are similar to
patches on a hardware synthesizer. Each instrument consists of a set
of “unit generators” or software “modules” which are “patched”
together with “i/o” blocks N i, k, or a variables.

Unlike a hardware module, a software module has a number of
variable “arguments’ which the user sets to determine its behavior.
Thefour typesof variablesare:

setup only

i-rate variables, changed at the note rate

krate variables, changed at the control signal rate
arate variables, changed at the audio signd rate

Orchestra Statements: Each statement occupies a single line and has
the same basic format:

result action arguments

To include an oscillator in our orchestra, you might specify it as
follows:
al oscil 10000, 440, 1

The three “arguments’ for this oscillator set its amplitude (10000), its
frequency (440Hz), and its waveshape (1). The output is put in i/o
block “al.” This output symbol is significant in prescribing the rate
at which the oscillator should generate outputNhere the audio rate.
We could have named the result anything (e.g. “asg”) as long as it
began with the letter “a”.

Comments. To include text in the orchestra or score which will not
be interpreted by the program, precede it with asemicolon.

This alows you to fully comment your code. On each line, any text
which follows a semicolon will be ignored by the orchestra and score
trandators.

Tutorial Instruments
Toot 1: Play One Note

For this and all instrument examples below, there exist orchestra and
score files in the Csound subdirectory tutorfiles that the user can run
to soundtest each feature introduced. The instrument code shown
below is actually preceded by an orchestra header section smilar to
that shown above. If you are running on a RISC computer, each
examplewill likely runin reatime.

During playback (realtime or otherwise) the audio rate may
automatically be modified to suit thelocal d-a converters.

The first orchestra file, called tootl.orc, contains a sngle instrument
which uses an oscil unit to play a 440Hz sine wave (defined by f1 in
the score) at an amplitude of 10000.

instr 1
al oscil
out al
endin

10000, 440, 1

Run thiswith its corresponding score file, toot1.sco :

fl 0 409610 1 ;use“genl’ tocomputeasinewave
il 0 4 ;run“instr 1” from time O for 4 seconds
e ; indicate the “end” of the score

Toot 2: “P-Fields’

The first instrument was not interesting because it could play only
one note at one amplitude level. We can make things more
interesting by allowing the pitch and amplitude to be defined by
parameters in the score. Each column in the score congitutes a
parameter field, numbered from the left. The first three parameter
fields of the i-statement have a reserved function:

pl = instrument number
p2 = gart time
p3 = duration

All other parameter fields are determined by the way the sound
designer defines his insrument. In the ingtrument below, the
ocillator’s amplitude argument is replaced by p4 and the frequency
argument by p5. Now we can change these values at i-time, i.e. with
each notein the score. The orchestraand score files now look like:

instr 2
al oscil p4,p5 1 ;pd=amp
out al ; p5 = freg
endin
fl 0 40910 1 ; Sinewave
yinstrument start duration amp(p4) freq(p5)
i2 0 1 2000 880
i2 15 1 4000 440
i2 3 1 8000 220
i2 45 1 16000 110
i2 6 1 32000 55
e

Toot 3: Envelopes

Although in the second instrument we could control and vary the
overall amplitude from note to note, it would be more musical if we
could contour the loudness during the course of each note. To do this
we'll need to employ an additional unit generator linen, which the
Csound reference manual defines asfollows:

kr linen kamp, irise, idur, idec
a linen xamp, irise, idur, idec

39

linen is a sgnal modifier, capable of computing its output at either
control or audio rates Since we plan to use it to modify the
amplitude envelope of the oscillator, we'll choose the latter version.
Three of linen’ sarguments expect i -rate variables.

The fourth expects in one instance a k-rate variable (or anything
dower), and in the other an x-variable (meaning a-rate or anything
dower). Our linen we will get its amp from p4.

The output of the linen (k1) is patched into the kamp argument of an
oxcil. This applies an envelope to the oscil. The orchestra and score
files now appear as:

instr 3
k1 linen p4,p6,p3,p7 ;pd=amp
al oscil Ki1,p5,1 ; p5=freg
out al ; p6=attack time
endin ; p7=release time
f1 0 4096 10 1 ; Sinewave
instr start duration amp(p4) freq(p5) attack(p6) release(p7)
i3 0 1 10000 440 .05 7
i3 15 1 10000 440 9 1
i3 3 1 5000 880 .02 .99
i3 45 1 5000 880 7 .01
i3 6 2 20000 220 5 5

e
Toot 4: Chorusing

Next we'll animate the basic sound by mixing it with two dightly
detuned copies of itsdf. We'll employ Csound's “cpspch” value
converter which will alow us to specify the pitches by octave and
pitch-class rather than by frequency, and we'll use the “ampdb”
converter to specify loudnessin dB rather than linearly.

Since we are adding the outputs of three oscillators, each with the
same amplitude envelope, we'll scale the amplitude before we mix
them. Both “iscale’ and “inote’ are arbitrary names to make the
design a bit easier to read. Each is an i-rate variable, evaluated when
theinstrument isinitialized.

ingr 4

iamp = ampdb(p4)
iscdle=iamp* .333
inote = cpspch(p5)

; toot4.orc

; convert decibels to linear amp
; scale the amp at initialization

; convert “octave.pitch” to cps

kllinen iscale, p6, p3, p7 ; pd=amp
adoxil K1, inote*.996, 1 ; p5=freq
a2 oxil k1, inote*1.004, 1 ; p6=attack time
aloscil ki,inote, 1 ; pFrdeasetime
al= al+a2+a3
out al
endin
f104096 101 ; sinewave
instr start duration amp(pd) freq(p5) attack(p6) release(p7)
i4 0 1 75 8.04 A 4
i4 1 1 70 8.02 .07 .6
i4 2 1 75 8.00 .05 5
i4 3 1 70 8.02 .05 4
i4 4 1 85 8.04 A 5
i4 5 1 80 8.04 .05 5
i4 6 2 90 8.04 .03 1

e
Toot 5: Vibrato

To add some delayed vibrato to our chorusing instrument we use
another oscillator for the vibrato and a line segment generator, linseg,
as a means of controlling the delay. linseg is a k-rate or a-rate sgnal
generator which traces a series of straight line segments between any
number of specified points. The Csound manual describesit as:

ia, idurl, ib[, idur2, ic[...]]
ig, idurl, ib[, idur2, ic[...]]

kr linseg
a linseg

Since we intend to use this to dowly scale the amount of signal
coming from our vibrato oscillator, we'll choose the k-rate version.

The i-rate variables: ia, ib, ic, etc., are the values for the points. The
i-rate variables: idurl, idur2, idur3, etc., set the duration, in seconds,
between segments.

instr5 ; toot5.orc

irl =.01 ; Set vibrato release time

idell =p3- (pl0* p3) ; caculateinitial delay (% of dur)
isus =p3-(idd1-ire) ; calculate remaining duration
iamp = ampdb(p4)

iscdle=iamp * .333 ; pd=amp

inote = cpspch(p5) ; p5freq

k3 linseg 0,idell, p9,isus, p9, ird, 0 ; p6=attack time

k2 oscil k3,p8,1 ; p7=release time
k1l linen iscale, p6, p3, p7 ; p8=vib rate
a3 oscil K1, inote*.995+k2, 1 ; P9=vib depth
a2 oxil K1, inote*1.005+k2, 1 ; p10=vib delay (O -
1)
al oscil K1, inotetk2, 1
out al+a2+a3
endin
f1 0409 10 1
;ins drtdur amp frqg ak rel vibrt vibdpth vibdel
i5 0 3 86 1000 .1 7 7 6 4
i5 4 3 86 1002 1 2 6 6 4
i5 8 4 86 1004 2 1 5 6 4
e
Toot 6: Gens

The first character in a score statement is an opcode, determining an
action request; the remaining data condsts of numeric parameter
fields (p-fields) to be used by that action.

So far we have been dealing with two different opcodes in our score:
fandi. |-statements, or note statements, invoke the pl instrument at
time p2 and turn it off after p3 seconds, al remaining p-fieds are
passed to the instrument.

F-statements, or lines with an opcode of f, invoke function-drawing
subroutines called GENS. In Csound there are currently seventeen
gen routines which fill wavetables in a variety of ways. For example,
GENO1 trandfers data from a soundfile;, GENO7 allows you to
congtruct functions from segments of straight lines, and GEN10,
which we've been using in our scores so far, generates composite
waveforms made up of a weighted sum of smple snusoids. We
have named the function “f1,” invoked it at time O, defined it to
contain 512 points, and

ingtructed GEN10 to fill that wavetable with a sngle snusoid whose
amplitude is 1. GEN10 can in fact be used to approximate a variety
of other waveforms, asillugtrated by the following:

fl 0 204810 1 ; Sine

f2 0 204810 1 5 .3 .25.2 .167 .14 .125.111; Sawtooth
f3 0 2048101 0 3 0.2 0 .14 O .111 ; Sguare
f40 2048101 1 1 17 5 3 1 ; Pulse

For the opcodef, thefirst four p-fields areinterpreted asfollows:

pl - table number - In the orchestra, you reference thistable by its
number.

p2 - creation time - Thetime at which the function isgenerated.

p3 - table size - Number of pointsin table - must be a power of 2,
or that plus 1.

p4 - generating subroutine - Which of the 17 GENSwill you
employ.

p5 > p? -

subroutine.

meaning determined by the particular GEN

In the instrument and score below, we have added three additional
functions to the score, and modified the orchestra so that the
instrument can call them viapl11.

instr 6
ifunc = pl1
ird =.01

; toot6.orc
; select basic waveform
; set vibrato release

40

idell = p3- (p10 * p3)
isus =p3- (idel1-ird)
iamp = ampdb(p4)
iscale = iamp * .333
inote = cpspch(p5)

; calculateinitial delay
; calculate remaining dur

; p4=amp
; p5=freq

k3 linseg 0, idel1, p9, isus, p9, ird, O ; p6=attack time
k2 ozil k3, p8,1 ; p7=releasetime
k1 linen iscale, p6, p3, p7 ; p8=vib rate

a3 oscil K1, inote*.999+k2, ifunc ; p9=vib depth

a2 oscil ki,inoe*1.001+k2, ifunc ; pl0=vib delay (0-1)
al oscl ki, inotetk2, ifunc
out al +a2+ a3
endin
102048101 ; Sine
f202048101 .5.3.25.2.167 .14 .125 111 ; Sawtooth
f3020481010 30 20 .14 0 .111 ; Square
f402048101111.7.53.1 ; Pulse
;ins grt dur amp frq ak rd vibrt vibdpth vibdel
waveform(f)
i6 0 2 86 800.03.7 6 9 8 1
i6 3 2 86 802.03.7 6 9 8 2
i6 6 2 86 804.03.7 6 9 8 3
i6 9 3 86 805.03.7 6 9 .8 4
e

Toot 7: Crossfade

Now we will add the ability to do a linear crossfade between any two
of our four basc waveforms. We will employ our delayed vibrato
schemeto regul ate the speed of the crossfade.

instr 7 ; toot7.orc

ifuncl = p11 ; initial waveform
ifunc2 = p12 ; crossfade waveform
ifadl = p3- (p13 * p3) ; caleulate initial fade
ifad2 = p3 - ifadl ; calculateremaining dur
irel =.01 ; Set vibrato release

idel1 = p3- (p10 * p3)
isus =p3-(idd1-ire)
iamp = ampdb(p4)
iscale=iamp* .166 ; p4=amp

inote = cpspch(p5) ; p5=freq

k3 linseg O,idell, p9,isus, p9, ird, 0 ; pé=attack time

; caculate initial delay
; caculate remaining dur

k2 oscil k3,p8 1 ; p7=release tine

k1l linen iscae, p6, p3, p7 ; p8=vib rate

& ol k1, inote*.998+k2, ifunc2 ; p9=vib depth

a5 ol K1, inote*1.002+k2, ifunc2 ; pl0=vib delay (0-1)

a4 oscil K1, inotetk2,ifunc2 ; pll=initia wave

a3 ol k1,inote*.997+k2, ifuncl ; pl2=crosswave

a2 ol K1, inote*1.003+k2, ifuncl ; pl3=fadetime

al oscil ki1, inotetk2, ifuncl

kfade linseg 1, ifadl, O, ifad2, 1

afuncl = kfade * (al+a2+a3)

afunc2 = (1- kfade) * (a4+a5+ab)

out afuncl + afunc2
endin

102048101 ; Sine
f202048101.5.3.25.2.167.14.125.111 ; Sawtooth
f3020481010 .30 20 .14 0 .111 ; Square
f402048101111.7.53 ; Pulse

53.1
;ins &r dur amp frg atk rel vibrt vbdpt vibdel startwav endwav

crosst

i7 05 9 807.031 5 6 .99 1 2 A
i7 65 9 809.031 5 6 .99 1 3 A
i712 8 96 807.03.1 5 6 99 1 4 1

Toot 8: Soundin

Now ingtead of continuing to enhance the same instrument, let us
design a totally different one. WEe€Il read a soundfile into the
orchestra, apply an amplitude envelope to it, and add some reverb.
To do this we will employ Csound's soundin and reverb generators.
Thefirst isdescribed as:

al soundin ifilcod[, iskiptime][, iformat]

soundin derives its signal from a pre-existing file. ifilcod is ether
the filename in double quotes, or an integer suffix (.n) to the name
“soundin”. Thus the file “soundin.5” could be referenced either by
the quoted name or by the integer 5. To read from 500ms into this
filewe might say:

al soundin “soundin.5”, .5

The Csound reverb generator is actually composed of four parallel
comb filters plus two allpass filters in series. Although we could
design a variant of our own using these same primitives, the preset
reverb is convenient, and smulates a natural room response via
internal parameter values. Only two arguments are requiredNthe
input (asg) and the reverb time (krvt).

a reverb asig, krvt

The soundfile instrument with artificial envelope and a reverb
(included directly) isasfollows:

instr 8 ; toot8.orc
idur = p3
iamp = p4
iskiptime = p5
iattack = p6
irelease = p7
irvbtime = p8
irvbgain = p9

kamp linen iamp, iattack, idur, irelease
asg soundin “soundin.aff”, iskiptime
aampsig = kamp* asig
aeffect reverb asig, irvbtime
arvbreturn = aeffect * irvbgain

out arampsig+ arvbreturn

endin

;ins strt dur amp skip atk rel rvbtimervbgain
i . 0 .

i8 0 1 3 .03 1 15 2
i8 2 1 3 0 11 13 2
i8 35225 3 O 5 1 21 2
i8 45225 3 O 01 1 11 2
i8 5 225 3 1 01 1 11 1

Toot 9: Global Stereo Reverb

In the previous example you may have noticed the soundin source
being “cut off” at ends of notes, because the reverb was inside the
insrument itself. It is better to create a companion instrument, a
global reverb instrument, to which the source signal can be sent.
Let’' salso make this stereo.

Variables are named cells which store numbers. In Csound, they can
be either local or global, are available continuoudy, and can be
updated at one of four ratesNsetup, i-rate, k-rate, or a-rate.

Local Variables (which begin with the letters p, i, k, or &) are private
to a particular instrument. They cannot be read from, or written to,
by any other instrument.

Global Variables are cells which are accessble by all instruments.
Three of the same four variable types are supported (i, k, and &), but
these letters are preceded by the letter g to identify them as “global.”
Global variables are used for “broadcasting” general values, for
communicating between instruments, and for sending sound from
oneingtrument to another.

The reverb ingtr99 below receives input from instr9 via the global a
rate variable garvbsg. Since instr9 adds into this global, severa
copies of instr9 can do this without losing any data. The addition
requires garvbsig to be cleared before each k-rate pass through any
active ingruments. This is accomplished first with an init statement
in the orchestra header, giving the reverb instrument a higher number
than any other (instruments are performed in numerical order), and

then clearing garvbsig within instr99 once its data has been placed
into the reverb.

s = 18900 ; toot9.orc
kr = 945
ksmps = 20
nchnls = 2 ; stereo
garvbsig init 0 ; make zero at orch init time
instr 9
idur = p3
iamp = p4
iskiptime = p5
iattack = p6
irdease = p7
ibadlance = p8 ; pahning: 1=left, .5=center, O=right
irvbgan = p9

kamp linen iamp,iattack, idur, irdease

asig soundin “soundin.aiff”, iskiptime

aampsig = kamp * asig
outs arampsig* ibalance, arampsig* (1- ibalance)
garvbsig = garvbsig + arampsig * irvbgain
endin
instr 99 ; global reverb
irvbtime = p4

asig reverb garvbsig, irvbtime ; put globa signal into
reverb

outsasig, asig
garvbsig = 0 ;thenclearit
endin

In the score we turn the global reverb on at time O and keep it on
until irvbtime after the last note.

;ins strtdur rvbtime ; toot9.sco

i99 0 98526

;ins strtdur amp skip atk rel balance(0-1) rvbsend
i9 01 5 0 021 1 2

i9 2 2 5 0 031 0 3

i9 352255 0 9 1 b5 1

i9 452255 0 12 .1 O 2

i9 5 2%5 0 2 1 1 3

e
Toot 10: Filtered Noise

The following instrument uses the Csound rand unit to produce
noise, and a reson unit to filter it. The bandwidth of reson will be set
at i-time, but its center frequency will be swept via a line unit
through a wide range of frequencies during each note.

We add reverb asabove.

garvbsig init 0

instr 10 ; toot10.orc
iattack = .01
irclease = .2
iwhite = 10000
idur = p3
iamp = p4
isweepstart = p5
isweepend = p6
ibandwidth = p7
ibalance = p8 ;pan:1l=Ieft, .5=center, 0 =right
irvbgain = p9

kamp linen iamp, iattack, idur, irelease
ksweep lineisweepstart, idur, isweepend
asig rand iwhite
afilt reson asig, ksweep, itandwidth
arampsg = kamp* dfilt
outs arampsig* ibalance, arampsig * (1- ibalance)

garvbsig = gavbsg + arampsig * irvbgain
endin

instr 100
irvbtime = p4

asig reverb garvbsig, irvbtime
outs asig, asig

garvbsig = 0
endin

;ins strt dur rvbtime ;

toot10.sco
i100 0 15 11
i100 15 10 5

yinsstrt dur amp stswp ndswp bndwth balance(01) rvbsend

i10 0 2 .05 5000 500 20 5 a
i10 3 1 .05 1500 5000 30 5 A
i10 5 2 .05 850 1100 40 5 A
i10 8 2 .05 1100 8000 50 5 A
i10 8 .5 .05 5000 1000 30 5 2
i10 9 .5 .05 1000 8000 40 5 A
i10 11.5 .05 500 2100 50 A4 2
i10 12.5 .05 2100 1220 75 .6 A
i10 13.5 .05 1700 3500 100 5 2
i10 15.5 .01 8000 800 60 5 .15

e
Toot 11: Carry, Tempo & Sort

We now use a plucked string instrument to explore some of Csound's
score preprocessing capabilities. Since the focus here is on the score,
theinstrument is presented without explanation.

instr 11

asigl pluck ampdi(p4)/2, p5, p5, 0, 1

asig2 pluck ampdb(p4)/2, p5* 1.003, p5* 1.003,0, 1
out asigl+asig2
endin

The score can be divided into time-ordered sections by the S
statement. Prior to performance, each section is processed by three
routines: Carry, Tempo, and Sort. The score toot11.sco has multiple
sections containing each of the examples below, in both of the forms
listed.

The Carry feature alows a dot (*.”) in a p-field to indicate that the
value is the same as above, provided the instrument is the same.
Thusthe following two examples areidentical:

;ins start duramp freg | ;ins start dur amp freq

i1 0 1 9 200 | i11 0 1 90 200
i1 1 . . 300 | i11 1 1 90 300
i1 2 . . 400 | i11 2 1 90 400

A specia form of the carry feature applies to p2 only. A “+” in p2
will be given the value of p2+p3 from the previous i statement. The
“+” can also be carried with adot:

; ins start dur amp freq | ;ins start dur amp freg

i11 0 1 90 200 | i11 0 1 90 200
i + .. 300 | i11 1 1 90 300
i . .. 500 | i11 2 1 90 500

The carrying dot may be omitted when there are no more explicit
pfields on that line:

; ins startdur amp freq | ;ins stat dur amp freq

i11. 0 1 90 200 | i11 0 1 90 200
i1 + 2 | i11 1 2 90 200
i11 | i11 3 2 90 200

A variant of the carry feature is Ramping, which subdtitutes a
sequence of linearly interpolated values for a ramp symbol (<)
spanning any two values of a pfidd. Ramps work only on

consecutive calls to the same instrument, and they cannot be applied
tothefirst three p-fields.

;ins start dur amp freq | ns sart dur amp freg

i11 0 1 90 200 | i11 0 1 90 200
i + . < < | i11 1 1 85 300
i . . < 400 | i1 2 1 80 400
i . . < < | i11 3 1 75 300
i 4 70 200 | i11 4 4 70 200

Tempo. The unit of time in a Csound score is the beatNnormally one
beat per second. This can be modified by a Tempo Statement, which
enables the score to be arbitrarily time-warped. Beats are converted
to their equivalent in seconds during score pre-processing of each
Section. In the absence of a Tempo statement in any Section, the
following tempo statement is inserted:

t 0 60

It means that at beat 0 the tempo of the Csound best is 60 (1 beat per
second). To hear the Section at twice the speed, we have two
options: 1) cut al p2 and p3 in half and adjust the start times, or 2)
insert the statement t 0 120 within the Section.

The Tempo statement can also be used to move between different
tempi during the score, thus enabling ritardandi and accelerandi.
Changes are linear by beat size (see the Csound manual). The
following statement will cause the score to begin at tempo 120, dow
to tempo 80 by beat 4, then accelerate to 220 by beat 7:

t 0 120 4 80 7 220

Thefollowing will produce identical soundfiles:
t 0 120 ; Doubletimevia Tempo
;ins start dur amp freq |
i11 o 5 90 200 |

;ins start dur amp freq
i1 0 1 90 200

I. + . < < | [+ . < <
i. . < 400 | i . . < 400
i . o< < i. . . < <

i 2 70 200 | i 4 70 200

The following includes an accelerando and ritard. It should be noted,
however, that the ramping feature is applied after time-warping, and
is thus proportional to elapsed chronological time. While this is
perfect for amplitude ramps, frequency ramps will not result in
harmonically related pitches during tempo changes. The frequencies
needed here are thus made explicit.

t 0 60 4 400 8 60 ; Timewarpingvia
Tempo

;ins start dur amp freq
i110 1 70 200
i+ . < 500
i 90 800
i < 500
i .70 200
i .90 1000
i < 600
i .70 200
i 8 90 100

Three additional score features are extremely useful in Csound.

The s statement was used above to divide a score into Sections for
individual pre-processing. Since each s statement establishes a new
relative time of O, and all actions within a section are relative to that,
it is convenient to develop the score one section at a time, then link
the sectionsinto a whole later.

Suppose we wish to combine the six above examples (cal them
tootlla - tootllf) into one score. One way is to dart with
tootlla.sco, calculate its total duration and add that value to every
starting time of tootl1b.sco, then add the composite duration to the
sart times of tootllc.sco, etc. Alternatively, we could insert an s
statement between each of the sections and run the entire score. The
file toot11.sco, which contains a sequence of all of the above score
examples, did just that.

The fO statement, which creates an “action time’ with no associated
action, is useful in extending the duration of a section. Two seconds
of silence are added to thefirst two sections below.

; ins start dur amp freg ; toot11g.sco
i11 0 2 90 100
fo 4 ; The fO Statement
S ; The Section Statement
i110 1 90 800
i+ . 400
[. . 100
fob
s
i110 4 9 50
e

Sort. During preprocessing of ascore section, all action-time
satements are sorted into chronological order by p2 value. This
means that notes can be entered in any order, that you can merge
files, or work on instruments as temporarily separate sections, then
have them sorted automatically when you run Csound on thefile.

The file below contains excerpts from this section of the rehearsal
chapter and from ingtr6 of the tutorial, and combines them as
follows:

;ins sart dur amp freq ; toot11h.sco

i1 0 1 70 100 ; Score Sorting

l. + < <

i < <

i 90 800

i < <

i < <

i 70 100

i 90 1000

| < <

i < <

i < <

i . 70 <

i 8 90 50
102048101 ; Sine
f202048 101 .5.3.25.2.167 .14.125.111 ; Sawtooth
f3020481010 .30 .2 0.140 .111 ; Square
f402048101111.7.53.1 ; Pulse

vinsstrt dur amp frq ak rel vibrt vibdpth vibdel waveform

i6 0 2 8 900 .03 .1 6 5 4 1
i6 2 2 8 902 .03 .1 6 5 4 2
i6 4 2 8 904 03 .1 6 5 4 3
i6 6 4 8 905 .05 .1 6 5 A4 4

Toot 12: Tables& Labels

This is by far our most complex instrument. In it we have designed
the ability to store pitches in a table and then index them in three
different ways. 1) directly, 2) via an Ifo, and 3) randomly. As a
means of switching between these three methods, we will use
Csound’'s program control statements and logical and conditional
operations.

instr 12

isced = p8

iamp = ampdb(p4)

kdirect = p5

imeth = p6

ilforate =p7 ; Ifo and random index rate
itab =2

itablesize= 8

if (imeth==1) igoto direct

if (imeth==2) kgoto Ifo

if (imeth==23) kgoto random
direct: kpitch table
kgoto contin

kdirect, itab ; index “f2” viap5

43

Ifo: kindex phasor ilforate
kpitch table kindex * itablesize, itab
kgoto contin

random: kindex randh int(7), ilforate, iseed

kpitch table abs(kindex), itab
contin: kamp linseg 0O, p3* .1, iamp, p3* .9, 0 ; amp
envelope
asig oscil kamp, cpspch(kpitch), 1 ; audio osc
out asig
endin

102048101 ; Sine

f208-2 8.008.02 8.04 8.05 8.07 8.09 8.11 9.00 ;cpspch C major
;scale

; method 1 - direct index of table values

;ins start dur amp index method Iforate rndseed
i2 0 5 8 7 1 0 0
il2 55 8 6 1 0

i2 1 5 8 5 1 0

i12 155 8 4 1 0

i12 2 5 8 3 1 0

i12 255 8 2 1 0

i12 3 5 8 1 1 0

il2 355 8 0 1 0

i12 4 5 8 0 1 0

i1l2 455 86 2 1 0

i12 5 5 8 4 1 0

i1l2 5525 8 7 1 0

S

; method 2 - Ifo index of table values

;ins start dur amp index method Iforate rndseed
i12 0 2 86 0 2 1 0
i12 3 2 86 0 2 2

i12 6 2 86 0 2 4

i12 9 2 86 0 2 8

i12 12 2 86 0 2 16

S

; method 3 - random index of table values

;ins start dur amp irdex method rndrate rndseed
i12 0 2 86 0 3 2 1
i12 3 2. 86 0 3 3 2
i12 6 2 86 0 3 4 3
i12 9 286 0 3 7 4
i12 12 2 86 0 3 11 5
i12 15 2 86 0 3 18 6
i12 18 2 86 0 3 29 7
i12 21 286 0 3 47 8
i12 24 2 86 0 3 76 9
i12 27 2 86 0 3 123 9
i12 30 58 0 3 199 1

Toot 13: Spectral Fusion

For our final instrument, we will employ three unique synthess
methodsNIPhysical Modeling, Formant-Wave Synthesis, and Non-
linear Digtortion. Three of Csound's most powerful unit
generatorsNipluck, fof, and foscil, make this complex task a fairly
smpleone. The Reference Manual describesthese asfollows:

al pluck kamp, keps, icps, ifn, imeth [, iparml, iparm2]

pluck simulates the sound of naturally decaying plucked strings by
filling a cyclic decay buffer with noise and then smoothing it over
time according to one of several methods. The unit is based on the
Karplus-Strong algorithm.

a2 fof xamp, xfund, xform, koct, kband, kris, kdur kdec,
iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]

fof smulates the sound of the male voice by producing a set of
harmonically related partials (a formant region) whose spectral

envelope can be controlled over time. It is a special form of granular
synthesis, based on the CHANT program from IRCAM by Xavier
Rodet et al.

al foscil xamp, keps, kear, kmod, kndx, ifn [, iphs]

foscil is a composite unit which banks two oscillators in a smple FM
configuration, wherein the audio-rate output of one (the “modulator”)
isused to modulate the frequency input of another (the “carrier.”)

The plan for our instrument is to have the plucked string attack
dissolve into an FM sustain which transforms into a vocal release.
The orchestra and score are asfollows:

instr 13 ; toot13.orc
iamp = ampdb(p4) / 2 ; amplitude, scaled for two sources
ipluckamp= p6 ; % of total amp, 1=dB amp asin p4
ipluckdur = p7*p3 ; % of total dur, 1=entire dur of note
ipluckoff = p3- ipluckdur

ifmamp = p8
ifmrise = p9*p3
ifmdec =pl0*p3

; % of total amp, 1=dB amp asin p4
; % of total dur, 1=entire dur of note
; % of total duration

ifmoff = p3- (ifmrise + ifmdec)
index =pll
ivibdepth = p12
ivibrate =pl3

iformantamp = pl4 ; % of total amp, 1=dB amp as in

iformantrise = pl5*p3 ; % of total dur, 1=entire dur of
note
iformantdec = p3- iformantrise

kpluck linseg ipluckamp, ipluckdur, O, ipluckoff, O
apluckl pluck iamp, p5, p5, 0, 1

apluck2 pluck iamp, p5*1.003, p5*1.003, O, 1
apluck = kpluck * (apluck1+apluck?2)

kfm linseg 0, ifmrise, ifmamp, ifmdec, O, ifmoff, O
kndx = kfm* index

aml foscil iamp, p5, 1, 2, kndx, 1

am2 foscil iamp, p5*1.003, 1.003, 2.003, kndx, 1
am = kfm* (afml+afm2)

kfrmnt linseg 0, iformantrise, iformantamp, iformantdec, O

kvib oscil ivibdepth,ivibrate,1

afrmntlfof iamp, pS+kvib, 650, O, 40, .003, .017, .007, 4, 1,
2,p3

armnt2fof iamp, (p5* 1.001)+kvib*.009, 650, O, 40,
.003,.017,.007, 10,1,2,p3

aformnt = kfrmnt* (afrmrtl+afrmnt2)

out apluck + afm + aformnt
endin

f108192101
f2 02048 19 51270 1

; Sinewave
; sigmoid rise

;ins & dr mp frg plkmp plkdr fmp fmris fmdec indx vbdp vbrt frmp
fris

i1305 802008 3 7.2 3 8 5
il3+881100. 4 73 3 7 1 6 3
i13. 1380 50 . 3 7 .2 4 6 1 4

When Things Sound Wrong

When you desgn your own Csound ingruments you may
occasonaly

be surprised by the results There will be times when you've
computed a file for hours and your playback is just silence, while at
other times you may get error messages which prevent the score from
running, or you may hang the computer and nothing happens at all.

In general, Csound has a comprehensive error-checking facility that
reports to your console at various stages of your run: at score sorting,
orchestra trandation, initializing each call of every instrument, and
during performance. However, if your error was syntacticaly
permissable, or it generated only a warning message, Csound could

faithfully give you results you don't expect. Here is a lig of the
thingsyou might check in your score and orchestrafiles:

1. Youtyped theletter | instead of the number 1

2. Youforgot to precede your comment with a semi-colon

3. You forgot an opcode or arequired parameter

4. Your amplitudes are not loud enough or they are too loud
5. Your frequencies are not inthe audio range - 20Hz to 20kHz

6. You placed the value of one parameter in the pfield of
another

7. You left out some crucid informationlike a function
definition

8. Youdidn't meet the Gen specifications

Suggestions for Further Study

Csound is such a powerful tool that we have touched on only a few
of its many features and uses. You are encouraged to take apart the
instruments in this chapter, rebuild them, modify them, and integrate
the features of one into the design of another. To understand their
capabilities you should compose short etudes with each. You may be
surprised to find yourself merging these little studies into the fabric
of your first Csound compositions.

The directory ‘morefiles contains examples of the classcal designs
of Risset and Chowning. Detailed discussons of these instruments
can be found in Charles Dodge's and Thomas Jerse’'s Computer
Music textbook. This text is the key to getting the most out of these
insrumental models and their innovative approaches to signa
processing. Also recommended are the designs of Russell Pinkston.
They demondrate techniques for legato phrasing, portamento,
random vibrato, and random sequence generation. His instrument
representing Dx7 OpCode?* Editor/Librarian patches is a modd for
bringing many wonderful soundsinto your orchestra

Nothing will increase your understanding more than actually Making
Music with Csound. The best way to discover the full capability of
thesetoolsisto create your own music with them.

As you negotiate the new and uncharted terrain you will make many
discoveries. It is my hope that through Csound you discover as much
about music as | have, and that this experience brings you great
personal satisfaction and joy.

Richard Boulanger - March 1991 - Boston, Massachusetts- USA

Appendix 4: An FOF Synthesis Tutorial

by
JM.Clarke
University of Huddersfield

The fof synthesis generator in Csound has more parameter fields than
other modules. To hep the user become familiar with these
parameters this tutorial will take a smple orchedtra file using just one
fof unit-generator and demondrate the effect of each parameter in
turn. To produce a good vocal imitation, or a sound of smilar
sophigtication, an orchestra containing five or more fof generators is
required and other refinements (use of random variation of pitch etc.)
must be made. The sounds produced in these initial explorations will
be much smpler and consequently less interesting but they will help
to show clearly the basc eements of fof synthess. This tutoria
assumes a basc working knowledge of Csound itself. The
specification of the fof unit-generator (as found in the main Csound
manual) is

ar fof xamp xfund xform koct kband kris kdur kdeciolaps ifna
ifnb itotdur [iphs] [ifmode]

where xamp, xfund, xform can receive any rate (constant, control
or audio)

45

koct, kband, kdris, kdur, kdec can receive only constants or control
rates

must be given afixed value at
initialization

are optional, defaulting to0.

iolaps, ifna, ifnb, itotdur
[iphs][ifmode]

The following orchestra contains a smple instrument we will use for
exploring each parameter in turn. On the faster machines
(DECdation, SparcStation, SGI Indigo) it will runin real time.

sr = 22050
kr =441
ksmps = 50

instr 1
al fof 15000, 200, 650, 0, 40, .003, .02, .007, 5, 1, 2, p3

out al

endin

It should be run with the following score:

f1 0 4096 10 1

f2 0 1024 19 5 5270 .5
i103

e

The result is very basic. This is hot surprisng since we have created
only one formant region (a vocal imitation would need at least five)
and have no vibrato or random variation of the parameters. By
varying one parameter at a time we will help the reader learn how the
unit-generator works. Each of the following “variations’ starts from
themodel. Parameters not pecified remain asgiven.

xamp = amplitude

The firgt input parameter controls the amplitude of the generator. At
present our model uses a congtant amplitude, this can be changed so
that the amplitude varies according to alinefunction:

a2 linseg 0, p3*.3, 20000, p3*.4, 15000, p3*.3, O
al fof a2,(asbefore)...

The amplitude of a fof generator needs care. xamp does not
necessarily indicate the maximum output, which can also depend on
the rise pattern, bandwidth, and the presence of any “overlaps’.

xfund = fundamental frequency

This parameter controls the pitch of the fundamental of the unit
generator. Starting again from the original model this example
demonstrates an exaggerated vibrato:

a2 oscil 20, 5, 1
al fof 15000, 200+a2, etc........

fof synthesis produces a rapid succession of (normally) overlapping
excitations or granules. The fundamental is in fact the speed at
which new excitations are formed and if the fundamental is very low
these excitations are heard as separate granules. In this case the
fundamental is not so much a pitch as a pulse speed. The possibility
of moving between pitch and pulse, between timbre and granular
texture is one of the most interesting aspects of fof. For a smple
demongtration try the following variation. It will be especially clear
if the score note islengthened to about 10 seconds.

a2 expseg 5, p3*.8, 200, p3*.2, 150
al fof 15000, a2 etc........

koct = octaviation coefficient

Skipping a parameter, we come to an unusua means of controlling

the fundamental: octaviation. This parameter is normally set to 0.
For each unit increase in koct the fundamental pitch will drop by one
octave. The change of pitch is not by the normal means of glissando,
but by gradually fading out aternate excitations (leaving half the
original number). Try the following (again with the longer note
duration):

kil linssy 0, p3*.1, O, p3*.8, 6, p3*.1, 6
al fof 15000, 200, 650, k1 €fC.........

This produces a drop of sx octaves, if the note is sufficiently long
you should be able to hear the fading out of aternate excitations
towardsthe end.

xform = formant frequency; ifmode = formant mode (0 = striated,
non-0 = smooth)

The spectral output of a fof unit-generator resembles that of an
impulse generator filtered by a band pass filter. It is a set of partials
above a fundamental xfund with a spectral peak at the formant
frequency xform. Motion of the formant can be implemented in two
ways. Ififmode= 0,

data sent to xform has effect only at the start of a new excitation.
That is, each excitation gets the current value of this parameter at the
time of creation and holds it until the excitation ends. Successve
overlapping excitations can have different formant frequencies,
creating a richly varied sound.

This is the mode of the original CHANT program. If ifmode is non-
zero, the frequency of each excitation varies continuoudy with
xform. This alows glissandi of the formant frequency. To
demongtrate these differences we teke a very low fundamental so
that the granules can be heard separately and the formant frequency
is audible not as the center frequency of a “band” but as a pitch in its
own right. Compare the following in which only ifmode is changed:

a2 line400, p3, 800
al fof 15000, 5, a2, O, 1, .003, 5, .1, 3, 1, 2,
p3, 0, 0

a2 line400, p3, 800
al fof 15000, 5, a2, 0, 1, .003, .5, .1, 3, 1, 2,
p3, 0, 1

In the first case the formant frequency moves by step at the dart of
each excitation, whereas in the second it changes smoothly. A more
subtle difference is perceived with higher fundamental frequencies.
(Note that the later fof parameters were changed in this example to
lengthen the excitations so that their pitch could be heard easily.)

xform also permits frequency modulation of the formant frequency.
Applying FM to an aready complex sound can lead to strange
results, but hereisa smple example:

acarr line 400, p3, 800
index = 20

imodfr = 400
idev=index * imodfr

amodsig oscil idev, imodfr, 1
al fof 15000, 5, acarr+amodsig, O, 1, .003, .5, .1, 3,
1,2,p30 1

kband = formant bandwidth
kris, kdur, kdec = risetime, duration and decaytime (in seconds) of
the excitation envelope

These parameters control the shape and length of the fof granules.
They are shaped in three segments a rise, a middle decay, and a
terminating decay. For very low fundamentals these are perceived as
an amplitude envelope, but with higher fundamentals (above 30 Hz)
the granules merge together and these parameters effect the timbre of
the sound. Note that these four parameters influence a new granule
only at the time of its initialization and are fixed for its duration;
later changes will affect only subsequent granules. We begin our
examination with low frequencies.

k1 line.003, p3, .1 s kris
al fof 15000, 2, 300, O, O, k1, .5, .1, 2, 1, 2, p3

Run this with a note length of 10 seconds. Notice how the attack of
the envelope of the granules lengthens. The shape of this attack is
determined by the forward shape of ifnb (here a sigmoid).

Now try changing kband:

k1 linseg O, p3, 10 ; kband
al fof 15000, 2, 300, O, k1, .003, .5, .1, 2, 1, 2,
p3

Following its rise, an excitation has a built-in exponential decay and
kband determines its rate. The bigger kband the steeper the decay;
zero means no decay. In the above example the successive granules
had increasingly fast decays.

k1 linseg .3, p3, .003
al fof 15000, 2, 300, O, 0, .003, 4, k1, 2, 1, 2, p3

This demonstratesthe operation of kdec. Because an exponential

decay never reaches zero it must be terminated gracefully. Kdur is
the overall duration (in seconds from the start of the excitation), and
kdec is the length of the terminating decay. In the above example the
terminating decay sarts very early in the first granules and then
becomes progressively later. Note that kband is set to zero so that
only the terminating decay is evident.

In the next example the dart time of the termination remains
congtant, but itslength gets shorter:

k1 expon .3, p3, .003
al fof 15000, 2, 300, O, 0, .003, .01 +k1, k1, 2, 1,2, p3

It may be surprising to find that for higher fundamentals the local
envel ope determines the spectral shape of the sound.

Electronic and computer music has often shown how features of
music we normally consder independent (such as pitch, timbre,
rhythm) are in fact different aspects of the same thing. In generd,
the longer the local envelope segment the narrower the band of
partials around that frequency. kband determines the bandwidth of
the formant region at -6dB, and kris controls the skirtwidth at -40dB.
Increasng kband increases the local envelope's exponential decay
rate, thus shortening it and increasing the -6dbB spectral region.
Increasing kris (the

envelope attack time) inversdy makes the -40dB spectral region
smaller.

The next example changesfirst the bandwidth then the skirtwidth.
Y ou should be able to hear the difference.

ki linssy 100, p3/4, O,
kband

k2 linsey .003, p3/2, .003, p3/4, .01, p3/4, .003

al fof 15000, 100, 440, O, k1, k2 .02, .007, 3, 1,2, p3

p3/4, 100, p3/2, 100 :

s kris

[In the firg half of the note kris remains congtant while kband
broadens then narrows again. In the second half, kband is fixed
while krislengthens (narrowing the spectrum) then returnsagain.]

Note that kdur and kdec don’'t really shape the spectrum, they simply
tidy up the decay so as to prevent unwanted discontinuities which
would distort the sound. For vocal imitations these parameters are
typically set at .017 and .007 and left unchanged. With high
(“soprano”) fundamentals it is possible to shorten these values and
save computation time (reduce overl aps).

iolaps = number of overlap spaces

Granules are created at the rate of the fundamental frequency, and
new granules are often created before earlier ones have finished,
resulting in overlaps. The number of overlaps at any one time is
given by xfund * kdur. For atypical bass note the calculation might
be 200 * .018 = 3.6, and for a soprano note 660 * .015 = 9.9. fof
needs at least this number (rounded up) of spaces in which to
operate. The number can be over-estimated at no computation cogt,
and at only a small space cost. If there are insufficient overlap
spaces during operation, the note will terminate.

ifna, ifnb = stored function tables

Identification numbers of two function tables (see the fof entry in the
manual proper).

46

itotdur = total duration within which all granulesin a note must be
completed

So that incomplete granules are not cut off at the end of a note fof
will not create new granules if they will not be completed by the time
specified. Normally given the value “p3” (the note length), this
parameter can be changed for special effect; fof will output zero
after timeitotdur.

iphs =initial phase (optional, defaulting to 0).

Specifies the initial phase of the fundamental. Normally zero, but
giving different fof generators different initial phases can be helpful
inavoiding “zeros’ in the spectrum.

Appendix 5: Csound for the M acintosh

by
Bill Gardner
MIT Media Lab

Introduction

This document describes the Macintosh verson of the Csound
program and assumes the reader is already familiar with the Csound
program as described in the Csound Users Manual. Csound is
primarily intended for the UNIX operating sysem and hence its
operation is specified through command line arguments. The
Macintosh verson of Csound surrounds this mechanism with the
standard Macintosh user interface primitives, eg. menus and dialog
boxes. After the user specifies the Csound input files and options
usng the Macintosh user interface, Macintosh Csound creates the
UNIX command line and invokes Csound appropriately.

All subsequent Csound output is directed to a console window (or
optionally to a liging file). Output sound files are created in
Digidesign’s Sound Designer |1 format or optionally in AIFF format.

Orchestra and Scorefile selection dialog

When Csound is launched, it automatically brings up the main file
sdection dialog. This dialog has fields for the required input
orchestra and score files, the output sample file, and optionaly a
MIDI file and output ligting file. Only the output file name may be
explicitly typed in, the other filds must be filled by clicking on the
correponding Select button, which will bring up a <andard
Macintosh file sdlection dialog. Because the orchestra and score file
names usudly differ only in the filename extenson (“.orc” for
orchestra files and “.sco” for score files), Csound only requires that
you select one of the two; the other file name will be automatically
formed by changing the extenson appropriately. If an output file is
selected (in the Options dialog), then the output file name is smilarly
created with the extension “.snd”.

Users familiar with Csound will recall that Csound expects all sound
files to live in a single directory called the SFDir (for sound file
directory). On UNIX, this directory is specified via a UNIX shell
environment variable. On the Macintosh, the user must select this
directory. This can be done by clicking on the SFDir button next to
the output file text item. This brings up the Sound File Directory
selection dialog which shows the current sound file directory. When
shipped, this will be blank. The sound file directory must be set up
properly in order that output files may be created. Clicking on the
Sdlect button brings up a standard file selection dialog. Navigate to
the directory you want to use for sound files, and then click on the
Save button.

Finally, click on the Save Settings button so that Csound will
remember thisdirectory wheniit is runin the future.

If an input MIDI file is dedred, click on the MIDI file checkbox.
This brings up a file sdection dialog which can be used to sdect a
MIDI file.

If aligting fileisdesired, click on the ligting file checkbox.

This bring up a file sdection dialog which can be used to specify an
output ligting file. If a ligting file is sdected, Csound will route
amogt all output to the ligting file. Certain messages will still appear
in the console window.

The Smp Fmt and Options buttons bring up other dialogs for setting
the Csound output sample format and options, respectively. These
are described later in this document.

After al the files and options have been set up, click on the OK
button to run Csound. If the files and options are incorrectly set up,
Csound will report an error by printing an appropriate message to the
console window. After the score file has been processed, Csound
will display the message “*** PRESS MOUSE BUTTON TO EXIT
***" Pressing the mouse button will cause Csound to exit back to
the Macintosh Finder. It is not possble to process multiple files
without relaunching Csound.

Clicking on the Cancd button causes the file selection dialog to
disappear. The dialog can be brought back by selecting the Choose
Orchedtra and Score menu item in the Csound menu. Note that
cancelling the dialog does not cause Csound to forget the settings of
the various options. This is particularly useful if you want to sdlect
extra options explicity by using the “Enter command line...” menu
item.

Csound menu

This section describes the menu items available in the Csound menu.
To access the menu items the file selection dialog must be cancelled
as described above.

Choose Orchestra and Score...

Sdecting this menu item brings up the main file selection dialog
described above.

Options...

Sdecting this menu item brings up the options dialog containing
checkboxes for each Csound option. These are each described
below:

Note amplitudes

When checked, causes information regarding note amplitudes to be
displayed. Correspondsto the -m1 option in UNIX Csound.

Samplesout of range

When checked, causes information regarding out of range samples to
be displayed. Correspondsto the -m2 option in UNIX Csound.

Warnings

When checked, causes information regarding out of range samples to
be displayed. Correspondsto the -m4 option in UNIX Csound.

No table graphics

When checked, suppressesthe display of Csound wavetables.
Correspondsto the -d option in UNIX Csound.

Diagnostic messages

When checked, causes diagnostic messagesto be displayed.
Correspondsto the -v option in UNIX Csound.

Initialize processing only

When checked, causes Csound to only perform initialization of
orchestras and no other processng. Corresponds to the -I option in
UNIX Csound.

No sound output

When checked, suppresses the output of a sound file. Corresponds to
the-n option in UNIX Csound.

Changefile types

47

When checked, Csound will change the file creator field of the
selected orchestra and score files. This lets the Macintosh Finder
know that the files are associated with the Csound application. Thus,
if you subsequently double-click on one of these files from the
Finder, Csound will be executed using the selected file asinput.

Output Sample Format...

Sdecting this menu item brings up the output sample format dialog
which controls the format of the output sample file. All sound files
are created as Digidesign Sound Designer |1 format files, unless the -
A option is specified in the command line, which causes Csound to
create AIFF (Audio Interchange File Format) files. The radio
buttons sdlect the sample format and default to 16-bit integer. The 8-
bit integer, 8-bit a-law, 8-bit p-law, 16-bit integer, 32-bit integer, and
32-hit float formats correspond to the -c, -a, -u, -s, -I, and -f options,
respectively, in UNIX Csound. Note that 8-bit alaw format is not
supported. If the no header checkbox is checked, this suppresses the
output of a sound file header; only the raw samples are output. This
corresponds to the -h option in UNIX Csound. The blocksize
controls how many samples are accumulated before writing to the
output sample file. This corresponds to the -b option in UNIX
Csound. Note that al input files must be either Digidesign Sound
Designer 1l format, AIFF format or raw16-bit samples.

Sound File Directory...

Sdecting this menu item brings up the sound file directory dialog.
Thisdialog isdescribed abovein the file selection dialog section.

Sampled Sound Directory...

Sdecting this menu item brings up the sampled sound directory
dialog. This dialog allows the user to specify the directory where
Csound will look for sampled sound files to be loaded into function
tables. This corresponds to the SSDir shell environment variable in
UNIX Csound. If no directory is specified, Csound will look for
sampled soundsin the sound file directory, described earlier.

Enter Command Line...

Sdecting this menu item brings up the command line dialog. The
command line dialog is used for directly entering a UNIX command
line to invoke Csound. This is useful for specifying obscure
arguments to Csound which are not otherwise supported in the
Macintosh interface. (The AIFF file option -A is one such option).
The dialog comes up with a command line that corresponds to all
currently selected files and options. The command line appears in a
Macintosh text edit field for editing.

When specifying file name arguments that contain spaces, enclose
the argument in double-quotes. Click on OK to invoke Csound with
the specified arguments, or click on Cancel to exit the dialog without
executing Csound.

Save Settings

Sdlecting this menu item causes all option settings to be remembered
for the next time Csound is executed.

Quit
Sdecting this menu item causes Csound to exit to the Macintosh

Finder.

This documentation written on February 10, 1992 by Bill Gardner,
MIT Media Laboratory, Musc and Cognition Group, 20 Ames
Street, Cambridge MA 02139.

internet: billg@media-lab.mediamit.edu

Appendix 6:
Csound

Adding your own Cmodules to

If the existing Csound generators do not suit your needs, you can
write your own modulesin C and add them to the run-time system.

When you invoke Csound on an orchestra and score file, the
orchestra is first read by a table-driven trandator ‘otran’ and the
insrument blocks converted to coded templates ready for loading
into memory by ‘oload’ on request by the score reader.

To use your own C-modules within a standard orchestra you need
only add an entry in otran’s table and relink Csound with your own
code.

The trandator, loader, and run-time monitor will treat your module
just like any other provided you follow some conventions.
You need a structure defining the inputs, outputs and workspace, plus
some initialization code and some perf-time code. Let's put an
example of these in two new files, newgen.h and newgen.c:

typedef struct { /* newgen.h - define astructure*/
OPDS h; [* required header */
float *result, *istrt, *incr, *itime, *icontin; /* addr outarg,
inargs */
float curval, vincr; [* private dataspace */
long countdown; [* ditto */
} RMP;
#include “csh” /* nevgen.c - init and perf code */

#include “newgen.h”

void rampset(p) [* a noteinitiaization: */
register RMP *p;
{
if (*p>icontin==0.)
p->curval = *p->igtrt; /* optionaly get new start value */
p->vincr = *p->incr / esr; [* set srateincrement per sec. */
p->countdown = *p->itime * es; /* counter for itime seconds

*/
}
void ramp(p) [* during note performance: */
register RMP *p;
regiger float *rdtp = p->result; /* init an output array pointer
*/
register int nn = ksmps; [* array sizefrom orchestra */
do{
rdtp++ = p>curval; [copy current value to ouput
*/
if (-p->countdown >= 0) /* for the firgt itime seconds,
*/

p->curval += p->viner; [*
} while (--nn);

ramp the value */

}
Now we add this module to the trandator table entry.c, under the
opcode name rampt:

#include “newgen.h”
void rampset(), ramp();

[* opcode dspace thread outarg inargs isub ksub
asub */

{ “rampt”, S(RMP), 5, *“a,"iiio”", rampset, NULL,
ramp },

Finally we relink Csound to include the new module. Under Unix
this means changing the Makefile in three places:

1. Add the name newgen.o to the variable OBJS.
2. Add the name newgen.h as a dependency for entry.o
3. Create anew dependency, newgen.o: newgen.h

Now run ‘make csound’. If your hogt is a Macintosh, smply add
newgen.h and newgen.c to one of the Csound segments and invoke
the C compiler.

The above actions have added a new generator to the Csound
language. It is an audio-rate linear ramp function which modifies an
input value at a user-defined dope for some period.

A ramp can optionally continue from the previous note's last value.
The Csound manual entry would look like:

48

ar rampt istart, islope, itime[, icontin]
igtart - beginning value of an audio-rate linear ramp.
Optionally overridden by a continue flag.

idope - dope of ramp, expressed asthe y-interval change per second.

itime - ramp time in seconds, after which the value is held for the
remainder of the note.

icontin (optional) - continue flag. 1f zero, ramping will proceed from
input istart . If non-zero, ramping will proceed from the last value of
the previousnote. The default valueiszero.

The file newgen.h includes a oneline lit of output and input
parameters. These are the ports through which the new generator

will communicate with the other generatorsin an instrument.
Communication is by address, not value, and this is a list of pointers
to floats. There are no redtrictions on names, but the input-output
argument types are further defined by character strings in entry.c
(inargs, outargs). Inarg types are commonly X, & k, and i, in the
normal Csound manual conventions, also available are o (optional,
defaulting to 0), p (optional, defaulting to 1). Outarg types include a,
k, i and s (asg or ksig). Itisimportant that all listed argument names
be assigned a corresponding argument type in entry.c. Also, i-type
args are valid only at initialization time, and other-type args are
available only at perf time. Subsequent lines in the RMP structure
declare the work space needed to keep the code re-entrant. These
enable the module to be used multiple times in multiple instrument
copieswhile preserving all data.

The file newgen.c contains two subroutines, each called with a
pointer to the uniquely allocated RMP structure and its data.
The subroutines can be of three types note initialization, k-rate
signal generation, arate sgnal generation. A module normally
requires two of theseNinitialization, and dther k-rate or arate
subroutinesNiwhich become inserted in various threaded lists of
runnable tasks when an insrument is activated. The thread-types
appear in entry.c in two forms. isub, ksub and asub names, and a
threading index which is the sum of isub=1, ksub=2, asub=4. The
code itself may reference global variables defined in csh and oload.c,
the most useful of which are:

float esr user-defined sampling rate

float ekr user-defined control rate

floa ensmps user-defined ksmps

int ksmps user-defined ksmps
int nchnls user-defined nchnls
int odebug commandline-v flag
int initonly commandline-I flag

int msglevel commandine-m level

float pi, twopi obvious constants

float tpidsr twopi / esr

float sstrcod specid codefor string arguments

Function tables

To access stored function tables, special help is available. The newly
defined structure should include a pointer

FUNC *ftp;

initialized by the statement
ftp = ftpfind(p>ifuncno);

where float *ifuncno is an i-type input argument containing the ftable
number. The stored table is then at ftp->ftable, and other data such
as length, phase masks, cpsto-incr converters, are also accessed from
this pointer. See the FUNC gtructure in csh, the ftfind() code in
fgens.c, and the code for oscset() and koscil() in ugens2.c.

Additional space
Sometimes the gpace requirement of a module is too large to be part

of a gtructure (upper limit 65535 bytes), or it is dependent on an i-arg
value which isnot known until initiaization.

49

Additional space can be dynamically allocated and properly managed ampdb(x) “ “
by including the line
PITCH CONVERTERS
AUX CH auxch;
octpch(pch) (init- or control-rate args only)

in the defined structure (*p), then using the following style of code in pchoct(oct)
theinit module: cpspeh(peh) “ “
octcps(cps) ! i
if (p>auxch.auxp == NULL) cpsoct(oct) (no rate regtriction)

auxaloc(npoints* sizeof(float), & p>auxch);
PROGRAM CONTROL
The address of this auxilliary space is kept in a chain of such spaces

belonging to this instrument, and is automatically managed while the igoto label
insrument is being duplicated or garbage-collected during tigoto label
performance. The assignment kgoto label
goto label
char *auxp =p->auxch.auxp; if iaRibigoto label
if kaR kb kgoto label
will find the all ocated space for init-time and perf-time use. if iaRib goto label
See the LINSEG structure in ugensl.h and the code for Isgset() and timout istrt, idur, label

klnseg() in ugensl.c.

File sharing
MIDI CONVERTERS
When accessng an external file often, or doing it from multiple
places, it is often efficient to read the entire file into memory. Thisis iamp ampmid iscal[, ifn]
accomplished by including theline i
kaft aftouch iscal
MEMFIL *mfp; kchpr chpress iscal
kbend pchben isce
in the defined structure (*p), then using the following style of code in d
theinit module: ival midictrl inum
kval midictrl inum
if (p>mfp==NULL)

p->mfp = [dmemfile(filname); SIGNAL GENERATORS
where char *filname is a string name of the file requested. The data kr line ia, idurl, ib
read will be found between ar line ia, idurl, ib
kr expon i, idurl,ib
(char *) p->mfp->beginp; and (char *) p>mfp->endp; ar expon ia idurl, ib
kr linseg ia, idurl, ib[, idur2, ic[...]]
Loaded files do not belong to a particular instrument, but are ar linseg ia, idurl, ib[, idur2, ic[...]]
automatically shared for multiple access. See the ADSYN dructure kr expseg ia idurl, ib[, idur2, ic[...]]
in ugens3.h and the code for adset() and adsyn() in ugens3.c. ar expseg ia idurl, ib[, idur2, ic[...]]
String arguments kr phasor kcpd, iphg]
ar phasor xcpd, iphg]
To permit a quoted string input argument (float *ifilnam, say) in our
defined sructure (*p), assign it the argtype S in entry.c, include ir table indx, ifn[, ixmode][, ixoff][, iwrap]
another member char *strarg in the structure, insert aline ir tablei indx, ifn[, ixmode][, ixoff][, iwrap]
kr table kndx, ifn[, ixmode][, ixoff][, iwrap]
TSTRARG(“rampt”, RMP) \ kr tablei kndx, ifn[, ixmode][, ixoff][, iwrap]
ar table andx, ifn[, ixmode][, ixoff][, iwrap]
inthefile oload.h, and include the following codein the init module: ar tablei andx, ifn[, ixmode][, ixoff][, iwrap]
kr oscill idel, kamp, idur, ifn
if (*p>ifilnam == sstrcod) kr oscilli idel, kamp, idur, ifn
strepy(filename, unquote(p>gtrarg));
kr oscil kamp, keps, ifn[, iphg]
See the code for adset() in ugens3.c, Iprdset() in ugenss.c, and kr oscili kamp, keps, ifn[, iphg]
pvset() inugenss.c. ar oscil xamp, xcps, ifn[, iphg]
ar oscili xamp, xcps, ifn[, iphg]
ar foscil xamp, keps, kear, kmod, kndx, ifn[, iphs]
iy 7 ar foscili xamp, keps, kear, kmod, kndx, ifn[, iphs]
Appendix 7: A CSOUND QUICK REFERENCE alla2] loscl xamp, Keps ifn[, ibasl[, imodLibegliendl]
VALUE CONVERTERS [.imod2,ibeg2,iend?]
- ar buzz xamp, xcps, knh, ifn[, iphg]
m%](()x) E:ﬂ::ﬁegn%mgge gsonly) a gbuzz xamp, xcps, knh, kih, kr, ifri, iphg
frac(x) . ar adsyn kamod, kfmod, ksmod, ifilcod
dbamp(x) ar ktimpnt, kfmod, ifilcod], i
i(X) (control-rate arg; only) pvoc prt, ' [, ispecwp]
Z(b;(();)) (no rateteﬁrld|‘9n) ar fof xamp, xfund, xform, koct, kband, kris, kdur,
“ “ kdec, iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]
log(x) ar luck kamp, kops, icps, ifn, imeth [, iparmd, iparm2]
srt(x) « « p P, KCPS, 1CpS, 1N, » Iparml, 1par
Sinx) kr rand xampl, iseed]

cos(x) “ “

kr randh kamp, kepd, iseed]
kr randi kamp, kepd, iseed]
ar rand xampl, iseed]

ar randh xamp, xcpq, iseed]
ar randi xamp, xcpq, iseed]

SIGNAL MODIFIERS

kr linen kamp, irise, idur, idec
ar linen xamp, irise, idur, idec
kr linenr kamp, irise, idec, iatdec
ar linenr xamp, irise, idec, iatdec
kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod)]
ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod)]
kr port ksig, ihtim[, isig]
ar tone adg, khp[, istor]
ar atone adg, khp[, istor]
arreson asig, kef, kbwl, iscl, istor]
ar areson adg, kcf, kbw[, iscl, istor]
krmsr, krmso, kepslpread ktimpnt,ifilcod[, inpoles][,ifrmrate]
kerr,
ar Ipreson adg
ar Ipfreson adg, kfrgratio
kr rms adg[, ihp, istor]
nr gain adg, krmd, ihp, istor]
ar balance adsig, acompy[, ihp, istor]
kr downsamp adg[, iwlen]
ar upsamp ksig
ar interp ksig[, istor]
kr integ ksig[, istor]
ar integ adg[, istor]
kr diff ksig[, istor]
ar diff adg[, istor]
kr samphold xsig, kgate], ival, ivstor]
ar samphold adg, xgate], ival, ivstor]
ar delayr idlt[, istor]
delayw asig
ar delay adg, idit[, istor]
ar delayl adg[, istor]
ar deltap kdlt
ar deltapi xdit
ar comb adg, krvt, ilpt[, istor]
ar alpass adg, krvt, ilpt[, istor]
ar reverb adg, krvt[, istor]

OPERATIONS USING SPECTRAL DATA TYPES

dsg octdown xsg, iocts, isampd, idisprd]
wsig noctdft dsig, iprd, ifrgs, iq[, ihann, idbout, idsines]
wsig specscal wsigin, ifscale, ifthresh
wsig specadd wsigl, wsig2[, imul2]

m
wsig specdiff wsigin
wsig specaccm wsigin
wsig specfilt wsigin, ifhtim

specdisp wsg, iprd[, iwtflg]
ksu specsum wsg][, interp]
m

SENSING & CONTROL

ktemp kin, iprd, imindur, imemdur, ihp, ithresh,
tempest ihtim, ixfdbak, igtartempo, ifn[, idisprd,
itweek]
kx, Ky xyin iprd, ixmin, ixmax, iymin, iymax[,ixinit,
iyinit]
tempo ktempo, istartempo

SOUND INPUT & OUTPUT

al in

50

al, a2 ins
al,a2,a3,a4 inq
al soundin ifilcod[,iskptim][, iformat]
al, a2 soundin ifilcod[,iskptim][, iformat]
al,a2,a3,a4 soundin ifilcod[,iskptim][, iformat]

out asig

outsl asig

outs2 asig

outs adgl, asg2

outql adg

outq2 adg

outq3 adg

outq4 adg

outq adgl, asg2, asig3, asgd
al,a2,a3,a4 pan adg, kx, ky, ifn[, imode][,ioffset]

SIGNAL DISPLAY

print iarg[, iarg,...]
display xsig, iprd[, iwtflg]
dispfft xsg, iprd, iwsiz[, iwtyp][, idbouti][iwtflg]

END OF Csound MANUAL

L og of changesintroduced from 3.15.10

CSOUND for MSDOS
CSOUND for ATARI ST
John Fitch

School of Mathematical Sciences
Universgity of Bath

BathBA2 7AY

England

Tel: +44-1225-826820

FAX: +44-1225-826492
E-mail: jpff @maths.bath.ac.uk
or JP.Fitch@bath.ac.uk

(also Codemist Ltd, Tel/FAX: +44-1225-837430)

csound_286.zip
csound_fpt_286.zip
csound_386.zip
csound_fpt_386.zip
csound_486.zip
csound_src.zip

These files are the executables for CSound for 286/386/486 machines
running MS-DOS. There are versons built for a plain machine and
for amachine with a floating point co-processor.

Also, the files *.ttp are Csound for the Atari ST. See beow for
ATARI notes.

NOTE: The 486 verson does not seem to work on an 486SX, for
which the 386 version should be used.

Note: | have not tried al these versons mysdf, as | have a 386
without co-processor.

There is a mailing list kept for this verson; to join send mail to
pcsound-request@maths.bath.ac.uk. There is aso a Csound mailing
ligt for discussion of any aspect of the system, and a WWW page at
http://www.leeds.ac.uk/music/Man/c_front.html

It attempts to do graphics. It is supposed to adjust to your graphics
system. See below for notes on how to set screen types explicitly. |
aso have graphics in PVANAL and LPANAL with a -g option. In
CSOUND itsdf there is a pause before and after each graph. This
can be turned off if the environment variable CSNOSTOP is st to
YES.

The WAV file format was all new for the PC, but is now in the main
sources. To ensure you get WAV sound files either use the -W
option, or st an environment variable SFOUTYP to WAV in your
AUTOEXEC.BAT

The system on a 386 or 486 will recognise the output file devaudio as
an attempt to us a sound card for direct output (SoundBlaster or
compatible). This is not yet finished, and seems to be limited to less
than 14KHz sampling, and 8 bit samples in mono. | am attempting
to improve that. On my dow 386 the machine cannot keep up with
generating in time, so there is a chopping effect. Y our mileage may
vary.

| haveintroduced a local version number; currently | have v3.20.10.
The major number refers to MIT’s current version (3 is the beta), the
20 is my sequence number for the PC, and the 10 is the version of the
“real time” support.

There are three new utilities to scale for amplitude, a mixer for
mixing sound files together, and a mkgraph program to write
envelopesfor these two.

Version 3.20.10:

A number of changesinthe MIDI area. A number of new generators
added, including Butterworth filters, vdelay, multitap and reverb2.
Also granular synthesis generator and stochastic generators. Thereis
an envelope-following generator aswell. See Appendix 7 for details
of these generators. These arelargely the work of Paris Smaragdis.

Verson 3.19.10:
Not released

Verson 3.18.10:
Not released

Verson 3.17.10:

Created new utility mkgraph which creates envelope files using the
mouse for drawing. These files can be used by mixer and scale to
provide more flexible gain control on sound files.

New utility ENVEXT for create an envelope file from a sound file.

Verson 3.16.10:
Mixer and scale can take envelopefiles

Verson 3.15.10:

Experimentally | have attempted to read the device somidi asa MIDI
input for use with the -M option. | havenoidea if thisworks.

When using -0 devaudio (also can use -0 dac or -0 shlgt) it will force
theformat tobe-cor -s.

The mixer can now take varying numbers of channds as input and
can

include some or all channels, and can direct input channel n to output
channd m. As the scaling can be negative as well as positive this
incorporates removal of information as well. The syntax is not good,
but inspiration is not with me this weekend.

Copyright:

The systems are the product of the MIT Media Laboratory, and this
istheir copyright notice:

Copyright 1986, 1987 by the Massachusetts | ntitute of Technology.
All rightsreserved.

Developed by Barry L. Vercoe at the Experimental Music Studio,
Media Laboratory, M.I.T., Cambridge, Massachusetts, with partial
support from the System Development Foundation, and from NSF
Grant |RI-8704665.

Permisson to use, copy, or modify these programs and their
documentation for educational and research purposes only and
without fee is hereby granted, provided that this copyright and
permisson notice appear on al copies and supporting
documentation. For any other uses of this software, in original or
modified form, including but not limited to distribution in whole or
in part, specific prior permisson from M.I.T. must be obtained.

51

M.L.T. makes no representations about the suitability of this software

for any purpose.
Itisprovided “asis’ without express or implied warranty.

The mixer and SoundBlaster support are probably my copyright, and
| hereby give permission to use, copy, or modify this codefor any
purpose whatsoever. | would like my name to remain in there, but |
do not insist.

Interested parties should note that CSound isasystem for creation of
sound, and isnot a MIDI sequencer.

The systems built are described briefly below.

CSOUND EXE
digital audio processing and sound synthesis

csound [flags] orchfile scorefile

Csound is an environment in which a “scorefile’ or external event

sequence can invoke arbitrarily complex signal-processing

“ingruments’ to produce sound. Audio may be displayed during its

creation, and the resulting sound sent to an on-line audio device or to

an intermediate soundfilefor later playback. Flagsinclude

-C use Cscore processing of scorefile

-l I-timeonly orch run

-n no sound onto disk

-i fnam sound input filename

-o fnam sound output filename (if fnam is devaudio, dac or shist use
directly)

-bN sample frames (or -kprds) per software sound /O buffer
-BN samples per hardware sound I/O buffer

-A create an Al FF format output soundfile

-wW create aWAYV format output soundfile

-h no header on output soundfile

-C 8hit signed_char sound samples

-a alaw sound samples

-u ulaw sound samples

-S short_int sound samples

-l long_int sound samples

-f float sound samples

-rN orchestrasrate override

-V verbose orch translation

-m N tty message level. Sum of: 1=note amps, 2=out-of-range
msy, 4=warnings, 8=SB mesages

-d suppress all displays

-g suppress graphcs, use ascii displays

-S scoreis in Scot format

-tN use uninterpreted beats of the score, initially at tempo N

-L dnam read Line-oriented realtime score events from device

‘dnam’

-M dnam read MIDI redtime events from device ‘dnam’ (must be
sbmidi)

-Ffnam read MIDIfile event stream from file ‘fnam’

-PN MIDI sustain pedd threshold (0- 128)

-R continually rewrite header while writing soundfile
(WAV/AIFF)

-H print aheartbeat character at each soundfile write

-N notify (ring the bell) when score or miditrack is done

-T terminate the performance when miditrack isdone

flag defaults: csound -s-otest -b1024 -B1024 -m7 -P128

CSCORE.LIB

Cscore is a program for generating and manipulating numeric score
files.

It comprises a number of function subprograms, called into operation
by a user-written main program.

The function programs augment the C language library functions,
they can optionally read standard numeric score files, can massage
and expand the data in various ways, then write the data out as a new
scorefileto beread by aCsound orchestra.

EXTRACT.EXE
Program for extracting parts of awork. Not tested in PC version

HETRO.EXE
hetrodynefilter analysisfor Csound adsyn module
hetro [flags] [fundamental] [filename]

hetro takes as input a file containing amplitude samples of some
sound over time (it is assumed that the samples are evenly spaced in
time) and decomposes that sound into a set of harmonically related
sine waves with time varying amplitude and phase.

LPCANAL.EXE
Paul Lansky's software for linear predictive analysis and pitch
tracking, adapted for Csound.

Ipcanal [-p<n> -i<n> -s<t> -d<t> -o<file> -C<str> -P<frg>
-Q<frg>] soundfile

Ipcanal is the new experimental combination of the old anallpc and
ptrack. It performs linear predictive analysis and pitch tracking on
monaural 16bhit fixed point soundfiles. If a -g flag is used then a
graphical display is given of some of the output as it is being
computed.

PVANAL.EXE
Fourier analysis module for Csound PVOC unit generator

pvana [-nframe-size] [-0 overlap| -i increment] \
inputSoundFile outputFFTFile

pvanal converts a playable sample (a time-domain representation)
into

a series of short-time Fourier transform (STFT) frames centred at
regular points throughout the file (a frequency-domain
representation). The output file can then be used as the data for the
PVOC unit generator in Csound to generate notes based on the
original sample, but with their timescales and pitches arbitrarily and
dynamically modified. If a -g flag is used then a graphical display is
given of some of the output asit is being computed.

SCOT.EXE

Scot is a scoring program to prepare input for CSound. It is rather
complex and initial testing on the PC suggests that | have not got it
correct yet.

SCSORT.EXE
Stand-alone sorting of sound files
Not tested on PC

SNDINFO.EXE
Readsthe header of a sound file to identify type, duration etc

sndinfo soundfile
SCALE.EXE
Aswell asdoing the same as SNDINFO this utility reportson the
maximum amplitude, and can generate a new soundfile with the
amplitude scaled by afloating point value.

scale[-flags] soundfile

Legal flagsare:

-ofnam sound output filename

-A create an AIFF format output soundfile

-wW create a WAV format output soundfile

-h no header on output soundfile

-C 8hit sgned_char sound samples

-a alaw sound samples

-u ulaw sound samples

-S short_int sound samples

-l long_int sound samples

-f float sound samples

-Ffpnum amount to scale amplitude

-Ffname envelopefilefor scaling

-R continually rewrite header while writing soundfile
(WAV/AIFF)

-H print a heartbeat character at each soundfile write

-N notify (ring the bell) when score or miditrack is done

52

flag defaults scale -s-otest -F 0.0

If scale is 0.0 then reports maximum possible scaling; otherwise
scale
and generate a new soundfile

MIXER.EXE
This utility can mix together a number of sound files (up to 20 at
present) with different starting times and with scaling on each file.

mixer [-flags] soundfile [-flags] soundfile....

Legal flagsare:

-0 fnam sound output filename

-A creste an AIFF format output soundfile
-W createa WAV format output soundfile
-h no header on output soundfile

-c 8hitsgned_char sound samples

-a daw sound samples

-u ulaw sound samples

-s short_int sound samples

-l long_int sound samples

-f float sound samples

-Ffpnum amount to scae amplitude of next sound file

-Ffname an envelopefile for scaling

-R continually rewrite header while writing soundfile
(WAV/AIFF)

-H print a heartbeat character at each soundfile write

-N notify (ring the bell) when score or miditrack is done

-Sint Sample at which to insert next sound file

-T fpnum Timeat which to insert next sound file
-1-2 -3 -4 include named channel
Anm include channel nand output as channel m

Defaultsare: mixer -s-otest -F1.0 -SO

MIXER can also be used for some echo effects.

MKGRAPH.EXE

A small utility to creat envelope files for MIXER and SCALE. Type
? when the program isrunning to get al the controls.

mkgraph [-v] [envfile] [-0 outname]

Default is mkgraph -0 newgraph. If an envfile is given it is loaded
and can be editted. envfile and outname can be the same.

ENVEXT.EXE
Given a sound file it creates an envelope file with an approximation
to the envelope of the sound file.

envext [-w time] [-o file] soundfile
Defaultsare

envext -w 0.25 -0 newenv

The graphics is just for the display of waveforms. The full
specification of the graphics used says that it tries auto-determining
the graphics on the machine. This can sometimes fail, so it reads the
environment variable FG_DISPLAY, and if set as below it uses that
kind of graphics.

Value Type

GCAHIRES GCA 640 x 200 x 2
GCAMEDRES GCA 320x 200x 4
EGACOLOR EGA 640 x 200 x 16
EGAECD Enhanced EGA 640 x 350 x 16
EGALOWRES

EGAMONO

EVGAHIRES Everest EVGA board

HERCFULL
HERCHALF
ORCHIDPROHIRES
PARADISEHIRES
TOSHIBA
TRIDENTHIRES
VEGAVGAHIRES
VESAGA

VESA2

VGA1l

VGA12

VGA13

8514A

Virtual Memory:

53

Hercules 2 pages 2 colour
Hercules 1 page 2 colour
VGA type

VGA type

Toshiba 3100-- 640 x 400 x 2
Trident 800 x 600 x 16
Video 7 vega VGA board
VESA mode Ox6a

VESA mode 0x102

IBM VGA mode 0x11
IBM VGA mode 0x12
IBM VGA mode 0x13
IBM 8514A display adapter

The system uses virtual memory on 386/486. The limits on memory

size are the minimum of

1. Freedisk space + codesize
2. 256 timesyour extended memory

3. 3.5Ghytes (1)

You should set up the environment variable TMP or TEMP to the
disk to usefor swap space. If thisisnot set it looks at disksC:, D, ...
looking for thelargest free space. That givesthelimit of space.

Reporting Bugs:

Please mail

(or possbly FAX) me reports on any bugs and

shortcomings of the PC version. | will endeavour to fix or asst, but
it is only fair to warn you that this is not either of my jobs, and o it
may be lower in priorities. But | am interested in widening the

availability of CSound.

The system has been built with Zortech’s C++ Compiler, with its
royalty-free DOS extender, x and z modes, and FlashTech’ svirtual
memory and graphics. We (as Codemist) use thissystem for a
commercial product, and it seems satisfactory, and reasonably

trouble
free.

It is known that the DOS6 memory manager does not obey the full

rules, and so interferes with Csound.

the

I now have a fix for this, and

corrected version is now on the server, but there do still seem to be
problems. The old fix was to ensure that in your AUTOEXEC.BAT

or

CONFIG.SY Sthat if thereisacall to

emm386 -noems
init that you change this to read

emm386

Thisshouldfix thingsfor now. Or removetheline!

80286 - verson

The files in the 286 versions also need the program ZPM.EXE,
which isprovided, in your search path.

John Fitch

School of Mathematical Sciences
University of Bath

Bath BA2 7AY

5QR

United Kingdom

Td: +44-1225-826820

Codemist Ltd
“Alta’, Horsecombe Vae
Combe Down, Bath BA2

United Kingdom
Tel: +441225-837430

FAX: +44-1225-826492 FAX: +44-1225-837430

Appendix 7 : Newest Csound opcodes
by

Paris Smaragdis

Berklee College of Music

This appendix describes recent additions to Csound. These additions
include a granular synthesis synthesizer, a new set of filters, a new
variable delay, a multitap delay, a new reverb, an envelope follower,
various noise generators, a power function generator and two gen
routines, GEN20 and GEN21.

1) Granular synthesizer.

ar grain xamp, xpitch, xdens, kampoff, kpitchoff, kgdur, igfn,
iwfn, imgdur

Generatesgranular synthesistextures.

INITIALIZATION

igfn, igdur - igfn is the ftable number of the grain waveform. This
can be just a sine wave or a sampled sound of any length. Each grain

will start from a random table position and sustain for igdur seconds.

iwfn - Ftable number of the amplitude envelope used for the grains
(see also GEN20).

imgdur - Maximum grain duration in seconds. This the biggest value
to be assigned on kgdur.

PERFORMANCE
xamp - Total amplitude of the sound.
xpitch - Grain frequency in cps.

xdens - Dengity of grains measured in grains per second. If this is
congtant then the output is synchronous granular synthesis, very
similar to fof. If xdens has a random eement (like added noise), then
the result ismore like asynchronous granular synthesis.

kampoff - Maximum amplitude deviation from kamp. This means
that the maximum amplitude a grain can have is kamp + kampoff and
the minimum is kamp. If kampoff is set to zero then there is no
random amplitude for each grain.

kpitchoff - Maximum pitch deviation from kpitch in cps. Similar to
kampoff.

kgdur - Grain duration in seconds. The maximum value for this

should be declared in imgdur. If kgdur at any point becomes greater
than imgdur, it will be truncated to imgdur.

2) Butterworth filters.

ar butterhp asig, kfreg
ar butterlp adg, kfreq
ar butterbp adg, kfreq, kband
ar butterbr asig, kfreq, kband

Implementations of second-order hipass,
bandreject Butterworth filters.

lopass, bandpass and

PERFORMANCE

These new filters are butterworth second-order IIR filters. They are
dightly dower than the origina filters in Csound, but they offer an
amost flat passband and very good precison and stopband
attenuation.

asg - Input signal to befiltered.

kfreq - Cuttoff or center frequency for each of thefilters.

kband - Bandwidth of the bandpass and bandreject filters.

EXAMPLE

asg rand 10000 ; White noise signal

apf butterlp asig, 1000 ; cutting frequencies abovelK

ahpf butterhp asg, 500 ; passing frequencies above

500Hz
abpf butterbp asig, 2000, 100 ; passing only 1950 to 2050 Hz
abrf butterbr asig, 4500, 200 ; cutting only 4400 to 4600 Hz

3) Vdday
ar vdelay asig, adel, imaxdel
This is an interpolating variable time delay, it is not very different

from the existing implementation (deltapi), it is only easier to use.

INITIALIZATION

imaxdel - Maximum value of delay in ssmples. |If adel gains a value
greater than imaxde it is folded around imaxdd. This should not

happen.
PERFORMANCE

With this unit generator it is possble to do Doppler effects or
chorusing and flanging.

adg - Input Sgnal.

adel - Current value of delay in samples. Note that linear functions
have no pitch change effects. Fast changing vaues of adel will cause
discontinuitiesin the waveform resulting noise.

Example
f108192101

ims =100 ; Maximum delay time in msec

al oscil 10000,1737,1 ; Makeasigna

a2 oscl img2,1Up3,1 ;MakeanLFO

a2 =a2+ims/2 ; Offset the LFO so that it is positive

a3 vdday al, a2, ims ; Usethe LFO to control delay time
out a3

Two important pointshere. Firg, the delay time must be always
positive. And second, even though the delay time can be controlled
in

k-rate, it is not advised to do so, snce sudden time changes will
createclicks.

4) Multitap delay

ar multitap adig, itimel, igainl, itime2, igan2. . .
Multitap delay line implementation.
INITIALIZATION

The argumentsitime and igain set the position and gain of each tap.
Thedday lineisfed by asig.

Example:
al oscil 1000, 100, 1
a2 multitap al,1.2,.5 14,.2
out a2

This results in two delays, one with length of 1.2 and gain of .5, and
onewith length of 1.4 and gain of .2.

5) Reverb2
ar reverb2 adg, ktime, khdif

Thisisa reverberator consisting of 6 paralel comb-lowpassfilters
being fed into a series of 5 allpassfilters.

PERFORMANCE

The input signal asg is reverberated for ktime seconds. The
parameter khdif controlsthe high frequency diffusion amount. The
values of khdif should be from O to 1. If khdif is set to O the all the
frequencies decay with the same speed. If khdif is 1, high
frequencies decay faster that lower ones.

Example:

al oscil 10000, 100, 1
a2 reverb2 al, 25,.3
out al+a2* .2

Thisresultsin a 2.5 sec reverb with faster high frequency
attenuation.

6) Envelope follower
kr follow adig, idt

Envelope follower unit generator.

INITIALIZATION

idt - Thisis the period, in seconds, that the average amplitude of asig
is reported. If the frequency of asig is low then idt must be large
(morethan half the period of asig).

PERFORMANCE
asg - Thisisthesgnal from which to extract the envelope.

Example

k1 line 0, p3,30000 ;Makeklasimpleenvelope

al oscil k1,1000,1 ;Makeasimplesignal using k1

akl follow al, .02 ; aklisnow likekl

a2 oscil akl,1000,1 ;Makeasimplesignal using akl
out a2 ; Both al and a2 are the same

To avoid zipper noise, by discontinuities produced from complex
envelope tracking, a lowpass filter could be used, to smooth the
estimated envelope.

7) Noise generators

All of the following opcodes operate in i-, k- and a-rate. The output
rate depends on the first letter of the opcode, a for a-rate, k for k-rate
and i for i-rate.

xlinrand krange - Linear digtribution random number generator.
Krange is the range of the random numbers [0 - krange). Outputs
only

positive numbers.

xtrirand krange - Same as above only ouputs both negative and
positive numbers.

xexprand krange - Exponential distribution random number
generator.

krange is the range of the random numbers [0 - krange). Outputs
only positive numbers.

55

xbexprnd krange - Same as above, only extends to negative numbers
too with an exponential distribution.

xcauchy kalpha - Cauchy digtribution random number generator.
Kalpha controls the spread from zero (big kalpha => big spread).
Outputs both positive and negative numbers.

xpcauchy kapha - Same as above, ouputs positive numbers only.

xpoisson klambda - Poisson distribution random number generator.
klambda is the mean of the distribution. Outputs only positive
numbers.

xgauss krange - Gaussan digtribution random number generator.
Krange is the range of the random numbers (-krange - O - krange).
Outputs both positive and negative numbers.

xweibull digtribution random number
generator.

ksigma scales the spread of the distribution and ktau, if greater than
one numbers near ksigma are favored, if smaller than one small
values arefavored and if t equals 1 the distribution isexponential.
Outputs only positive numbers.

ksgma, ktau - Waeibull

xbeta krange, kalpha, kbeta - Beta distribution random number
generator. krange is the range of the random numbers [0 - krange).
If kalpha is smaller than one, smaller values favor values near 0. If
kbeta is smaller than one, smaller values favor values near krange.

If both kalpha and kbeta equal one we have uniform distribution. If
both kalpha and kbeta are greater than one we have a sort of gaussian
digtribution. Outputsonly positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge- T.A. Jerse 1985. Computer music. Schirmer books.
pp.265 - 286

2.D. Lorrain. “ A panoply of stochastic cannons’. In C. Roads, ed.
1989. Music machine . Cambridge, Massachusetts: MIT press, pp.
351 - 379.

Examples:
al atrirand 32000
distribution
k1 kcauchy 10000 ; Control noise with Cauchy dist.
i1l ibetarand 30000, .5, .5 ; Himerandom value, beta dist.

; Audio noise with triangle

8) Power functions
ir ipow iarg, kpow
kr kpow karg, kpow, [inorm]
a apow aarg, kpow, [inorm]
Computesxarg to the power of kpow and scales the result by inorm.
INITIALIZATION
inorm - The number to divide the result (default to 1). This is
epecialy useful if you are doing powersof a or k- sgnalswhere
samples out of range are extremely common!
iarg - If you are using ipow thisisthe base.
PERFORMANCE
karg - If you areusing kpow thisisthe base.
aarg - If you are using apow thisisthe base.
EXAMPLES:
1. i2t2

ipow 2,2 ; Computes 2/'2.

2. Kline line 0,14
kexp kpow Kline, 2,4

Thisfeedsa linear function to kpow and scalesthat to the line's
pesk value. Theoutput will be an exponential curve with the same
range astheinput line.

3. iampipow 10, 2
al oscil iamp, 100, 1
a2 gpow al, 2, iamp

out a2

This will output a sne with its negative part folded over the amp
axis. Thepeak valuewill beiamp = 102 = 100.

9) GEN20

This subroutine generates functions of different windows. These
windows are usualy used for spectrum analyss or for grain
envelopes.

f# time sze 20 window max opt

size - number of pointsin thetable. Must be a power of 2 (+ 1).

window - Type of window to generate.
1 - Hamming
2 - Hanning
3 - Bartlett (triangle)
4 - Blackman (3 - term)
5 - Blackman - Harris (4 - term)
6 - Gaussan
7 - Kaiser
8 - Rectangle
9-Sinc

max - For negative p4 this will be the absolute value at window peak
point. If p4 is podtive or p4 is negative and p6 is missing the table
will be post-rescaled to a maximum value of 1.

opt - Optional argument required by the Kaiser window.
Examples:

f 1 0 1024 20 5
This creates a function which contains a 4 - term Blackman - Harris
window with maximum value of 1.

f 1 0 1024 -20 2 456
This creates a function that contains a Hanning window with a
maximum value of 456.

f 1 0 1024 -20 1
This creates a function that contains a Hamming window with a
maximum value of 1.

f 1 0 1024 20 7 1 2
This creates a function that contains a Kaiser window with a
maximum
value of 1. The extra argument specifies how “open’ the window is,
for example a value of O resultsin a rectangular window and a value
of 10 in a Hamming like window.

10) GEN21

This generates tables of different random distributions. (see also
noise
generators, above).

f# time size 21

type Ivl argl arg2

Time and sze are the usual Gen function arguments. Type defines
the distribution to be used.

1 -Uniform
2 -Linear
3 - Triangular

56

- Exponential

- Biexponential

- Gaussan

- Cauchy

- Positive Cauchy
- Beta

10 - Weibull

11 - Poison

©oo~NO O

Of al these cases only 9 (Beta) and 10 (Webull) need extra
arguments. Beta needstwo argumentsand Weibull one.

Examples:

101024211 ; Uniform (white noise)

101024216 ; Gaussian

101024219112 ;Beta(notethat level precedes arguments)
101024211012 ; Weibull

All of the above additions were designed by the author between May
and December 1994, under the supervision of Dr. Richard Boulanger.

This appendix was written on 20 December 1994 by Paris
Smaragdis, Berklee College of Music.
Internet: psmaragdis@aol.com

AUTHOR: Greg Sullivan, sullivan@auss e.enet.dec.com
(Based on agorithm given in ‘Elements Of Computer
Music’, by F. Richard Moore).

CVANAL - Impulse Response Fourier Analysisfor CONVOLVE
operator

csound -U cvanal [flagg] infilename outfilename

cvanal converts a soundfile into a single Fourier transform frame.
The

output file can be used by the CONVOLVE operator to perform Fast
Convolution between an input signal and the original impulse
response.

Analysis is conditioned by the flags below. A space is optional
between the flag and itsargument.

-s<rate> sampling rate of the audio input file. Thiswill over-ride
the srate of the soundfile header, which otherwise applies.
If neither is present, the default is 10000.

-c<channel> channel number sought. If omitted, the default isto
process al channels. Ifavalueisgiven, only the
selected channel will be processed.

-b<begin> beginning time (in seconds) of the audio segment to be
anaysed. The default is 0.0

-d<duration> duration (in seconds) of the audio segment to be
analysed.
The default of 0.0 meansto the end of thefile.

EXAMPLE
cvanal asound cvfile

will analyse the soundfile “asound” to produce the file “cvfile’ for
the
usewith CONVOLVE.

HINT: To use data that is not already contained in a soundfile, a
soundfile converter that accepts text files may be used to create a
standard audio file. E.g, the .DAT format for SOX. This is useful for
implementing FIR filters.

FILES

The output file has a special CONVOLVE header, containing details
of the source audio file. The analyss data is stored as ‘float’, in
rectangular (rea/imaginary) form.

NOTE: The analysis file is NOT system independent! Ensure
that the original impulse recording/data is retained. If/when required,
the analysisfile can be recrested.

AUTHOR: Greg Sullivan, sullivan@auss e.enet.dec.com
(Based on algorithm given in ‘Elements Of Computer Musc’, by F.
Richard Moore.

CONVOLVE unit generator:
arl[,ar2[,ar3[,ar4]]] convolve ain,ifilcod,channel

Output is the convolution of signal ain and the impulse response
contained in ifilcod. Note that it is consderably more efficient to use
one instance of the operator when processng a mono input to create
stereo, or quad, outputs.

INITIALISATION

ifilcod - integer or character-string denoting an impulse response data
file. An integer denotes the suffix of a file convolvem; a character
string (in double quotes) gives afilename, optionally afull pathname.

If not a fullpath, the file is sought first in the the current directory,
then in the one given by the environment variable SADIR (if
defined).

The data file contains the Fourier transform of an impulse response.
Memory usage depends on the size of the data file, which is read and
held entirely in memory during computation, but which is shared by
multiplecalls.

channel - integer denoting the channel of the impulse response to be
used for the convolution. O (the default) means to use al channels.

For multi-channel output, the number of channds in the impulse
response must match the number of output signals.

PERFORMANCE

convolve implements Fast Convolution. The output of this operator
is delayed with respect to the input. The following formulas should
be used to calculate the delay:

For (L/kr) <= IRdur:

Déeay = cel(IRdur * kr) / kr

For (1/kr) > IRdur:

Delay = IRdur * ceil (1/(kr*IRdur))

Where:

kr = Csound control rate

IRdur = duration, in seconds, of impulse response
ceil(n) = smallest integer not smaller than n

One should be careful to aso take into account the initial delay, if
any, of the impulse response. For example, if an impulse response is
created from a recording, the soundfile may not have the initial delay
included. Thus, one should either ensure that the soundfile has the
correct amount of zero padding at the dart, or, preferably,
compensate for this delay in the orchestra. (the latter method is more
efficient). To compensate for the delay in the orchestra, _subtract
the initial delay from the result calculated using the above
formula(s), when calculating the required delay to introduce into the
‘dry’ audio path.

For typical applications, such as reverb, the delay will be in the order
of 0.5 to 1.5 seconds, or even longer. This renders the current
implementation unsuitable for real time applications.

It could conceivably be used for real time filtering however, if the
number of tapsisissmall enough.

Example:
- Create frequency domain impulse responsefile:

c:\> csound -Ucvanal |1 _44.wav |1_44.cv

- Determine duration of impulse response. For high accuracy,
determine the number of sample frames in the impulse response
soundfile, and then compute the duration with:
duration = (sampleframes)/(sample rate of soundfile)

This is due to the fact that the SNDINFO utility only reports the
duration to the nearest 10ms. If you have a utility that reports the
duration to the required accuracy, then you can smply use the
reported val ue directly.

c\> sndinfol1_44.wav
length = 60822 samples, sample rate = 44100

Duration = 60822/44100 = 1.379s.

- Determineinitial delay, if any, of impulse response.

If the impulseresponse has not had the initial delay removed, then
you can skip this step. If it has been removed, then the only way you
will know the initial delay is if the information has been provided
Sseparately.

For thisexample, let’ sassumethat the initial delay is 60ms. (0.06s)

- Determine the required delay to apply to the dry signal, to align it
with the convolved signal:

If kr = 441:
1/kr = 0.0023, which is <= IRdur (1.379s), so:
Delayl = ceil(IRdur* kr) / kr

= ceil(608.14) / 441

= 609/441

=1.38s

Accounting for theinitia delay:

delay2 = 0.06s

Total delay = delayl - delay2
=1.38-0.06
=1.32s

- Create .orcfile, eg:
---CUT----

;Simple demongtration of CONV OLVE operator, to apply reverb.
sr = 44100
kr =441
ksmps = 100
nchnls=2
instr 1
imix = 0.22 ; Wet/dry mix. Vary asdesred.
; NB: ‘Small’ reverbs often require a much higher
; percentage of wet signal to sound interesting. ‘Large’
; reverbs seem require | ess. Experiment! The wet/dry mix is
; very important- a smal change can make a large
difference.

ivol = 0.9 ; Overall volumelevel of reverb. May need to adjust
; when wet/dry mix is changed, to avoid clipping.

idel = 1.32 ; Required delay to dign dry audio with output of

; convolve.

; This can be automatically calculated within the orc file,

; if desired.
adry soundin “anechoic.wav” ; input (dry) audio
awetl,awet2 convolveadry,”|1 44.cv” ; stereo convolved (wet)

; audio

adrydel delay (l-imix)*adry,idel ; Delay dry sgnal, to align it
with

; convolved signal. Apply level
; adjustment here too.
outs ivol* (adrydel+imix* awetl),ivol* (adrydel+imix* awet2)
; Mix wet & dry signals, and output
endin

57

--CUT---

The granule unit generator (Allan Lee) is more complex than grain
(above), but does add new possibilities. Thisisashorten manual,
without the pictures,

NAME

granule - Granular synthesisunit generator for Csound.

SYNOPSIS

granule xamp ivoice iratio imode ithd ifn ipshift igskip
igkip_os ilength kgap igap os kgsze igsze os iatt idec [iseed]
[ipitchl] [ipitch2] [ipitch3] [ipitchd] [ifnenv]

DESCRIPTION

granuleisa Csound unit generator which employsa wavetable as

input to produce granularly synthesized audio output. Wavetable data
may be generated by any of the gen subroutines such as genO1 which
reads an audio data file into a wavetable. This enable a sampled
sound to be used as the source for the grains. Up to 128 voices are
implemented internally.The maximum number of voices can be
increased by redefining the variable MAXVOICE in the graind.h file.
granule has a build-in random number generator to handle all the
random offset parameters.

Thresholding is also implemented to scan the source function table at
initialization stage. This facilitates features such as skipping slence
passage between sentences.

The characterigtics of the synthesis are controlled by 22 parameters.
xamp is the amplitude of the output and it can be either audio rate or
control rate variable. All parameters with prefix i must be valid at
Init time, parameters with prefix k can be either control or Init
values.

SUMMARY OF PARAMETERS

xamp - amplitude.

ivoice - number of voices.

iratio - ratio of the speed of the gskip pointer relative to output

audio samplerate. eg. 0.5 will be half speed.

imode - +1 grain pointer moveforward (same direction of the gskip
pointer), -1 backward (oppose direction to the gskip pointer) or O for
random.

ithd - threshold, if the sampled signal in thewavetable is smaller
thenithd, it will be skipped.

ifn - function table number of sound source.

ipshift - pitch shift control. If ipshift is O, pitch will be set randomly
up and down an octave. If ipshift is 1, 2, 3 or 4, up to four different
pitches can be st amount the number of voices definded in ivoice.
The optional parameters ipitchl, ipitch2, ipitch3 and ipitch4 are used
to quantify the pitch shifts.

igkip - initial skip from the beginning of the function tablein sec.
igskip_os- gskip pointer random offset in sec, O will be no offset.
ilength - length of the table to be used starting from igskip in sec.

kgap - gap between grainsin sec.

igap_os- gap random offset in % of the gap size, 0 gives no offset.
kgsize- grainsizein sec.

iggze 0s - grain size random offset in % of grain size, 0 gives no
offset.

iatt - attack of the grain envelopein % of grain sze.

idec - decade of the grain envelopein % of grain Size.

[iseed] - optional, seed for the random number generator, default is

05

[ipitchl], [ipitch2], [ipitch3], [ipitch4] - optional, pitch shift
parameter, used when ipshift is set to 1, 2, 3 or 4. Time scaling
technique is used in pitch shift with linear interpolation between data
points. Default valueis 1, theoriginal pitch.

EXAMPLE

Ligting of orchestrafile:
s = 44100

kr = 4410

ksmps= 10

nchnls= 2

instr 1

k1 linseg 0,0.5,1,(p3-p2-1),1,0.5,0

58

al granule
p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,
p20,p21,p22,p23,p24

a2 granule
p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,
p20+0.17,p21,p22,p23,p24

outsal,a2

endin

Ligting of scorefile:

;f statement read sound file sne.aiff in SFDIR directory into f-table 1
105242881 “sineaiff” 10
i10102000640.5001400.005100.01500.025030300.39 1
1420.292

e

The above example reads a sound file called sineaiff into wavetable
number 1 with 524,288 samples. It generates 10 seconds of stereo
audio output using the wavetable. In the orchestra file, all parameters
required to control the synthesis are passed from the score file. A
linseg function generator is used to generate an envelope with 0.5
second of linear attack and decade. Stereo effect is generated by
usng different seeds for the two granule function calls. In the
example, 0.17 is added to p20 before passing into the second granule
call to ensure that all of the random offset events are different from
thefirst one.
Inthe scorefile, the parametersare interpreted as:
p5 (ivoice) the number of voicesis set to 64
p6 (iratio) isset to 0.5, it scan the wavetable at haf of the speed
of the audio output rate
p7 (imode) isset to 0, the grain pointer only move forward
p8 (ithd) isset to 0, skipping the threshol ding process
p9 (ifn) isset to 1, function table number 1 isused
p10 (ipshift) isset to 4, four different pitches are going to be
generated
pl1 (igskip) isset to 0 and p12 (igskip_os) is set to 0.005, no
skipping into the wavetable and a5 mSec random offset is used
p13 (ilength) isset to 10, 10 seconds of the wavetableisto be used
pl4 (kgap) isset to 0.01 and p15 (igap_os) isset to 50, 10 mSec gap
with 50% random offset isto be used
pl16 (kgsize) isset to 0.02 and pl7 (igsize_os) is set to 50, 20 mSec
grain with 50% random offset is used
p18 (iatt) and p19 (idec) are set to 30, 30% of linear attack and
decadeis gpplied to the grain
P20 (iseed) seed for the random number generator isset to 0.39
p21 - p 24 are pitches set to 1 whichisthe origina pitch, 1.42
whichisa5th up, 0.29 whichisa 7th down and finally 2
which is an octave up.

Csound is developed by Barry L. Vercoe at the Experimental Music
Studio, Media Laboratory, M.|.T., Cambridge, Massachusetts.

ATARI Csound

Thefilesare
csound.ttp
extract.ttp
hetro.ttp
Ipanal .ttp
pvanal .ttp
scaedttp
scsort.ttp
sndinfo.ttp

| do not have any of the standard compression programs for the Atari

at present, so these are raw binary files.

This is an initia port of 3.14, with no support for graphics or MIDI.
The code is not yet optimised, and has only been subjected to limited
testing. If there is sufficient interest |1 will optimise and extend, but
my Atari is currently failing to boot. The code does not assume the
existence of a floating point co- processor, and is built for the 68000
(lowest common denominator). Please report any bugs or comments
tome. | amusing LatticeC and the sources and scripts are available
from me, assuming | can read the Atari disk...

There is a better-supported commercially available Atari Csound
from CDP.

They adso have a large suite of music synthess programs on Atari
and PC.

Contact Tom Endrich:
_tendrich@cix.compulink.co.uk

_Td: +44-1904-613299

_Composers Desktop Project_11 Kilburn
4DF_England

Road_York YO1

Release Notes for v3.44

Verson 3.44 is mainly a collection of new opcodes, together with a
few small fixes.

a) Phase Vocoding Opcodes:
ktablesag, ktablexseg, voscili, vpvoc, pvread, pveross,
pvbufread, pvinterp

b) Tuning Opcodes:
cps2peh, cpsxpch

¢) 3-D Sound Opcode:
hrtfer

d) Time Stretching Opcode:
sndwarp

€) Non-linear Filter Opcode:
nifilt

f) New format for LPC analysis:
Allowsfor pole stabalisation, and two new opcodes,
Ipdot, Ipinterp
for interpolation between different anadyses

0) Bug Fixes:
Reading of numbersin Event reading fixed
Commentsallowed after ein scores
Obscure bad casein opening files
Minor bug in vdel ay fixed

h) Permanent Graphs (Fabio Bertolotti):
A new option (-G) ensuresthat the graphs are saved as a
PostScript file, with the same name as the soundfile with
.epsasthe extention. Thishasbeen in use by teachersfor
awhile.

h) Code Changes (PC):
Improvementsin output to Multimedia-implemented DAC
Recognisefile names starting a etc
Non-gtop feature in Windows

and a number of internal code improvements which | doubt you care
about.

DOCUMENTATION ON NEW OPCODES

a) PVOC related unit generators added by Richard Karpen, 1992-
1996

kfreg, kamp pvread ktimpnt, ifile, ibin
pvbufread ktimpnt, ifile

ar pvinterp ktimpnt, kfmod, ifile, kfregscalel, kfreqscale2,
ampscalel, kampscale2, kfreginterp, kampinterp

ar pveross ktimpnt, kfmod, ifile, kampl, kamp2, [ispecwp]
tableseg ifnl, idurl, ifn2[, idur2, ifn3[...]]
tablexseg ifnl, idurl, ifn2[, idur2, ifn3[...]]

ar vpvoc ktimpnt, kfmod, ifile, [ispecwp]

DESCRIPTION

pvread reads from a pvoc file and returns the frequency and
amplitude from a single anaylsis channel or bin. The eturned values
can be used anywhere else in the csound instrument. For example,
one can use them as arguments to an oscillator to synthesize a sngle
component from an analyzed signal or a bank of pvreads can be used
to resynthesze the analyzed sound using additive synthesis by
passing the frequency and magnitude valuesto a bank of oscillators.

pvbufread reads from a pvoc file and makes the retrieved data
available to any following pvinterp and pvcross units that appear in
an insrument before a subsequent pvbufread (just as lpread and
Ipreson work together). The data is passed internally and the unit has
no output of its own. pvinterp and pvcross allow the interprocessing
of two phase vocoder analyss files prior to the resynthesis which
these units do also. Both of these units receive data from one of the
files from a previoudy called pvbufread unit. The other file is read
by the pvinterp and/or pvcross units. Since each of these units has its
own time-pointer the analysis files can be read at different speeds and
directions from one another. pvinterp does not allow for the use of
the ispecwp process as with the pvoc and vpvoc units.

pvinterp interpolates between the amplitudes and frequencies, on a
bin by bin bass, of two phase vocoder analyss files (one from a
previoudy called pvbufread unit and the other from within its own
argument ligt), alowing for user defined trandtions between
analyzed sounds. It also alows for general scaling of the amplitudes
and frequencies of each file separately before the interpolated values
are caculated and sent to the resynthesis routines. The kfmod
argument in pvinterp performs its frequency scaling on the frequency
values after their derivation from the separate scaling and subsequent
interpolation is performed so that this acts as an overall scaling value
of the new frequency components.

pvcross applies the amplitudes from one phase vocoder analysis file
to the data from a second file and then performs the resynthesis. The
data is passed, as described above, from a previoudy called
pvbufread unit. The two k-rate amplitude arguments are used to scale
the amplitudes of each files separately before they are added together
and used in the resynthesis (see below for further explanation). The
frequencies of the firgt file are not used at al in this process. This
unit smply alows for cross-synthesis through the application of the
amplitudes of the spectra of one signal to the frequencies of a second
signal. Unlike pvinterp, pvcross does allow for the use of the ispecwp
asin pvoc and vpvoc.

tableseg and tablexseg are like linseg and expseg but interpolate
between values in a stored function tables. The result is a new
function table passed internally to any following vpvoc or voscili
which occurs before a subsequent tableseg or tablexseg (much like
Ipread/Ipreson pairs work). The uses of these are described below
under vpvoc and (see also voscili which allows the use of these units
in an interpolating oscillator).

vpvoc is identical to pvoc except that it takes the result of a previous
tableseg or tablexseg and uses the resulting function table (passed
internally to the vpvoc), as an envelope over the magnitudes of the
analyss data channels. The reault is spectral enveloping. The
function size used in the tableseg should be framesize/2, where
framesize is the number of bins in the phase vocoder analysis file that
is being used by the vpvoc. Each location in the table will be used to
scale a single analysis bin. By using different functions for ifnl, ifn2,
etc.. in the tableseg, the spectral envelope becomesa

dynamically changing one.

ARGUMENTS
ifile is the pvoc number (n in pvoc.n) or the name in quotes of the

analyss file made using pvanal. See pvoc documentation in Csound
manual.

59

kfreq and kamp are the outputs of the pvread unit. These values,
retrieved from a phase vocoder analyss file, represent the values of
frequency and amplitude from a single analysis channd specified in
the ibin argument. Interpolation between analyss frames is
performed at k-rate resolution and dependent of course upon the rate
and direction of ktimpnt.

ktimpnt, kfmod, and ispecwp used in pvread and vpvoc are exactly
the same as for pvoc (see above description of pvinterp for its special
use of kfmod).

ibin is the number of the analyss channed from which to return
frequency in cpsand magnitude.

kfregscalel, kfregscale2, kampscalel, kampscale2 are used in
pvinterp to scale the frequencies and amplitudes stored in each frame
of the phase vocoder analyss file. kfregscalel and kampscalel scale
the frequencies and amplitudes of the data from the file read by the
previoudy called pvbufread (this data is passed internaly to the
pvinterp unit). kfregscale2 and kampscale2 scale the frequencies and
amplitudes of the file named by ifile in the pvinterp argument list and
read within the pvinterp unit. By using these arguments it is possble
to adjust these val ues before applying the interpolation.

For example, if filel is much louder than file2, it might be desirable
to scale down the amplitudes of filel or scale up those of file2 before
interpolating. Likewise one can adjust the frequencies of each to
bring them more in accord with one another (or just the opposite of
course!) beforethe interpolation is performed.

kfreginterp and kampinterp, used in pvinterp, determine the
interpolation distance between the values of one phase vocoder file
and the values of a second file. When the value of kfreginterp is 0,
the frequency values will be entirely those from the firgt file (read by
the pvbufread), post scaling by the kfregscalel argument. When the
value of kfreginterp is 1 the frequency values will be those of the
second file (read by the pvinterp unit itself), post scaling by
kfregscale2. When kfreginterp is between 0 and 1 the frequency
values will be calculated, on a bin, by bin bass, as the percentage
between each pair of frequencies (in other words, kfreginterp=.5 will
cause the frequencies values to be half way between the values in the
set of data from the first file and the set of data from the second file).
kampinterpl and kampinterp2 work in the same way upon the
amplitudes of the two files. Since these are k-rate arguments, the
percentages can change over time making it possible to create many
kinds of transitions between sounds.

ifnl, ifn2, ifn3, etc... in tableseg and tablexseg are stored functions,
created from an f-card in the numeric notelist. ifnl, ifn2, and so on,
MUST bethe samesize.

idurl, idur2, etc...in tableseg and tablexseg are the durations during
which interpolation from one table to the next will take place.

SIMPLE EXAMPLES

The example below shows the use pvread to synthesize a single
component from a phase vocoder analysis file. It should be noted that
the kfreq and kamp outputs can be used for any kind of synthess,
filtering, processing, and so on.

ktime line 0, p3, 3 kfreq, kamp pvread ktime, “pvoc.file’, 7 ; read
; datafrom 7th analysis bin.
asg oscili kamp, kfreg, 1 ; function 1 isa stored sine
The below shows an example using pvbufread with pvinterp to
interpolate between the sound of an oboe and the sound of a clarinet.
The value of kinterp returned by a linseg is used to determine the
timing of the trangitions between the two sounds. The interpolation
of frequencies and amplitudes are controlled by the same factor in
this example, but for other effects it might be interesting to not have
them sychnronized in this way. In this example the sound will begin
as a clarinet, transform into the oboe and then return again to the
clarinet sound. The value of kfregscale2 is 1.065 because the oboe in
this case is a semitone higher in pitch than the clarinet and this brings
them approximately to the same pitch. The value of kampscale2 is
.75 because the analyzed clarinet was somewhat louder than the

60

analyzed oboe. The setting of these two parameters make the
trangition quite smooth in this case, but such adjustments are by no
means necessary or even advocated.

ktimel line 0, p3,3.5; used asindex in the “oboe.pvoc” datafile
ktime2 line 0, p3,4.5; used asindex in the “clar.pvoc” datafile
kinterp linseg 1, p3*.15, 1, p3*.35, 0, p3*.25, 0, p3*.15, 1, p3*.1,
1

pvbufread ktimel, “ oboe.pvoc”
apv pvinterp ktime2,1,”clar.pvoc”,1,1.065,1,.75,:kinterp,1-kinterp

Below is an example using pvbufread with pvcross. In this example
the amplitudes used in the resynthesis gradually change from those of
the oboe to those of the clarinet. The frequencies, of course, remain
those of the clarinet throughout the process since pvcross does not
use the frequency datafrom thefile read by pvbufread.

ktimel line0, p3, 3.5 ; used asindex in the “oboe.pvoc” datafile
ktime2 line0, p3, 4.5 ; used asindex inthe“clar.pvoc” datafile
kcross expon .001, p3, 1

pvbufread ktimel, “oboe.pvoc”
apv pvcrossktime2, 1, “clar.pvoc”, 1-kcross, keross

In following example using vpvoc shows the use of functions such as
f102565.001 1281 128.001
f20256 51128.001 128 1
f30256 712561

to scale the amplitudes of the separate analysisbins.

ktime line 0, p3,3 ; time pointer, in seconds, into datafile
ktablexseg 1, p3*.5, 2, p3*.5, 3
apv vpvoc ktime,1, “pvocfile’

The result would be a time-varying “ spectral envelope” applied to the
phase vocoder analysis data. Since this amplifies or attenuates the
amount of sgnal at the frequencies that are paired with the
amplitudes which are scaled by these functions, it has the effect of
applying very accurate filters to the signal. In this example the first
table would have the effect of a band- pass filter , gradually be band-
rejected over half the note's duration, and then go towards no
modification of the magnitudes over the second half.

b) Tuning Opcodes (John Fitch)
icps cps2pch ipch, iequal
icps cpsxpch ipch, iequal, irepest, ibase

Converts a pitch-class notation into cycles-per-second for equal
divisons of the octave (for cps2pch) or for equal divisons of any
interval. Thereisa restriction of no more than 100 equal divisions.

INITIALISATION

ipch - Input number of the form 8vepc, indicating an “octave’ and
which note in the octave.

iequal - if pogtive the number of equal intervals into which the
‘octave’ is divided. Must be less than or equal to 100, if negative is
the number of a table of frequency multipliers

irepeat -Number indicating the interval which is the “octave’. The
integer 2 correspondsto octave divisions, 3 atwelveth, 4
is two octaves, and so on. This need not be an integer, but must be
positive.

ibase - The frequency which correspondsto pitch 0.0
Note: 1. Thefollowing are essentialy the same
ia= cpspeh(8.02)

ib cps2pch
ic cpsxpch

8.02,12
8.02, 12, 2, 1.02197503906

2. These are opcodes not functions.

3. Negative values of ipch are alowed, but not negative irepest,
iequal or ibase.

EXAMPLES
inote cps2pch p5, 19 ; convert oct.pch to cpsin 19ET
inote cpsxpch p5, 12, 3, 261.62561;Pierce scale centered on middle
A
inote cpsxpch p5, 21, 4, 16.35160062496 ;10.5ET scde
The use of a table allows exotic scales by mapping frequencies in a
table
For examplethetable
f2016-21111.2131.4161.7181.9
can be used with
ip cps2pch p4, -2

to get a 10 note scale of unequal divisions

¢) Useof HRTF data
aleft, aRight hrtfer asg, kAz, kElev, “HRTFcompact”
Output isbinaura (headphone) 3D audio.

INITIALIZATION

kAz - azimuth value in degrees. Positive values represent position on
theright, negative values are positions on the | eft.

kElev - eevation value in degrees. Podtive values represent position
on theright, negative values are positions on the | ft.

At present, the only file which can be used with hrtferxk is
HRTFcompact. It must be passed to the u.g. as the last argument
within goutes as shown above.

PERFORMANCE

These unit generators place a mono input signal in a virtual 3D space
around the listner by convolving the input with the appropriate HRTF
data specified by the opcode's azimuth and eevation values.
Hrtferxk alows these values to be k-values, alowing for dynamic
spatialization. hrtferi can only place the input at the regeusted
position because the HRTF is loaded in at i-time (remember that
currently, csound has a limit of 20 files it can hold in memory,
otherwise it causes a segmentation fault). The output will need to be
scaled either by using balance or by multiplying the output by some
scaling congtant.

Note - the sampling rate of the orchestra must be 44.1kHz. This is
because 44.1kHz is the sampling rate at which the HRTFs were
measured. In order to be used at a different rate, the HRTFs need to
be resampled at the desired rate.

Example:

kaz linseg 0, p3, -360 ; movethesoundincircle

kel linseg -40, p3, 45 ; around the listener, changing
;elevation asitsturning

agrc soundin “soundin.1”

aeft,aright hrtfer asrc, kaz, kel, “HRTFcompact”

aleftscale = aleft * 200

arightscale= aright * 200

outsaleftscale, arightscale

d) Time Stretch -- Written by Richard Karpen, 1992.

ar sndwarp xamp, xtimewarp, xresample, ifnl, ibeg, iwsize,
irandw, ioverlap, ifn2, [itimemode]

DESCRIPTION

sndwarp reads sound samples from a table (see under ifnl for
information about using this with the NeXT operating system) and
applies time-gretching and/or pitch modification. Time and
frequency modification are indepentant from one another. For
example, a sound can be dretched while raising the pitch. The
window size and overlap arguments are important to the result and
should be experimented with. In general they should be as small as
possible. For example,

sart with iwsize=sr/20 and ioverlap=5. Try irandw=iwsize*.2. The
a gorithm reacts differently depending upon the input sound.

ARGUMENTS

ifnl is the number of the table holding the sound samples which will
be subjected to the sndwarp processng. GENOL is the appropriate
function generator to use to store the sound samples (a verson of
sndwarp for the NeXT operating system reads soundfiles directly
ingtead of using function tables. In the NeXT verson there is no
practical limit to the length of the sound and stereo soundfiles can be
processed. In this verson, the maximum length of input sound is
limited to the maximum table size allowable and/or to the amount of
memory available to the program. Only the table-lookup version is
available with this release). xamp is the amplitude by which to scale
the signal (post time and frequency scaling). xtimewarp determines
how the input signal will be stretched or shrunk in time. There are
two ways to use this argument dependent upon the value given for
itimemode. When the value of itimemode is O (or if no vaue is
given; 0 is the default), xitimewarp will scale the time of the sound.
For example, a value of 2 will gtretch the sound by 2 times. When
itimemode is any non-zero value then xtimewarp is used as a time
pointer in a smilar way in which the time pointer works in Ipread
and pvoc. An example below illustrates this. In both cases, the pitch
will NOT be atered by this process. Pitch shifting is done
independently using xresample. xresample is the factor by which to
change the pitch of the sound. For example, a value of 2 will produce
a sound one octave higher than the original. The “speed” of the
sound, however, will NOT be altered. ibeg is the time in seconds to
begin reading in the table (or soundfile). When itimemode is non-
zero, the value of itemwarp is offset by ibeg. iwsze is the window
size in samples used in the time warping agorithm. irandw is the
bandwidth of a random number generator. The random numbers will
be added to iwsize. ioverlap determines the dendty of overlapping
windows. ifn2 is a function used to shape the window. It is usualy
something likea half asine(ie: f1 0 16384 9 .51 0).

EXAMPLE

The below example shows a dowing down or stretching of the sound
stored in the stored table (ifnl). Over the duration of the note, the
sretching will grow from no change from the origina to a sound
which is ten times “dower” than the original. At the same time the
overall pitch will move upward over the duration by an octave.

iwindfun=1

isampfun=2

ibeg=0

iwindsize=2000

iwindrand=400

ioverlap=10

awarp line 1,p3, 10

aresamp line 1,p3,2

kenv line 1,p3,.1

asig sndwarp kenv, awarp, aresamp, isampfun, ibeg,

iwindsize, iwindrand, overlap, iwindfun
Hereisan example using xtimewarp as atime pointer

itimemode=1

atimeline0, p3, 10

asg sndwarp kenv, atime, aresamp, sampfun, ibeg, iwindsize,
iwindrand, ioverlap, iwindfun, itimemode

61

In the above, atime advances the time pointer used in the sndwarp
from O to 10 over the duration of the note. If p3 is 20 then the sound
will be two times dower than the original. Of course you can use a
more complex function than just a single straight line to control the
timefactor.

€) Nor-inear filter
ar nlifilt ain, ka, kb, kd, kL, kC

Implements the filter Y{n} =a Y{n-1} + b Y{n-2} + d Y"2{n-L} +
X{n} - C described in Dobson and Fitch (ICMC’ 96).

Examples:
i) Non-lineer effect:

With a=b=0 and a delay (L) of 20 samples. The other parameter
range

d=0.8,0.90.7
C=04,05,06

This affects the lower register most but there are audible effects over
the whole range. We suggest that it may be useful for colouring
drums, and for adding arbitrary highlights to notes

ii) Low Passwith non-linear:

a=04
b=0.2
d=0.7
C=011

L =20, ... 200

There are ingtability problems with this variant but the effect is more
pronounced of the lower register, but is otherwise much like the pure
comb. Short valuesof $L.$ can add attack to a sound.

iii) High Passwith non-linear:

Therange of parametersare
a=035

b=-03

d=0.95

C=0.2,..04

L =200

iv) High Passwith non-linear:

Therange of parametersare

a=0.7
b=-02,..05
d=09
C=0.12,..0.24
L =500, 10

The high pass version is less likely to oscillate. It adds scintillation
to medium-high registers. With a large delay L it is a little like a
reverberation, while with small values there appear to be formant-
like regions. There are arbitrary colour changes and resonances as
the pitch changes. Workswell with individual notes.

Warning: The “useful” ranges of parameters are not yet mapped.

g) Chanhesto Linear Predictive Coding
1) LPC Pole stabilization.

It is done through anew option in the analysis stage.

csound -U Ipanal -a [other options]
The -a flag [aternate storage] asks Ipanal to write a file with filter
polesvaluesrather than the usual filter coefficient files.

When lpread / Ipreson are used with pole files, automatic
sabilization is performed and the filter should not get wild anymore.
I’ve implemented only one stabilization algorithm, more tune could
be implemented later.

(Thisisthe default in the Windows GUI)
2) LPC Interpolation.

Two new opcodes are available to perform interpolation between
polefilesof two analysis.

Ipslot islot
idot: number of dot to be selected [O<idot<20]

Ipdot sdects the dot to be use by further Ip opcodes. This is the way
to load and reference several analysisat the sametime.

Ipinter pol idotl,idot2,kmix

idotl: dot wherethefirst analysiswas stored

idot2: dot where the second analysis was stored

kmix : mix value between the two analysis. Should be between 0 and
1. 0 means analyss 1 only. 1 means analysis 2 only. Any value
inbetween will produce interpolation between thefilters.

Ipinterpol computes a new set of poles from the interpolation

between two analysis. The poles will be stored in the current Ipdot
and used by the next | preson opcode.

Hereisatypical orc using the opcodes:

5=44100
kr=4410
nchnis=1
instr 1
; Define sound generator
ipower init 50000
ifreq init 440
agc buzz ipower,ifreg,10,1 ; Definetimeline
ktime line 0,p3,p3 ; Read square data
poles
Ipdot O
krmsr,krmso,kerr,kcps Ipread ktime”square.pol” ; Read
triangle data
; poles
Ipdot 1
krmsr krmso,kerr,kcps Ipread ktime"trianglepol”

Compute result of
; mixing and balance
power
kmix line 0,p3,1
Ipinterp 0,1,kmix

ares
aout

Ipreson asrc
balance ares,asrc
out aout
endin

62

Release Notes for v3.45

Verson 3.45 is a snal collection of corrections and additions
following the large changes of 3.44

a) An additional optional argument has been added to al the

Butterworth filters, vdelay, and reverb2, which ifnon-zero

skipstheinitialisation stage.

b) Return code corrected after no graphics

¢) Allow argumentslike -m6W

d) Added new opcodes uniform to complete the random generators

€) Added fof2 opcode

f) New command option -z to give alist of opcodes. -z0 or -z
printsalist; -z1 printsa list with answer/argument

descriptions.

0) Adjust writing of scores to allow longer tables (as described
by Richard Karpen).

h) Adjusted sndwarp to give (optional) stereo, and new opcode
sndwarpst (Described below)

DOCUMENTATION ON NEW/REVISED OPCODES

_SNDWARP (Written by Richard Karpen, 1992. Most recent
revision, 1997)

asg [, acmp] sndwarp xamp, xtimewarp, xresample, ifnl, ibeg,
iwsize, irandw, ioverlap, ifn2, itimemode

asgl, adg2 [, acmpl, acmp2] sndwarpst xamp, xtimewarp,
xresample, ifnl, ibeg, iwsize, irandw, ioverlap, ifn2, timemode

DESCRIPTION

sndwarp reads sound samples from a table and applies time-
sretching and/or pitch modification. Time and frequency
modification are indepentant from one another. For example, a sound
can be gtretched in time while raising the pitch! The window size and
overlap arguments are important to the result and should be
experimented with. In general they should be as small as possble.
For example, dart with iwsze=s/10 and ioverlap=15. Try
irandw=iwsize*.2. If you can get away with less overlaps, the
program will be faster. But too few may cause an audible flutter in
the amplitude. The algorithm reacts differently depending upon the
input sound and there are no fixed rules for the best use in all
circumstances. But with proper tuning, excelent results can be
achieved.

OUTPUTS

adg is the sngle channd of output from the sndwarp unit generator
while asgl and asig2 are the stereo (left and right) outputs from
sndwarpst. sndwarp assumes that the function table holding the
sampled signal is a mono one while sndwarpst assumes that it is
stereo. This smply means that sndwarp will index the table by
single-sample frame increments and sndwarpst will index the table
by a two-sample frame increment. The user must be aware then that
if a mono signal is used with sndwarst or a stereo one with sndwarp,
time and pitch will be altered accordingly.

acmp in sndwarp and acmpl, acmp2 in sndwarpgt, are single layer
(no overlaps), unwindowed versions of the time and/or pitch altered
signal. They are supplied in order to be able to balance the amplitude
of the signal output, which typically contains many overlapping and
windowed versions of the signal, with a clean version of the time-
scaled and pitch-shifted signal. The sndwarp process can cause
noticeable changes in amplitude, (up and down), due to a time
differential between the overlaps when time-shifting is being done.

When used with a balance unit, acmp, acmpl, acmp2 can greatly
enhance the quality of sound. They are optional, but note that in
sndwarpst they must both be present in the syntax (use both or
neither). An example of how to use thisis given below.

INPUT ARGUMENTS

ifnl is the number of the table holding the sound samples which will
be subjected to the sndwarp processng. GENOL is the appropriate
function generator to use to store the sound samples from a pre-
existing soundfile.

xamp is the value by which to scale the amplitude (see note on the
use of thiswhen using acmp, acmpl, amcp2).

xtimewarp determines how the input sgnal will be sretched or
shrunk in time. There are two ways to use this argument depending
upon the value given for itimemode. When the value of itimemode is
0, xitimewarp will scale the time of the sound. For example, a value
of 2 will gretch the sound by 2 times. When itimemode is any non-
zero value then xtimewarp is used as a time pointer in a Smilar way
in which the time pointer works in Ipread and pvoc. An example
below illugtrates this. In both cases, the pitch will NOT be altered by
this process. Pitch shifting is done independently using xresample.

xresample is the factor by which to change the pitch of the sound.
For example, a value of 2 will produce a sound one octave higher
than the original. The timing of the sound, however, will NOT be
altered.

ibeg is the time in seconds to begin reading in the table (or
soundfile). When itimemode is non- zero, the value of itimewarp is

offset by ibeg.

iwsize is the window sze in samples used in the time scaling
agorithm.

irandw is the bandwidth of a random number generator. The random
numberswill be added to iwsize.

ioverlap determines the density of overlapping windows.

ifn2 is a function used to shape the window. It is usualy used to
create a ramp of some kind from zero at the beginning and back
down to zero at the end of each window. Try using a half a sine (ie:
f1 0 16384 9 .5 1 0) which works quite well. Other shapes can aso
be used.

EXAMPLES

The below example shows a dowing down or stretching of the sound
stored in the stored table (ifnl). Over the duration of the note, the
sretching will grow from no change from the origina to a sound
which is ten times “dower” than the original. At the same time the
overall pitch will move upward over the duration by an octave.

iwindfun=1
isampfun=2_ibeg=0_iwindsize=2000_iwindrand=400_ioverlap=10

awarp line 1,p3,1
aresamp line 1,p3,2
kenv line 1,p3,.1
asig sndwarp

kenv,awarp,aresamp,isampfun,ibeg,iwindsize,iwindrand,
ioverlap,iwindfun,0

Now, here’ san example using xtimewarp as atime pointer and using
stereo

itimemode=1
atimeline0, p3, 10
adgl, adg2 sndwarpst kenv, atime, aresamp, sampfun, ibeg,

iwindsize, iwindrand, ioverlap, iwindfun, itimemode

63

In the above, atime advances the time pointer used in the sndwarp
from O to 10 over the duration of the note. If p3 is 20 then the sound
will be two times dower than the original. Of course you can use a
more complex function than just a single straight line to control the
timefactor.

Now the same as above but usng the balance function with the
optional outputs:

asg,acmp sndwarp
1,awarp,aresamp,isampfun,ibeg,iwindsize,iwindrand,
ioverlap,iwindfun,itimemode

abal balance asig, acmp

asigl,asg2,acmpl,acmp2 sndwarpst 1, atime, aresamp,
sampfun, ibeg, iwindsize, iwindrand, ioverlap, iwindfun, itimemode

aball balance asigl, acmpl
abal2 balance asig2, acmp2

In the above two examples notice the use of the balance unit. The
output of balance can then be scaled, enveloped, sent to an out or
outs, and so on. Notice that the amplitude arguments to sndwarp and
sndwarpgt are “1” in these examples. By scaling the signal after the
sndwarp process, abal, aball, and abal2 should contain signals that
have nearly the same amplitude as the original input signal to the
sndwarp process. Thismakes it much easier to predict the levels and
avoid samplesout of range or sample valuesthat are too small.

More advice: Only use the stereo version when you really need to be
processing a stereo file. It is someone dower than the mono version
and if you use the balance function it is dower again. There is
nothing wrong with using a mono sndwarp in a stereo orchestra and
sending the result to one or both channels of the stereo output!

FOF2
DESCRIPTION:

Get rid of the last argument to fof, “ifmode’. Instead we'll have
“kgliss’, internal grain glissandi. (This is certainly not as generaly
useful as kphs, but it does brighten up any fof instrument, allowing
more spectral variation.)

Usage:

kgliss - sets the end pitch of each grain relative to the initial pitch, in
octaves. Thus kgliss = 2 means that the grain ends two octaves above
its initial pitch, while kgliss = -5/3 has the grain ending a perfect
major sixth below.

Rationale:

The toggle switch “ifmode” always struck me as of rather limited
use. When zero (default), the initial pitch of a grain (given by kform
at the inception of a new grain) is kept steady throughout its lifetime,
if one, every grain’'s pitch follows kform. This may certainly be good
for vocal synthesis, but for granular synthesis i'd like more control
over theinternal grain pitch. Eg grain glissandi.

There have been requests for a way of telling what opcodes are
available in a given verson. To assst with that there is a new
command line option

-z Givealigt of opcodesand exit

-20 Thesame

-z1 Giveallist of opcodes, together with answer and argument
types, then exit

Butterworth filters (Revised)

ar butterhp asig, kfreq[, iskip]
ar butterlp asg, kfreq[, iskip]
ar butterbp asg, kfreg, kband[, iskip]

ar butterbr asg, kfreg, kband[, iskip]

Implementations of second-order hipass, lopass, bandpass and
bandreject Butterworth filters.

PERFORMANCE

These new filters are butterworth second-order IR filters. They are
dightly dower than the origina filters in Csound, but they offer an
amost flat passband and very good precison and stopband
attenuation.

asg - Input signal to befiltered.

kfreq - Cuttoff or center frequency for each of thefilters.

kband - Bandwidth of the bandpass and bandreject filters.

iskip - Skipinitialisation if present and non zero

EXAMPLE

asigrand 10000 ; White noise signa

apf butterlp asig, 1000 ; cutting frequencies abovelK

ahpf butterhp asig, 500 ; passing frequencies above 500Hz

abpf butterbp asig, 2000, 100 ; passing only 1950 to 2050 Hz
abrf butterbr asig, 4500, 200 ; cutting only 4400 to 4600 Hz

Vdelay (revised)
a vdelay adg, add, imaxddl[, iskip]

This is an interpolating variable time delay, it is not very different
from the existing implementation (deltapi), it isonly easier to use.

INITIALIZATION

imaxdel - Maximum value of delay in ssmples. |If adel gains a value
greater than imaxde it is folded around imaxdd. This should not
happen.

iskip - Skipinitialisation if present and non zero
PERFORMANCE

With this unit generator it is possble to do Doppler effects or
chorusing and flanging.

asg - Input Sgnal.
adel - Current value of delay in samples. Note that linear functions

have no pitch change effects. Fast changing values of adel will cause
discontinuitiesin the waveform resulting noise.

Example

108192101

ims= 100 ; Maximum delay timein msec

al oscil 10000, 1737, 1 ; Makea sgnal

a2 oscil img2,1/p3,1 ; Makean LFO

a2=a2+img?2 ; Offsst the LFO so that it is

positive

a3 vdeay al, a2, ims; Usethe LFO to control delay time
out a3

Two important points here. Firgt, the delay time must be aways
positive. And second, even though the delay time can be controlled
in k-rate, it is not advised to do so, since sudden time changes will
createclicks.

Reverb2 (Revised)

ar reverb2 agg, ktime, khdif[, iskip]

This is a reverberator consisting of 6 paralld comb-lowpass filters
being fed into a series of 5 allpassfilters.

iskip - Skipinitialisation if present and non zero

PERFORMANCE

The input sgnal asg is reverberated for ktime seconds. The
parameter khdif controls the high frequency diffuson amount. The
values of khdif should be from O to 1. If khdif is set to O the all the
frequencies decay with the same speed. If khdif is 1, high
frequencies decay faster that lower ones.

Example:

al oscil 10000, 100, 1
a2 reverb2 al, 25,.3
out al+a2* .2

Thisresultsin a 2.5 sec reverb with faster high frequency
attenuation.

Noise Generator

xuniform krange - Uniform digtribution random number generator.
Krangeisthe range of the random numbers [0 - krange).

Release Notes for v3.46

Verson 3.46 is a large collection of corrections, and some additions
including the Whittle table opcodes, FOG and a more flexible
version of soundin.

a) Changes in a number of MIDI opcodes (ipchmidib, ioctmidib,
icpsmidib, kpchmidib, koctmidib, kepsmidib, imidictrl, kmidictrl) to
add additional optional argument, mainly for scaled pitchbend; new
opcode midisetb (Mike Berry)

b) Large number of bug fixes;, mainly minor and to do with igoto
(many people). Corrected writing to log file on PC (megadysexial)

¢) Negative p3 in score nolonger confuses other references to that
notein the score (JPff/RWD)

d) Attempt to fix LINUX precision problem in large table sizes etc

€) Correction of my fiasco in opcodelisting

f) Correction of HRTF code on PCs and other machines with that
byte

order.

0) New opcode, diskin. Like soundin except alows variable rate of
reading sound file. (Mike Berry)

h) Fixesto -o dac on Windows95
i) Improved pvoc with optiond last argument (Richard Karpen)

j) Defaults for sr/kr/ksmps such that one can omit one. Defaultsif all
omitted made CD level.

k) Robin Whittle' stable reading opcodes included
1) Missing endin now noticed

m) New opcode fog from Michad Clarke (dill needs a little
weaking)

n) Fixed cscore main program for dribblefiles

0) Number of tablesisno longer fixed, but expands as required.

DOCUMENTATION ON NEW/REVISED OPCODES

MIDI CONVERTERS

ival notnum

ival veloc

icps cpsmidi

icps cpsmidib

keps cpsmidib [irange]

ioct octmidi

ioct octmidib

koct octmidib [irange]

ipch pchmidi

ipch pchmidib

kpch pchmidib [irange]
iamp ampmidi iscal[, ifn]
kaft aftouch iscal
kehpr chpress iscal
kbend pchbend iscal

ival midictr| inum[, initial]
kval midictr| inum[, initial]

kval midictrlsc inum[,iscal] [, ioffset] [, initial]

Get a value from the MIDI event that activated this instrument, or
from a continuous MIDI controller, and convert it to a locally useful
format.

INITIALIZATION
iscal - I-time scaling factor.

ifn (optional) - function table number of a normalized trandation
table, by which the incoming value is first interpreted. The default
valueisO0, denoting no trandlation.

inum - MIDI controller number.

initial - theinitial value of the controller.
irange - the pitch bend range in semitones.
PERFORMANCE

notnum, veloc - get the MIDI byte value (0 - 127) dencting the note
number or velocity of the current event.

cpamidi, octmidi, pchmidi - get the note number of the current MIDI
event, expressed in cps, oct, or pch unitsfor local processing.

cpamidib, octmidib, pchmidib - get the note number of the current
MIDI event, modify it by the current pitch-bend value, and express
the

result in cps, oct, or pch units. Available as an I-time value or as a
continuousksig vaue.

ampmidi - get the velocity of the current MIDI event, optionally pass
it through a normalized trandation table, and return an amplitude
valueintherangeO - iscal.

aftouch, chpress, pchbend - get the current after-touch, channel
pressure, or pitch-bend value for this channel, rescaled to the range O
- iscal. Note that this access to pitch-bend data is independent of the
MIDI pitch, enabling the value here to be used for any arbitrary

purpose.

midictrl - get the current value (0 - 127) of a specified MIDI
controller.

midictrlsc - get a scaled and offset value of acontroller.

65

SIGNAL INPUT & OUTPUT

al in
al, a2 ins
al,a2,a3,a4 inq
al soundin ifilcod[,iskptim][, iformat]
al, a2 soundin ifilcod[,iskptim][, iformat]
al,a2,a3,a4 soundin ifilcod[,iskptim][, iformat]
al[,a2[,a3,a4] diskin ifilcod, kpitch[,iskiptim][, iwraparound]
[,iformat]

out asig

outsl asig

outs2 asig

outs adgl, asg2

outql adg

outq2 adg

outq3 adg

outqéd adg

outq adgl, asg2, asig3, asigd

These units read/write audio data from/to an external device or
stream.

INITIALIZATION

filcod - integer or character-gtring denoting the source soundfile
name. An integer denotes the file soundin.filcod ; a character-string
(in double quotes, spaces permitted) gives the filename itsdlf,
optionally a full pathname. If not a full path, the named file is sought
firgt in the current directory, then in that given by the environment
variable SSDIR (if defined) then by SFDIR. See also GENO1.

iskptim (optional) - time in seconds of input sound to be skipped.
The default valueisO.

iformat (optional) - specifies the audio data file format: 1 = 8-bit
signed char (high-order 8 bits of a 16-bit integer), 2 = 8-bit A-law
bytes, 3 = 8-bit U-law bytes, 4 = 16-hit short integers, 5 = 32-bit

long integers, 6 = 32-bit floats). If iformat = O it is taken from the
soundfile header, and if no header from the csound -0 command flag.
The default valueisO.

kpitch - can be any real number. a negative number signifies
backwards playback. The given number is a pitch ratio, where: 1=
norm pitch, 2=oct higher, 3=12th higher,etc; .5= oct lower, .25=20ct
lowr, etc; -1= norm pitch backwards,-2=oct higher backwrds,etc..

iwraparound - 1=on, O=off (wraps around to end of file either
direction)

PERFORMANCE

in, ins, ing - copy the current values from the standard audio input
buffer. If the command-line flag -i is set, sound is read continuoudy
from the audio input stream (e.g. stdin or a soundfile) into an internal
buffer. Any number of these units can read freely from this buffer.

soundin is functionally an audio generator that derives its signal from
a pre-exiging file. The number of channels read in is controlled by
the number of result cells, al, a2, etc., which must match that of the
input file. A soundin unit opens this file whenever the host
instrument is initialized, then closes it again each time the instrument
is turned off. There can be any number of soundin units within a
single instrument or orchestra; also, two or more of them can read
simultaneoudy from the same externdl file.

diskin is identical to soundin, except that it can alter the pitch of the
sound that is being read.

out, outs, outq send audio samples to an accumulating output buffer
(created at the beginning of performance) which serves to collect the
output of all active instruments before the sound iswritten to disk.

There can be any number of these output unitsin an instrument. The
type (mono, stereo, or quad) must agree with nchnls, but units can be

chosen to direct sound to any particular channd: outsl sends to
stereo channel 1, outq3 to quad channel 3, etc.

ar fog xamp, xdens, xtrans, xspd, koct, kband, kris, kdur, kdec,

iolaps, ifna, ifnb, itotdur[, iphs][, itmode]

Audio output is a succession of grains derived from data in a stored
function table ifna. The local envelope of these grains and their
timing is based on the model of fof synthess and permits detailed
control of the granular synthesis.

INITIALIZATION

iolaps - number of prellocated spaces needed to hold overlapping
rain

data. Overlaps are dendty dependent, and the space required
depends on the maximum value of xdens* kdur. Can be over-
estimated at no computation cost. Uses less than 50 bytes of memory
per iolaps.

ifna, ifnb - table numbers of two stored functions. The firgt is the
data used for granulation, usualy from a soundfile (GENO1). The
second is a rise shape, used forwards and backwards to shape the
grain rise and decay; this is normally a sgmoid (GEN19) but may be
linear (GENQY7).

itotdur - total time during which this fog will be active. Normally set
to p3. No new grain is created if it cannot complete its kdur within
the remaining itotdur.

iphs (optional) - initial phase of the fundamental, expressed as a
fraction of acycle (0to 1). Thedefault valueis 0.

itmode (optional) - trangposition mode. If zero, each grain keeps the
xtrans value it was launched with. if non-zero, each is influenced by
xtrans continuoudly. The default valueisO.

PERFORMANCE

xamp - amplitude factor. Amplitude is also dependent on the number
of overlapping grains, the interaction of the rise shape (ifnb) and the
exponential decay (kband), and the scaling of the grain waveform
(ifna). Theactual amplitude may therefore exceed xamp.

xdens - density. Thefrequency of grains per second.

xtrans - transposition factor. The rate at which data from the stored
function table ifna is read within each grain. This has the effect of
transposing the original material. A value of 1 produces the original
pitch. Higher valuestranspose upwards, lower values downwards.
Negative valuesresult in the function table being read backwards.

xspd - peed. The rate at which successive grains advance through
the stored function table ifna. xspd is in the form of an index (0 to 1)
to ifna. This determines the movement of a pointer used as the
starting point for reading data within each grain. (xtrans determines
therate at which data is read starting from this pointer.)

koct - octaviation index. The operation of this parameter is identical
to that infof.

kband, kris, kdur, kdec - grain envelope shape. These parameters
determine the exponential decay (kband), and the rise (kris), overall
duration (kdur,) and decay (kdec) times of the grain envelope. Their
operation isidentical to that of the local envelope parametersin fof.

The Csound fog generator is by Michael Clarke, extending his earlier
work based on IRCAM’ sfof algorithm.

Example:

;p4 = trangposition factor

;p5 = speed factor

;p6 = function table for grain data

il = g/ftlen(p6) ;scaling to reflect sample rate and
tablelength

66

al phasor
a2 fog
p3,0,1

i1*p5 ;index for speed
5000, 100, p4, a1, 0, 0, ,.01, .02, .01, 2, p6, 1,

>>>1-TABLEWRITE

This works on exigting function tables, changing their contents.
There could be all sorts of uses for this. Assuming that users (.orc
and .sco programmers) know what they are doing, then there should
be no more trouble than the use of global variables.

As when using global variables, the user must consider how the code
isrun.

In each k cycle, instruments are executed, in order of instrument
number, and within instruments, in order of the instances of the
ingrument. | presume the instance order depends on their starting
time.

As execution proceeds, each ugen is run once at k time. For k type
ugens, they do their job once. For a rate ugens, they process one or
more arrays of a rate variables. For instance a table read at a rate,
with ksmps = 7, uses a 7 long array of indexes to read into a table,
retrieving 7 different values and writing them to a 7 long array for
the output.

So
ablah table azot, 5

will read from table 5, a set of values pointed to by an array of
indexes pointed to by azot, and write them to an array pointed to by
ablah.

We may conceive of an idea of writing successive a rate values to a
single table location, and subsequently reading them from that
location. This would not work with ksmps = 7 - only the last written
value would remain by the time execution passed to the next ugen.

So table write is a means of patching i or k rate signals to particular
locations in function tables, where they can be read by table read
ugens. However this does not work for a rate signals, unless you
conspire to use a range of the table, and organise your indexes very
carefully.

Patching of i, k and a rate signals under .orc program control is best
achieved with arrays - which do not yet exist. See the zak system for
anext best solution with ugens.

So the main purpose of a table write ugen is to refashion function
tables on the fly under program control. tablemix, tablecopy, tablera
and tablewa can also be used for such purposes.

Applications are diverse. One is to generate a waveshaping table
with .orc code. A loop could be created and an instrument could
spend some time with k rate operations looping to address each table
location - rewriting the table, before letting performance proceed.
This would probably be too dow to work with real-time music
production.

Another application is to continuoudy sculpt tables while they are
being used. Each k or a cycle, one or a few locations are changed a
little.

With these applicationsin mind, letslook at the tablew and itablew
code.

Firgly , itabew is just the same as k rate tablew, except it only
happens once at the initialisation of the ugen. (I must investigate
what happens if an i rate ugen is executed first, via an if goto, some
time after the instrument isinitialised.)

The Csound orchestra loader decides whether this is k or a rate
operation, and fires up the appropriate subroutine in the unit
generator code.

67

Thereisno output variable.

itablew, tablew and tablewkt

itablew isg, indx, ifn [,ixmode] [,ixoff] [,iwgmode]

Use itablew when al inputs are init time variables or congtants and
you only want to run it at the initialisation of the instrument.

tablew is for writing at k or at a rates, with the table number being
specified at init time.

tablewkt is the same, but uses a k rate variable for selecting the table
number. The valid combinations of variable types are shown by the
first letter of the variable names:

itablew isg, indx, ifn [,ixmode] [,ixoff] [,iwgmode]

tablew ksig, kndx, ifn [,ixmode] [,ixoff] [,iwgmode]
tablew adg, andx, ifn [,ixmode] [,ixoff] [,iwgmode]
tablewkt ksg, kndx, kfn [,ixmode] [,ixoff] [,iwgmode]
tablewkt asig, andx, kfn [,ixmode] [,ixoff] [,iwgmode]

isig, ksig, Thevalueto be written into the table.
asig

indx, kndx, Index into table, either apositive number range

andx matching the table length (ixmode=0) oraOto 1
range (ixmode != 0)

Table number. Must be >= 1. Floats are rounded down to

aninteger. If atable number does not point to a

valid table, or the table has not yet been loaded

(gen01) then an error will result and the instrument

will be deactivated.

ifn, kfn

ixmode Default 0 ==0 xndx and ixoff ranges match the length

of thetable.

1=0 xndx and ixoff have a0to 1 range.

ixoff Default 0 ==0 Tota index is controlled directly by
xndx. ie. theindexing startsfrom the

start of the table.

1=0 Start indexing from somewhere elsein
the table. Value must be positive and
lessthan the table length (ixmode = 0)
or lessthan 1 (ixmode !=0

Default 0 ==0 Limit mode
==1 Wrapmode }
==2 Guardpont mode}

iwgmode } Seebelow

0 = Limit mode

Limit the total index (ndx + ixoff) to between 0 and the guard point.

For a table of length 5, this means that locations O to 3 and location 4
(the guard point) can be written. A negative total index writes to
location 0. Total indexes > 4 writeto location 4.

Wrap total index value into locations O to E, where E is one less than
either the table length or the factor of 2 number which is one less
than the table length. For example, wrap into a 0 to 3 range - so that
total index 6 writesto location 2.

2 = Guardpoint mode

The guardpoint is written at the same time as location O is written -
with the samevalue.

This facilitates writing to tables which are intended to be read with
interpolation for producing smooth cyclic waveforms. In addition,
before it is used, the total index is incremented by half the range
between one location and the next, before being rounded down to the
integer address of a table location.

Normally (igwmode = O or 1) for a table of length 5 - which has
locations 0 to 3 as the main table and location 4 as the guard point, a
total index in the range of O to 0.999 will write to location O.
(0.999” means just lessthan 1.0.) 1.0 to 1.999 will write to location
1 ec.

A smilar pattern holds for al total indexes O to 4.999 (igwmode = 0)
or to 3.999 (igwmode = 1). igwmode = 0 enables locations 0 to 4 to
be written - with the guardpoint (4) being written with a potentially
different value from location O.

With a table of length 5 and the iwgmode = 2, then when the total
index isintherange 0 to 0.499, it will writeto locations0 and 4.

Range 0.5 to 1.499 will write to location 1 etc. 3.5 to 4.0 will _also_
writeto locations 0 and 4.

This way, the writing operation most closely approximates the results
of interpolated reading. Guard point mode should only be used with
tablesthat have a guardpoint.

Guardpoint mode is accomplished by adding 0.5 to the total index,
rounding to the next lowest integer, wrapping it modulo the factor of
two which is one less than the table length, writing the the table
(locations O to 3 in our example) and then writing to the guard point
if index == 0.

tablew has no output value. The last three parameters are optional

and
have default values of 0.

Caution with k rate table numbers

The following notes also apply to the tablekt and tableikt ugens
which
can now have their table number changed at k rate.

At k rate or a rate, if a table number of < 1 is given, or the table
number points to a non-existent table, or to one which has a length of
0 (it is to be loaded from a file later) then an error will result and the
instrument will be deactivated.

>>> 2 - tablegpw, tableleng, tablemix and tablecopy

tableleng
ir itablengifn
kr tableng kfn

ifn i rate number of function table
kfn Kk rate number of function table

These return the length of the specified table. This will be a power
of two number in most circumstances - it will not show whether a
table has a guardpoint or not - it seems this information is not
available in the table's data structure. If table is not found, then O will
be returned.

Likely to be useful for setting up code for table manipulation
operations, such astablemix and tablecopy.

itablegpw ifn
tablegpw kfn

For writing the table's guard point, with the value which is in
location 0. Doesnothing if table does not exist.

Likely to be useful after manipulating a table with tablemix or
tablecopy.

tablemix

tablemix kdft, kdoff, klen, ksift, ksloff, kslg, ks2ft, ks2off, ks2g
itablemix idft, idoff, ilen, islft, isloff, islg, is2ft, is2off, is2g

This ugen mixes from two tables, with separate gains into the
degtination table. Writing is done for klen locations, usualy stepping
forward through thetable - if klen is positive.

If it is negative, then the writing and reading order is backwards -
towards lower indexes in the tables. This bidirectional option makes
it easy to shift the contents of a table sdeways by reading from it and
writing back to it with adifferent offset.

If klen is 0, no writing occurs. Note that the internal integer value of
klen is derived from the ANSI C floor() function - which returns the
next most negative integer. Hence a fractional negative klen value of
-2.3 would create an internal length of 3, and cause the copying to
gart from the offset locations and proceed for two locations to the
| ft.

The total index for table reading and writing is calculated from the
starting offset for each table, plus the index value, which dtarts at 0
and then increments (or decrements) by 1 as mixing proceeds.

These total indexes can potentially be very large, snce there is no
restriction on the offset or the klen. However each total index for
each table is ANDed with a length mask (such as 0000 0111 for a
table of length 8) to form a final index which is actually used for
reading or writing. So no reading or writing can occur outsde the
tables.

Thisisthe sameas“wrap” modein table read and write. These ugens
do not read or write the guardpoint.

If a table has been rewritten with one of these, then if it has a
guardpoint which is supposed to contain the same value as the
location O, then call tablegpw afterwards.

The indexes and offsets are all in table steps - they are not
normalised to 0 - 1. So for a table of length 256, klen should be set
to 256 if all the table was to be read or written.

The tables do not need to be the same length - wrapping occurs
individually for each table.

kdft Destination function table.

kdoff Offset to start writing from. Can be negative.

klen Number of write operationsto perform. Negative means
work backwards.

ks1ft ks2ft Source function tables. These can be the same asthe
destination table, if careis exercised about direction
of copying data.

ksloff ks2off Offsets to start reading from in source tables.

kslgks2g Gainsto apply when reading from the source tables.
Theresults are added and the sum is written to the

destination table.

68

tablecopy kdft, ksft

itablecopy idft, isft
Simple, fast table copy ugens. Takes the table length from the
destination table, and reads from the start of the source table. For
speed reasons, does not check the source length - just
copiesregardless - in “wrap” mode. This may read through the
source table several times. A source table with length 1 will causeall
valuesin the destination table to be written to its val ue.

Table copy cannot read or write the guardpoint. To read it use table
read, with ndx = the tablelength. Likewise use tablewriteto writeit.

To write the guardpoint to the value in location 0, use tablegpw.

This is primarily to change function tables quickly in a real-time
Stuation.

kdft Number of destination function table.

ksft Number of source function table.

>>> 3 - tablera and tablewa

These ugensread and write tablesin sequential locations to and from

an a rate variable. Some thought is required before using them.
They

have at least two mgjor, and quite different, applicationswhich are
discussed below.

ar tablera kfn, kstart, koff

kstart tablewa kfn, asig, koff

ar araedigtination for reading ksmps values from a
table.

kfn i or k rate number of the table toread or write.

kstart Whereintable to read or write.

asig arate signal to read from when writing to the table.

koff i or k rate offset into table. Range unlimited - see

explanation at end of this section.

In one application, these are intended to be used in pairs, or with
several tablera ugens before a tablewa - al sharing the same kstart
variable.

These read from and write to sequential locations in a table at
audiorates, with ksmpsfloats being written and read each cycle.

tablera sartsreading from location kstart.

tablewa starts writing to location kstart, and then writes to kstart with
the number of the location one more than the one it last wrote.
(Notethat for tablewa, kstart is both an input and output variable.)

If the writing index reaches the end of the table, then no further
writing occurs and zero iswritten to kstart.

For ingtance, if the table's length was 16 (locations O to 15), and
ksmps was 5. Then the following steps would occur with repetitive
runsof the tablewa ugen, assuming that kstart sarted at 0.

Run no. Initial Final locationswritten
kstart kstart

1 0 5 012 3 4

2 5 10 5 6 7 8 9

3 10 15 101112 13 14
4 15 0 15

This is to facilitate processng table data usng standard a rate
orchestra code between the tablera and tablewa ugens:

kstart =0 ;
; Read 5 values from table into an
; arate variable.

labl: atemp tablera ktabsource, kstart, O ; Process the values using
a
; rate code.
atemp = log(atemp) ;
; Write itback to thetable

kstart tablewa ktabdest, atemp, O
have

; Loop until all table locations

; been processed.
if ktemp > 0 goto labl ;

The above example shows a processing loop, which runs every k
cycle, reading each location in the table ktabsource, and writing the
log of those val ues into the same locations of table ktabdest.

This enables whole tables, parts of tables (with offsets and different
control loops) and data from several tables at once to be manipulated
with a rate code and written back to another (or to the same) table.

This is a bit of a fudge, but it is faster than doing it with k rate table
read and write code.

Another applicationis:

kzero=0 ;
kloop =0 ;

kzero tablewa 23, asignal, 0 ; ksmps arate samples written into
; locations O to (ksmps1) of table 23.

labl: ktemp tablekloop, 23 ; Start aloop which runsksmpstimes,
; in which each cycle processes one of
[Somecode to manipulate] ; table 23's values with k rate
orchestra
[thevalueof ktemp.]

; code.

tablew ktemp, kloop, 23 ; Write the processed vaue to the table.

kloop = kloop + 1 ; Increment the kloop, which is both the

; pointer into the table and the loop

if kloop < ksmps goto labl ; counter. Keep looping until all
values

; in the table have beerprocessed.

; Copy the table contents back to an arate
; variable.

asgnal tablera 23, 0, 0

koff Thisis an offset which is added to the sum of kstart and the

internal index variable which steps through the table. The result is
then ANDed with the lengthmask (000 0111 for a table of length 8 -
or 9 with guardpoint) and that final index is used to read or
write to the table. koff can be any value. It is converted into a long
using the ANSI floor() function so that -4.3 becomes -5. This is what
we would want when using offsets which range above and below
zero.

69

Ideally this would be an optional variable, defaulting to 0, however
with the existing Csount orchestra read code, such default parameters
mugt be init time only. We want k rate here, so we cannot have a
default.

Notes on tablera and tablewa

These area fudge, but they alow al Csounds k rate operators to be
used (with caution) on arate variables - something that would only
be possible otherwise by ksmps = 1, downsamp and upsamp.

Severa cautions:

1- Thek rate code in the processing loop is really running at a
rate, so time dependant functions like port and oscil work
faster than normal - their code isexpecting to be running at
k rate.

2 - Thissystem will produce undesirable results unless the ksmps
fitswithin the table length. For instance atable of length
16 will accomodate 1 to 16 samples, so thisexamplewill work
with ksmps=1to 16.

Both these ugens generate an error and deactivate the
instrument if atable with length < ksmpsis selected.
Likewisean error occurs if kstart is below O or greater than
the highest entry in the table- if kstart >= table length.

3- kstart isintended to contain integer vaues between 0 and
(table length- 1). Fractional values above this should not
affect operation but do not achieve anything useful.

4 - These ugens do not do interpolation and the kstart and koff
parameters always have a range of 0 to (table length- 1) -
not 0to 1 asisavailable in other table read/write ugens.
koff can be outside thisrange but it is wrapped around by the
final AND operation.

5- These ugens are permanently in wrap mode. When koff is0, no
wrapping needs to occur, since the kstart++ index will always
be within the table’snormal range. koff != 0 can lead to

wrapping.

6 - Theoffset does not affect the number of read/write cycles
performed, or the value written to kstart by tablewa.

7 - These ugens cannot read or write the guardpoint. Use tablegpw
to write the guardpoint after manipulations have been done
with tablewa

>>> 4 - The"zak” system for patching sgnals

“zak” means a or k rate patching, (i rate too), with a z at the start of
the names of the ugens.

This is a fudge to do the work until arrays are implemented. | want
to use such facilitiesand will use zak for the time being.

The zak system uses one area of memory as a global i or k rate
patching area, and another for audio rate patching.

These are establised by augen which must be called once only:
zakinit isizea, isizek

iszea The number of audio rate “locations’ for a rate patching.
Each“location” is actudly an array which is ksmps long.

isizek The number of locationswe want to reserve for floats
in the zk space. These can be written and read at i and
k rates.

eg. zakinit 10 30 reserves memory for locations O to 30 of zk space
and for locations O to 10 of a rate za space. With ksmps = 8, this
would take 31 floats for zk and 80 floats for za space.

At least one location is aways allocated for both zaand zk spaces.
There is nothing wrong with having za and zk ranges thousands or
tens

of thousands, but most pieces probably only need a few dozen to
patch

their signalsaround.

These patching locations can be referred to by number with the
following ugens.

The easiest way to run zakinit just onceisto put it outside any
insrument definition. Typically this would be at the dtart of the
orchestra file, with the s etc. definitions. All code outsde the
instrument definitions is treated as instrument one and is given an init
runat time= 0.

zir, zkr, zkw

There are two short, smple, fast opcodes which read a location in zk
Space, at ether i timeor at thek rate.

indx
kndx

ir zr
kr zkr

Likewise, two writeto alocationin zk spaceat i time or at the k rate.

ziw idig, indx
zkw ksig, kndx
These are fast and always check that the index is within the range of

zk space. If it isout of range, an error is reported and O is returned,
or no writing takes place.

isig irate } Valueto writeto the zk
ksig i ork rate} location.
indx irate } Whichzk location to writeit to.
kndx i orkrae}
For ingtance,

zkw kzoom, p8

can be used so that parameter 8 of the insrument’'s command line
could control wherein zk space the output iswritten.

zkw kzoom, 7
Thiswill alwayswriteit to zk location 7.
kxxx phasor 1

kdest =40 +kxxx * 16
zkw kzoom, kdest

This will write kzoom to locations 40 to 55 on a one second scan
cycle.

For arate reading and writing, we use similar opcodes:

ar zar kndx

Reads number kndx array of floats which are the ksmps number of
audio rate floatsto be processed in a k cycle.

70

zaw asig, kndx
Writesinto the array specified by kndx.

In both cases, the ugen figures out where the array is and auto
indexesthrough it to get each of the ksmps number of samples.

The zaspace is separate from the zk space.

These are the basic zk and za read and write ugens. However there
are
anumber of luxuriant variants:

ziwm, zkwm

ziwm isig, indx [,imix]
zkwm ksig, kndx [,imix]

Like ziw and zkw above, except that they can mix - add the sig to the
current value of the variable. If no imix is specified, they mix, but if
imix is used, then 0 will cause writing (like ziw and zkw) any other
valuewill cause mixing.

kr zkmod ksig, kzkmod

zkmod is a unit generator intended to facilitate the modulation of one
signa by another, where the modulating signal comes from a zk
variable. Either additive or mulitiplicative modulation is provided.

ksg isthe input signd, to be modulated and sent to the output of
the zkmod unit generator.

kzkmod controls which zk variable is used for modulation. A
positive
value means additive modulation, anegative value means
multiplicative modulation. A vaue of 0 means no change to
ksig- it istransferred directly to the output.

For ingtance kzkmod = 23 will read from zk variable 23, and add the
value it finds there to ksig. If kzkmod = -402, then ksig is multiplied
by the value read from zk location 402.

kskmod canbeani or ak rate value.

zkcl

zkel kfirgt, klast

This will clear to zero one or more variables in the zk space. Useful
for those variables which are accumulators for mixing things during
the processing for each cycle, but which must be cleared to zero
before the next set of calculations.

zar, zarg, Zzaw, zawm

For a rate reading and writing, in the za space, we use smilar
opcodes:

a zar kndx
kndx Pointsto which za variableto read.

This reads the number kndx array of floats in za space which are the
ksmps number of audio rate floatsto be processed in a k cycle.

ar zarg kndx, kgain

Similar to zar, but multipliesthearate signal by ak ratevalue kgain.

zaw asig, kndx

Writesasig into the za variable specified by kndx.

zawm asig, kndx [,imix]

Like zaw above, except that it can mix - add the asig to the current
value of the degtination za variable. If no imix is specified, it mixes,
but if imix is used, then O will cause a smple write (like zaw) and
any other valuewill cause mixing.

zamod asig, kzamod

Modulation of one audio rate signal by a second one - which comes
from a za variable. The location of the modulating variable is
controlled by the i or k rate variable kzamod. This is the audio rate
version of zkmod described above.

zacl

zacl kfirst, klast

This will clear to zero one or more variables in the za space. Useful
for those variables which are accumulators for mixing things during
the processing for each cycle, but which must be cleared to zero
before the next set of calculations.

Summary of zak ugens

What types of input variables are used?

Runs at time
ir zir indx i
kr zkr kndx k
ziw isig, indx i
zkw ksig, kndx k
ziwm isig, indx, imix i
zkwm ksig, kndx, kmix k
zkel Kfirst, klast k
ar zar kndx k but does arrays
ar zarg kndx, kgain k but does arrays
zaw adg, kndx k but doesarrays
zavm asig, kndx, kmix k but does arrays
zacl Kfirst, klast k but does arrays
isg }
indx } Knownat init time
imix }
ksg }
kndx }
kmix } k rate variables
kfirst }
klast }

kgain }

71

asg } aratevarigble- anarray of floats.

Known bugs in zak system

When using the mix function of zkwm or zawm, care must be taken
that

the variables mixed to are zeroed at the end (or start) of each k cycle.
The same appliesto any variables to which signals are mixed.

If you keep adding sgnals to them, their values can drift to
astronomical figures - which is probably not what you want.

My intention is to have certain ranges of za and zk variables used for

mixing - | use zkcl and zacl in the last instrument to clear those
ranges.

>>> 5 - Six smpletime reading ugens

timek, timek, times, itimes

These read absolute time since the gtart of the performance - in two
formats.

Oneistimek or itimek for timein krate cycles. Sowith:
sr = 44100
kr = 6300
ksmps=7

then after half a second, the timek or itimek ugen would report 3150.
It will alwaysreport an integer.

Timein secondsisavailablewith timesor itimes.

Thesewould return 0.5 after half a second.

kr timek

kr times

Both the above expect a k rate variablefor output.

Thereare no input parameters.

For smilar ugens which only operate at the start of the instance of
theinstrument:

ir itimek
ir itimes

Both these expect an i rate variable (starting with i or gi) as their
output.

ingtimek, instimes

kr instimek
kr instimes

These are gmilar to timek and times, except they return the time
sincethe gart of thisinstance of the instrument.

6 - Printing k rate variables on the screen as numbers

| hate debugging - these ugens are intended to facilitate the
debugging of orchestra code.

printk prints one k rate value on every k cycle, every second or at
intervals specified. First the instrument number is printed, then the
absolute time in seconds, then a specified number of spaces, then the
value. The variable number of spaces enables different values to be
spaced out across the screen - so they are easier to view.

printk kval, ispace [, itime]
kval The number to be printed.
igpace How many spacesto insert beforeit is printed. (Max 130.)

itime How much time in secondsisto e apse between printings.
(Default 1 second.)

The firgt print is on the first k cycle of the instance of the instrument.
This may not be 0.000 seconds, but the first k cycle afterwards. |
want to invedtigate this - | thought that k rate code should run from
timeO.

printks

printksisa completely different ugen - smilar to printf() in C.

It is highly flexible, and if used together with cursor postioning
codes, could be used to write specific values to locations in the
screen as the Csound processing proceeds. With MSDOS, a colour
screen and ANSI.SY'S, it would be possible to have multiple colours,
flashing displays - looking like NASA misson control, with k rate
variables controlling the values displayed, the location on the screen
wherethey are displayed, their colour etc.

There is also a special mode where a float variable is rounded to the
next lowest integer, and ANDed with 0 1111 1111 to produce a
character between 0 and 255 to be sent to be printed.

This eaborate use is a bit over the top - a hacker's paradise. But
printks can be used simply, just to print variables for debugging.

printks prints numbers and text, with up to four printable numbers -
which can bei or k rate values.
printks “txtstring”, itime, kvall, kval2, kva3, kva4

txtstring Text to be printed first - can be up to 130 characters
at lesst. _Must_ bein double quotes.

The gtring isprinted asis, but standard printf %of
etc. codes are interpreted to print the four parameters.

However (at least with DIJGPP) the\n style of
character codes are not interpreted by printf.

This ugen therefore provides certain specific codes
which are expanded:

\nor\N Newline

\t or \T Tab

n Escape character
AR A

~ Escapeand ‘[* Thesearetheleadin
codes for MSDOS ANSI.SY S screen
control characters.

72

Aninit error isgenerated if the first parameter is
not astring of length > 0 enclosed in double quotes.

[For some reason (at least with the DIJGPP version, the
program crashesif anull string- “* - isgiven.
Thisseems not to be due to this ugen. This should be
tidied up sometime.]

A specia mode of operation allows this ugen to convert
kval1 input parameter into a0 to 255 value and to use
it asthe first character to be printed.

This enablesa Csound program to send arbitrary
chaactersto the console - albeit with alittle
awkwardness.

[printf() does not have aformat specifier to read a
float and turn it into a byte for direct output.

We could add extra code b do this if we really wanted
to put arbitrary characters out with ease.]

To acheive this, make thefirst character of the string a

and then, if desired continue with normal text and format
specifiers. Three more format specifers may be used - they
accesskval2, kval3 and kval4.

itime How much timein seconds isto elapse between
printings. (Default 1 second.)
kvalx Thek rate valuesto be printed. Use O for those which
are not used.
For ingtance:

printks“Volume = %6.2f Freg = %8.3fin", 0.1, kvol, kfreg, 0, 0
Thiswould print:

Volume= 1234.56 Freq = 12345.678

printks“#x\ly = %6.2\n", 0.1, kxy, 0, 0, 0
Thiswould print a tab character followed by:

Xy = 1234.56

Discusson

Both these printing ugens can be made to run on every k cycle - or at
least every k cycle they are run in the instrument. Conditional goto
Statements can be used to run them only at certain times or when
something goes wrong. To make them run on every k cycle like this,
st itimeto O.

When itime is not O, then (if the orchestra code runs the ugen on
every k cycle) then the ugen will decide when to print. It will always
print on the first k cycleit is called. This meansthat if you set one of
these to print only every 10 seconds, and conditional code in the
instrument causes it to be run for the very first time at 3 seconds,
then it will print at 3 seconds.

Subsequent runs of the ugen at between 3 and 9.999 seconds would
not

cause it to print. This could be very useful - set the time to longer
than the piece and conditional code in the instrument can be used to
report a bug just once, on its first occurrence. You amost certainly
do not want a print operation happening every k cycle - it dows the
program down too much.

Staying with the 10 second cycle example, if such a printk or printks
ugen was caled every k cycle, then it would print at O seconds

73

(actually the first k cycle after 0), at 10.0 seconds, at 20.0 seconds
€tC.

The time cycles gart from the time the ugen is initialized - typicaly
theinitialisation of the instrument.

Damien Miller pointed out an interesting application of these ugens -
get the output of the program and sort the lines with aline sorter.

The result would be the printed lines sorted first by instrument
number, and then by time - for printk. However printks can be made
to produce amogt anything. The instrument is available as pl and
the time can easly be found and made available as a printks
parameter.

One option | have considered but not implemented is for these

printed lines to be written to a file as well as to the screen. Let me
know if you likethisidea, or have any other ideas about debugging.

printf() style %f formatting

One of the less enjoyable parts of C programming is trying to figure
out what magic incantationsto offer to printf()

All the parameters are floats, so this reduces our decisons to two
main issues:

1- How many decimal points of precision do we want? (0 means
no decimal point.)

2 - How many digits (or gpaces) do we want printed in total -
_including_those after the decimal point?

%f Jugt printswith full precision - 123.123456

%6.2f Prints 1234.12

%5.0f Prints 12345

There is more to the printf() codes than this - see an ANS| C library

reference. Instead of ‘f’, you can use ‘€ to get scientific notation.

Using any other format specifiers than f, e, g, E and G will cause

unpredictable results, because the parameters are aways floating
point numbers.

>>> 7 - Why arraysor “zak” are so important for some applications

A major theme of my approach to making music is to set up
processes

and let them interact and be affected by random occurrences. This
can

be expensive in analog hardware- but a load of fun too.

Setting up a garden of interacting processes and then tweaking them
to
whatever state of control or chaos| likeismy idea of fun!

Lets say | want to set up a musical cellular automata - with 100
smilar cells.

Each one produces sound and has various internal states stored asi, k
or a rate variables. The behaviour of each cel is at least partialy
dependant on that of its neighbours. Typically, each cell would make
some of its own internal state - including sound output - _readable
by its neigboursor other things.

There could be a global matron function who tries to control the
cels level of friskiness if they individually or collectively incur her
wrath by becoming too obstreperous.

So | have a 10 x 10 array of cels, and their internal state is made
available as global variables - with different names for the same
variablein different cells.

This could be done with 100 carefully written instruments, but life is
too short.

The only alternative is to use one instrument and have each instance
decidewhereitsinteral statesare written to for othersto read.

It should decide which of the 99 other instances it will read the states
of.

Theideal way isif we could write global variables as:
gahuey[p7] = afoo * abar

or

gahuey[kdest] = afoo * abar

In either case, one eement of an array huey[] of a rate variables is
written. (Actually each variableis an array of ksmpsfloas.)

[Interlude 1 - from what are the popular C variablesfoo and bar
[derived? Seetheend of thefile.

Likewise wewant to be able to write these array specificationsin the
right hand of equations.

gaduey[kdest] = huey[ksource] * (ablah + p4)

So that is the firg thing about arrays - make them easy and direct to
usewithi or k rateindexing.

Secondly, make them multidimensional:

galouey[4, 10]
Isatwo dimensional array of global audio rate variables.

gkblah[2, 4, 10]
Isathree dimensional array of global k rate variables.

Thirdly, we want them to be either global or local to the instance of
theinstrument.

This is quite a tall order, since the core of Csound is not perfect and
is largely devoid of comments. Such facilities are obvioudy beyond
what Csound was originally conceived to do, but now that CPUs are
s0 much faster, many people will be writing more sophisticated
programs. Since PCs with dual Pentiums exist today, and in a year
or two will be available with up to four P6 processors, letsthink big!

In principle, the global aspect of arrays can be acheived with the zak
system, but it istrickier.

zak ugens do not go on the left or right of equations, they have their
own line. They must write to normal variables and be fed by normal
variables. Arrays, and multi dimensional arrays can al be done with
offsets and multiplications to arrive at the final number of the
location in za or zk space - but it this involves bulky, hard do debug
and understand .orc code, and there is no prospect for building
mnemonic namesinto the way these variables are accessed.

| intend to do some cellular automatata or use multiple reverb and
sound source instruments with varying delay times between them, all
mixed with my binaural model - with the instruments, reverb points
(and hence their connecting time delays) potentially moving around.

There are great prospects for many hours of programming work,
bogging down the CPU, and probably horrible results - but | am
intrigued.

Release Notes for 3.47

These are the release notesfor version 3.47.

Many internal changes made to remove compiler warnings. Mainly
declarations and prototypes. Anyone who works at source level
should beware as gructures have new fields, fields have been
removed and o on. Some variables have type changed.

The Windows GUI has been revised aswell.

Language Changes:
1. Commentsallowed in score in more places

2. Treat\ at end of line as continuation in orchestra
3. Maximum number of an instrument is dynamic, and expands as

needed.

4, Removed limit on number of labels
5. Introduced " syntax into score files
6. Two new GENSs, numbered 25 and 27

7. Nolimit to number of partiasin hetro/adsyn

Opcode Fixes

1. Somefixesinfog

2. Internal tidying in granule

3. Bugfix in cpsxpch
4. Fix problem with tables 300, 600, 900,...

New Opcodes

The following have been added.

acos asin atan birrnd
chanctrl cosh Cross2 ctlinit
ctrll4 ctri21 ctrl7 dam
expsegr filter2 ftgen ftiptim
harmon ictrl14 ictrl21 ictrl7
imidic14 imidic21 imidic7 initcl4
initc21 initc7 ioff ion
iondur iondur2 ioutat ioutc
ioutcl4 ioutpat ioutpb ioutpc
ipchbend kfilter2 kon koutat
koutc koutcl4 koutpat koutpb
koutpc kpchbend linsegr massign
mclock midicl4 midic21 midic7
moscil mrtmsg osciln release
repluck rnd sinh tanh
turnon wgpluck wgpuck2 xtratim
and the modelled opcodes (following Perry Cook)

wgclar wgflute wgbow wgbrass
marimba vibes agogobel shaker
fmbell fmrhode fmwurlie fmmetal
fmb3 fmvoice fmper cfl moog
mandol voice

Revised Opcodes:

The opcodes here have had their specification changed, generally ina
compatible way. Usually to add scale factorsand thelike

imidictrl kmidictrl linseg pchbend
printks veloc
Other Changes:

Revised realtime audio on Windows (again!)

Additional features on Windows GUI to includes access to orchestra
and score editing and post-cal culation soundfile editing.

Emacs orchestra mode expanded for new opcodes, and fixed a little
ksmps congtrained to be integer.

74

Details on Opcodes

atan(x), acog(x), asin(x), tanh(x), sinh(x), cosh(x)

Functions to calculate the arctangent, etc. Available in i, k and a
forms.
(Author JPff)

irnd(x), krnd(x), ibirnd(x), kbirnd()

Functions, return random valuesin the range [0,X) or (-X,X)

chanctrl

ival chanctrl ichnl, ictinof,ilow,ihigh]
kval chanctrl ichnl, ictino[,ilow,ihigh]

Get the current value of a controller and optionally map it onto
specified range. ichnl isthe MIDI channel and ictino isthe MIDI
controller number.

(Author BV)

adg cross2 ainl, an2, ilen, iovl, iwin, kbias

Cross synthesis between the two audio signals

(Author PS)
ctrtlinit
ctrlinit ichnkm, ictinol, ival[, ictino2, iva2[, ictino3,

ival3[,..ival32]]

Setsinitial valuesfor a set of MIDI controllers.
(Author BV)

dam

Dynamic amplitude modifier
ar dam ain, kthresh, icompl, icomp2, irtme, iftme

(Author MR)

filter, kfilter, Zfilter

al filter2 asig, iM, iN, b0, ibl, ..., ibM, ial, ia2, ...,
iaN

k1 kfilter2 ksig, iM, iN, ib0, ibd, ..., ibM, ial, ia2, ..., iaN

al filter2 asig, kdamp, kfreq, iM, iN, ib0, ibl,..ibM, ial,
ia2, .iaN

General purpose custom filter with timevarying pole control. The
filter coefficientsimplement the following difference equation:

(D*y(n) = bO*x[n] + bl*x[n-1] + ... + bM*x[n-M] - al*y[n-1] - ... -
aN*y[n-N]

the system function for which isrepresented by:

1 -M
B(Z) b0+ bl*Z +..+bM*Z
HZ)= -— =
1 N
A@2) +al*Z +..+aN*Z

INITIALIZATION

At initialization the number of zeros and poles of the filter are
specified along with the corresponding zero and pole coefficients.
The coefficients must be obtained by an externa filter-design
application such as Matlab and specified directly or loaded into a
table via genOl. With Zfilter2, the roots of the characteristic
polynomials are solved at initialization so that the pole-control
operations can be implemented efficiently.

PERFORMANCE

The filter2 and kfilter2 opcodes perform filtering using a transposed
form-1l digital filter lattice with no time-varying control. Zfilter2 uses
the additional operations of radial pole-shearing and angular pole-
warping inthe Z plane.

Pole shearing increases the magnitude of poles along radial lines in
the Z-plane. This has the affect of altering filter ring times. The k-
rate variable kdamp is the damping parameter. Positive values (0.01
to 0.99) increase the ring-time of the filter (hi-Q), negative values (-
0.01 t0-0.99) decrease the ring-time of thefilter, (10-Q).

Pole warping changes the frequency of poles by moving them along
angular paths in the Z plane. This operation leaves the shape of the
magnitude response unchanged but alters the frequencies by a
congtant factor (preserving O and p). The k-rate variable k-freq
determines the frequency warp factor. Postive values (0.01 to 0.99)
increase frequencies toward p and negative values (-0.01 to -0.99)
decrease frequenciestoward 0.

Since filter2 implements generalized recursive filters, it can be used
to specify a large range of general DSP algorithms. For example, a
digital waveguide can be implemented for musical instrument
modeling using a pair of delayr and delayw opcodes in conjunction
with thefilter2 opcode.

Examples:

A firg-order linear-phase lowpass linear-phase FIR filter operating
onak-ratesignal:

k1l kfilter2 ksig, 2,0, 0.5,0.5;; k-rate FIR filter
A controllable second-order IR filter operating on an a-rate Ssgnal:
al Zilter2 asig, kdamp, kfreqg, 1, 2, 1, ial, ia2 ;; controllable IR

(Author MKC)

iafno ftgen ifno,itime,isize, igen, iargdl,...iargz]

iafno is ether a requested or automatically assigned table number
above 100. If ifno is zero the number is assigned automatically and
the value placed in iafno, Any other value is used as the table. itime
is ignored, but otherwise this is as the table generation in the score
with the f statement.

(Author BV)

ftiptim

Function. Returns the loop segment start-time in seconds of a stored
table.
(Author BV)

ar harmon
iminfrg, iprd

asig kestfrgkmaxvar, kgenfrql, kgenfrg2, imode,

Analyse an audio input and generate harmonising voices in
synchrony.

75

imode=0 is to treat the 2 generated frequencies as ratios=1 they are
cpsiminfrg isthe lowest expectsfrequency in cps
iprdisthe period of analysis

kestfrq is an estimate of the input frequency, and kmaxvar is a ratio
to limit the search.

Only one voice may be higher that the the sgnal, and a zero
frequency silencesthe sound

(Author BV)

ictrl7,ictrl21, ictrl14, ctrl7, ctrl21, ctri14
imidic7, imidic14, imidic21, midic7, midic14, midic21

idest
kdest

imidic7
midic7

ictlno, imin, imax [, ifn]

ictino, kmin, kmax [, ifn]
idest
kdest

imidic14
midicl4

ictinol, ictlno2, imin, imax [, ifn]

ictinol, ictlno2, kmin, kmax [, ifn]
idest
kdest

imidic21
midic21

ictinol, ictlno2, ictino3, imin, imax [, ifn]
ictinol, ictlno2, ictino3, kmin, kmax [, ifn]

idest
kdest

ictrl 7 ichan, ictlno, imin, imax [,ifn]

ctrl7 ichan, ictino, kmin, kmax [,ifn]
idest
kdest

ictrl 14 ichan, ictlnol, ictlno2, imin, imax [,ifn]

ctrl14 ichan, ictlnol, ictino2, kmin, kmax [,ifn]
idest
kdest

ictrl21 ichan, ictinol, ictlno2, ictino3, imin, imax [,ifn]
ctrl21 ichan, ictlnol, ictino2, ictino3, kmin, kmax [,ifn]

DESCRIPTION
Allow precise MIDI input controller signal.

INITIALIZATION

idest - output signal

ichan - MIDI channd (in (i)ctrl14 and (i)ctrl21 all the controllers
used in an opcode instance must be of the same channel)

ictino - midi controller number (1-127)

ictinol - mogt-significant byte controller number (1-127)

ictino2 - in midicl4: less-significant byte controller number (1-127);
in midic21: mid-significant byte controller number (1-127)

ictino3 - less-ggnificant byte controller number (1-127)

imi - user-defined minimum floating-point value of output

imax - user-defined maximum floating-point value of output

ifn (optional) - table to be read when indexing is required. Table
must be normalized. Output is scaled according to max and min val.

PERFORMANCE

kdest - output signal

kmin - user-defined minimum floating-point value of output
kmax - user-defined maximum floating-point value of output

imidic7 and midic7 (i and k rate 7 bit midi control) allow floating
point 7 bit midi signal scaled with a minimum and a maximum range.
They also alow optional non-interpolated table indexing.

In midic7 minimum and maximum values can be varied at krate.

imidic14 and midic14 (i and k-rate 14 bit midi control) do the
same asthe above with 14 bit precision.

imidic21 and midic21 (i and k rate 21 bit midi control) do the
same asthe above with 21 bit precision.

imidicl4, midicl4, imidic2l and midic2l can use optiona
interpolated table indexing. They require two or three midi
controllersasinput.

Warning! Don't use (i)midicXX opcodes within a sco-activated i-
statement or Csound will crash. Instruments containing (i)midicXX
opcodes can be only activated by a MIDI note-on message. Use
(i)ctrIXX opcodes if you need to include them in a sco-oriented
instrument instead.

76

ictrl7, ctrl7, ictrl14, ctrl14, ictrl2l, ctrl2l are very smilar to
(iymidicXX opcodesthe only differences are:

1) (i)ctrIXX UGs can be included in sco-oriented instruments
without Csound crashes.

2) They need the additional parameter ichan containing the MIDI
channel of the controller. MIDI channel isthe samefor al the
controller used ina single (i)ctrl 14 or (i)ctrl21 opcode.

initc7, initcl4, initc21

initc7 ichan, ictlno, ivalue

initcl4 ichan, ictlnol, ictino2, ivalue

initc21 ichan, ictlnol, ictlno2, ictlno3, ivalue
DESCRIPTION

InitializesMIDI controller ictlno with ivalue

INITIALIZATION

ichan - midi channel

ictlno - controller number (initc7)

ictinol - MSB controller number

ictino2 - in initcl4 LSB controller number; in initc21 Medium
Significant Byte controller number

ictino3 - LSB controller number

ivalue - floating point val ue (must be within 0 to 1)

initc7, initcl4, initc21 can be used together with both (i)midicXX
and

(i)ctrIXX opcodesfor initializing thefirst controllers’ value.

lvalue argument must be set with a number within O to 1. An error
occursif itisnot.

Use the following formula to set ivalue according with (i)midicXX
and (i)ctrIXX min and max range:

ivaue = (initial_value- min) / (max - min)

ion, ioff, iondur, iondur 2

ion ichn, inum, ivel

ioff ichn, inum, ivel
iondur ichn, inum, ivel, idur
jondur2 ichn, inum, ive, idur
DESCRIPTION

send note-on and note-off messagesto the MIDI OUT port.
INITIALIZATION

ichn - MIDI channel number (0-15)
inum - note number (0-127)
ivel - velocity (0-127)

PERFORMANCE

ion (i-rate note on) and ioff (i-rate note off) are the smplest MIDI
OUT opcodes.

ion sends a MIDI noteon message to MIDI OUT port, and ioff sends
a

noteoff message.

A ion opcode must aways be followed by an ioff with the same
channel and number inside the same instrument, otherwise the note
will play endlessly.

These ion and ioff are useful only when introducing a timout
statement to play anon zero duration MIDI note.

For most purposesit is better to use iondur and iondur2.

iondur and iondur2 (i-rate note on with duration) send a noteon and a
noteoff MIDI message both with the same channel, number and
velocity. Noteoff message is sent after idur seconds are elapsed by
thetimeiondur was activated.

iondur differs from iondur2 in that iondur truncates note duration
when current instrument is deactivated by score or by realtime
playing, while iondur2 will extend performance time of current

instrument until idur seconds have dapsed. In redtime playing it is
suggested to use iondur also for undefined durations, giving a large
idur value.

Any number of iondur or iondur2 opcodes can appear in the same
Csound ingtrument, allowing chordsto be played by asingleinstr.

ioutc, ioutcl4, koutc, koutc14, ioutpb, koutpb, ioutat, koutat,
ioutpc, koutpc, ioutpat, koutpat

ioutc ichn, inum, ivalue, imin, imax

koutc kehn, knum, kvalue, kmin, kmax

joutcl4 ichn, imsb, ilsh, ivalue, imin, imax

koutcl4 kchn, kmsb, kisb, kvalue, kmin, kmax

ioutpb ichn, ivalue, imin, imax

koutpb kchn, kvalue, kmin, kmax

ioutat ichn, ivalue, imin, imax

koutat kehn, kvalue, kmin, kmax

ioutpc ichn, iprog, imin, imax

koutpc kchn, kprog, kmin, kmax

ioutpat ichn, inotenum, ivalue, imin, imax

koutpat kechn, knotenum, kvalue, kmin, kmax
DESCRIPTION

Send a single Channel message to the MIDI OUT port.
INITIALIZATION AND PERFORMANCE

ichn, kchn - MIDI channel number (0-15)

inum, knum - controller number (0-127 for example. 1 = ModWhed!;
2 = BreathControl etc.)

ivalue, kvalue - floating point value

imin, kmin - minimum floating point value (converted in midi integer
value0)

imax, kmax - maximum floating point value (converted in midi
integer value 127 (7 bit) or 16383 (14 hit))

imsh, kmsb - most significant byte controller number when using 14
bit parameters

ilsh, klsb - less significant byte controller number when using 14 bit
parameters

iprog, kprog - program change number in floating point

inotenum, knotenum - MIDI note number (used in polyphonic
aftertouch messages)

ioutc and koutc (i and k-rate midi controller output) send controller
messagesto MIDI OUT device.

iout1l4 and kout14 (i and k-rate midi 14 bit controller output) send a
pair of controller messages. These opcodes can drive 14 bit
parameters on MIDI instruments that recognize them. The first
control message contains the most dgnificant byte of i(k)value
argument while the second message contains the less significant byte.
i(k)msb and i(k)lsb are the number of the most and less sgnificant
controller.

ioutpb and koutpb (i and k-rate pitch bend output) send pitch bend
messages.

ioutat and koutat (i and k-rate aftertouch output) send aftertouch
messages.

ioutat and koutat (i and k-rate aftertouch output) send aftertouch
messages.

ioutpc and koutpc (i and k-rate program change output) send program
change messages.

ioutpat and koutpat (i and k-rate polyphonic aftertouch output) send
polyphonic aftertouch messages. These opcodes can drive a different
value of a parameter for each note currently active. They work only
with MIDI instruments which recognize them.

N.B. All these opcodes can scale the i(k)value floating-point
argument according with i(k)max and i(k)min values. For example,
setting i(k)min = 1.0 and i(k)max = 2.0, when i(k)value argument
receives a 2.0 value, the opcode will send a 127 value to MIDI OUT

device, while when receiving a 1.0 it will send a O value. |-rate
opcodes send their message once during instrument initialization.

K-rate opcodes send a message each time the MIDI converted value
of

argument i(k)val ue changes.

ipchbend, kpchbend

ibend ipchbend [ilow, ihigh]
kbend kpchbend [ilow, ihigh]

Get the current pitchbend value from a MIDI channel, and map it to
the specified range
(Author BV)

kon, moscil
moscil kechn, knum, kvel, kdur, kpause
kon kchn, knum, kvel

DESCRIPTION
Send stream of note-on and note-off messages to the MIDI OUT
port.

INITIALIZATION

PERFORMANCE

kchn - MIDI channel number (0-15)

knum - note number (0-127)

kve - velocity (0-127)

kdur - note duration in seconds

kpause - pause duration after each noteoff and before new note in
seconds

moscil and kon are the most powerful MIDI OUT opcodes.

moscil (midi oscil) plays a stream of notes of kdur duration. Channel,
pitch, velocity, duration and pause can be controlled at k-rate,
alowing very complex algorithmically generated melodic lines.

When current instrument is deactivated, the note played by current
instance of moscil isforcely truncated.

kon (k-rate note on) plays MIDI notes with current kchn, knum and
kvel.

These arguments can be varied at k-rate. Each time the MIDI
converted value of any of these arguments changes, last MIDI note
played by current instance of kon is immediately turned off and a
new note with the new argument valuesis activated.

This opcode, as well as moscil, can generate very complex melodic
texturesif controlled by complex k-rate signals.

Any number of moscil or kon opcodes can appear in the same
Csound instrument, allowing a counterpoint-style polyphony within a
singleinstrument.

(Author GM)

linsegr ,expsegr

kr linsegr ia, idurl, ib[,idur2, ic[..]]. ird, iz
ar linsegr ia idurl,ib[,idur2,ic[..]].ird, iz
kr expsegr ia, idurl,ib[,idur2,ic[..]].ird, iz
akr expsegr ia idurl, ib[,idur2,ic[..]]. irdl, iz

Like linsag except that on a MIDI note off event the release sectin is
used, extending the performance by irel seconds, during which the

value of the opcode changesto iz.
(Author BV)

massign ichnl, insno

77

Assign MIDI channel to a Csound ingrument. This is an orchestral
header statement
(Author BV)

mclock, mrtmsg

mclock ifreq
mrtmsy imsgtype
DESCRIPTION

Send System Resaltime messagesto the MIDI OUT port.
INITIALIZATION

ifreq - clock message frequency ratein Hz
imsgtype - type of real -time message:
1 sends a START message (OxFA);
2 sends a CONTINUE message (OxFB);
0 sends a STOP message (0xFC);
-1 sendsa SY STEM RESET message (OXFF);
-2 sendsan ACTIVE SENSING message (OXFE)

PERFORMANCE

mclock (midi clock) sends a MIDI CLOCK message (OxF8) every
1/ifreq seconds. So ifreq is the frequency rate of CLOCK message in
Hz.

mrtmsgy (midi realtime message) sends a realtime message once, in
init stage of current instrument. imsgtype parameter is a flag to
indicate the message type (see above, in ARGUMENT S description).

(Author GM)

ar oxciln kamp, ifrg, ifn, itimes

Like oscill, but makes a total of itimes passes over the data, after
whichitissilent
(Author BV)

repluck, wgpluck2

wgpluck?2 is an implementation of the physical model of the plucked
string, with control over the pluck point, the pickup point and the
filter. repluck is the same operation, but with an additional audio
signal used to excitethe ‘ string’

ar wgpluck2 iplk, xam, icps, kpick, krefl
ar repluck iplk, xam, icps, kpick, krefl, axcite

The string plays at icps pitch. The point of pluck isiplk, which is a
fraction of the way up the gtring (0 to 1). A pluck point of zero
means no initial pluck. xamp is the gain. and kpick is what
proportion of the way along the string to sample the output. The
relection at the bridge is contrlled by the refleaction coefficient,
where 1 meanstotal reflection and O istotally dead.

(Author JPff)

turnon

turnon insnol,itime]
Activate an instrument, for an indefinite time, after a delay of itime

seconds.
(Author BV)

wgpluck

(Author MKC)

xtratim, release

xtratim iextradur
kflag release
DESCRIPTION

Extend the duration of realtime generated events and handle their
extralife.

INITIALIZATION
iextradur - additional duration of current instrument instance.
PERFORMANCE

xtratim exetends current MIDI-activated note duration of iextradur
seconds after the corresponding note-off message has deactivated
current noteitself. Thisopcode hasno output arguments.

release outputs current note state. If current note is in the release
stage (i.e. if its duration has been exetended with xtratim opcode and
if it has only just deactivated), kflag output argument is set to 1, else
(in sustain stage of current note) isset to 0.

These two opcodes are useful for implementing complex release-
oriented envelopes.

Example:

ingtr 1 ;dlowscomplex ADSR envelope with MIDI events
inum notnum

icps cpamidi

iamp ampmidi 4000

AR complex envel ope Secti on HHHHHEHHHHHHHE

xtratim 1 ;extratime, i.e. release dur
krel init 0
krel rdease ;outputsrelease-stageflag (0 or 1 values)

if (krel > .5) kgoto rel ;if in relase-stage goto relase section

:************ attack and sustain Section *******xxx*

kmpl linseg 0,.03,1,.05,1,.07,0,.08,.5,4,1,50,1
kmp = kmpl*iamp
kgoto done
;************ rdm mlon
rel:
kmp2 linseg 1,.3,2,7,0
kmp = kmpl*kmp2*iamp

done:

al oscili kmp, icps, 1
out al
endin

ar wgclar kamp, kfreq, ktiff, iatt, idetk, kngain, kvibf, kvamp, ifn[,
iminfreq]

Audio output is a tone similar to a clarinet, usng a physical model
developed from Perry Cook, but re-coded for Csound.

Initialisation

iatt - time in seconds to reach full blowing pressure. 0.1 seems to
correspond to reasonable playing. A longer time gives a definite
initial wind sound.

idetk - timein secondstaken to stop blowing. 0.1 isasmooth ending

ifn - table of shape of vibrato, usually a sne table, created by a
function

iminfreq - lowest frequency at which the instrument will play. If it is
omitted it istaken to be the same astheinitial kfreq.

78

Performance

A note is played on a clarinet-like instrument, with the arguments as
below.

kamp - Amplitude of note.

kfreq - Frequency of note played. While it can be varied in
performance, | havenot tried it.

kstiff - a diffness parameter for the reed. Vaues should be
negative, and about -0.3. The useful rangeisapproximately -0.44 to
-0.18.

kngain - amplitude of the noise component, about 0 to 0.5

kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12

kvamp - amplitude of the vibrato

Example:
al wgclar 31129.60, 440,-0.3,0.1,0.1,0.2,5.735,0.1, 1
out al

ar wgflute kamp, kfreg, kjet, iatt, idetk, kngain, kvibf, kvamp, ifn[,
iminfreq]

Audio output is a tone smilar to a flute, usng a physica model
developed from Perry Cook, but re-coded for Csound.

Initialisation

iatt - time in seconds to reach full blowing pressure. 0.1 seems to
correspond to reasonable playing.

idetk - time in seconds taken to stop blowing. 0.1 is a smooth
ending.

ifn - table of shape of vibrato, usually a sine table, created by a
function.

iminfreq - lowest frequency at which the instrument will play. If it is
omitted it is taken to be the same astheinitial kfreg.
Performance

A note is played on a flutelike instrument, with the arguments as
below.

kamp - Amplitude of note.

kfreq - Frequency of note played. While it can be varied in
performance, | have not tried it.

kjet - a parameter controlling the air jet. Values should be positive,
and about 0.3. The useful range isapproximately 0.08 to 0.56.

kngain - amplitude of the noise component, about 0 to 0.5

kvibf - frequency of vibrato in Hertz. Suggested rangeis 0to 12
kvamp - amplitude of the vibrato.

Example:

al wgflute 31129.60, 440, 0.32, 0.1, 0.1, 0.15, 5.925, 0.05, 1
out al

ar wgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn[, iminfreq]

Audio output is a tone smilar to a bowed gring, usng a physical
model developed from Perry Cook, but re-coded for Csound.

Initialisation

ifn - table of shape of vibrato, usually a sine table, created by a
function.

iminfreq - lowest frequency at which the instrument will play. If it is
omitted it istaken to be the same astheinitial kfreq.
Performance

A note is played on a bowed dgring-like ingrument, with the
arguments as below.

kamp - Amplitude of note.

kfreq - Frequency of note played. While it can be varied in
performance, | havenot tried it.

kpres - a parameter controlling the pressure of the bow on the string.
Values should be about 3. The useful rangeis approximately 1 to 5.

kratio - the podtion of the bow along the string. Usua playing is
about 0.127236. The suggested rangeis0.025 to 0.23.

kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12.
kvamp - amplitude of the vibrato.

Example:
A bowing with vibrato setting in after ashort time.

kv linseg 0,05,0, 1,1 p305,1
al wgbowed 31129.60, 440, 3.0, 0.127236,6.12723, kv*0.01, 1
out al

ar wgbr ass kamp, kfreqg, Klipt, idatt, kvibf, kvamp, ifn[, iminfreq]
Audio output is a tone related to a brass instrument, using a physical
model developed from Perry Cook, but re-coded for Csound.

[NOTE: This is rather poor, and at present uncontrolled. Needs
revision, and possibly more parameters]

Initialisation

idatt -- time taken to stop blowing.

ifn - table of shape of vibrato, usually a sne table, created by a
function.

iminfreq - lowest frequency at which the instrument will play. If it is
omitted it istaken to be the same astheinitial kfreq.
Performance

A note is played on a bowed dgring-like ingrument, with the
arguments as below.

kamp - Amplitude of note.

kfreq - Frequency of note played. While it can be varied in
performance, | have not tried it.

klibt - tenson of lips, inrange 0to 1.
kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12.
kvamp - amplitude of the vibrato.

Example:
al wgbrass 31129.60, 440,0.4,0.1, 6.137,0.05, 1

79

ar marimba kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec
ar vibes kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec

Audio output is a tone related to the striking of a wooden or metal
block as found in a marimba or vibraphone. The method is a
physica model developed from Perry Cook, but re-coded for
Csound.

Initialisation

ihrd -- the hardness of the stick used in the strike. A range of 0 to 1
isused. 0.5isasuitablevalue.

ipos -- wherethe block ishit, intherange0 to 1.

imp - a table of the strike impulses. The file "marmstkl.wav" is a
auitable function from measurements, and can be loaded with a
GENL1 table.

ivfn - shape of vibrato, usually a sinetable, created by afunction.

idec - time before end of note when damping isintroduced.

Performance

A note is played on a marimba-like instrument, with the arguments as
below.

kamp - Amplitude of note.

kfreq - Frequency of note played. While it can be varied in
performance, | have not tried it.

kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12.
kvamp - amplitude of the vibrato.
Example:

al marimba31129.60, 440, 0.5, 0.561, 2, 6.0, 0.05, 1, 0.1
a2 vibes 31129.60, 440, 0.5, 0.561, 2, 4.0,0.2,1,0.1

ar agogobel kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn

Audio output is a tone related to the striking of a cow bell or smilar.
The method is a physical model developed from Perry Cook, but re-
coded for Csound.

Initialisation

ihrd -- the hardness of the stick used in the strike. A range of 0 to 1
isused. 0.5isasuitablevalue.

ipos -- wherethe block ishit, intherange 0 to 1.

imp - a table of the drike impulses. The file "britestk.wav" is a
suitable function from measurements, and can be loaded with a
GEN1 table.

ivfn - shape of vibrato, usually a sinetable, created by afunction.

Performance

A note is played on a cowbell or agogobell-like instrument, with the
arguments as below.

kamp - Amplitude of note.

kfreq - Frequency of note played. While it can be varied in
performance, | have not tried it.

kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12.

kvamp - amplitude of the vibrato.

Example:
al agogobel 31129.60, 440, p4, 0.561, 3,6.0,0.3,1

ar shaker kamp, kfreq, kbeans, kdamp, knum, ktimes[, idecay]

Audio output is a tone related to the shaking of a maraca or smilar
gourd insrument. The method is a physicaly inspired model
developed from Perry Cook, but re-coded for Csound.

Initialisation

idecay - If present indicates for how long at the end of the note the
shaker isto be damped. The default valueis zero.

Performance

A note is played on a cowbell or agogobell-like instrument, with the
arguments as below.

kamp - Amplitude of note.

kfreq - Frequency of note played, that is the frequency of the gourd.
It can bevaried in performance, | have not tried it.

kbeans - The number of beans in the gourd. A value of 8 seems
suitable.

kdamp -- The damping vsalue of the shaker. Values of 0.98 to 1
seems suitable, with 0.99 a reasonable default.

knum -- The number of shakes of the gourd. Values over 64 are
congdered infinite.

ktimes -- Number of times shaken.

[RICK: Not sureall these are useful -- not clear in code]

Example:

al shaker 31129.60, 440, 8, 0.999, 0, 100, 0

al fmtbell kamp, kfreg, kcl, ke2, kvdepth, kvrate, ifnl, ifn2, ifn3,
ifn4, ivfn

al fmrhode kamp, kfreg, kcl, ke2, kvdepth, kvrate, ifnl, ifn2, ifn3,
ifn4, ivfn

al fmwurlie kamp, kfreg, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3,
ifn4, ivfn

al fmmetal kamp, kfreg, kcl, k2, kvdepth, kvrate, ifnl, ifn2, ifn3,
ifn4, ivfn
al fmb3
ifn4, ivfn
al fmpercfl kamp, kfreg, kcl, ke2, kvdepth, kvrate, ifnl, ifn2, ifn3,
ifn4, ivfn

kamp, kfreg, kcl, k2, kvdepth, kvrate, ifnl, ifn2, ifn3,

A family of FM sounds, al using 4 basc oscilators and various
architectures, asused in the TX81Z synthesiser.

Initialisation

All these opcodes take 5 tables for initialisation. The first 4 are the
basic inputs and the last is the low frequency oscillator (LFO) used
for vibrato. Thelast table should usualy bea sine wave.

For the other opcodestheinitial waves should beasin the table

ifnl ifn2 ifn3 ifn4
fmtbell snewave snewave snewave sinewave
fmrhode sinewave snewave snewave fwavblnk
fmwurlie snewave snewave snewave fwavblnk
fmmetal snewave twopeaks twopeaks sinewave
fmb3 sinewave sinewave snewave snewave
fmpercfl sinewave snewave snewave sinewave

The sounds produced are then

80

fmtbell Tubular Bell
fmrhode Fender Rhodes Electric Piano
fmwurlie Wourlitzer Electric Piano
fmmetal "Heavy Metal"
fmb3 Hammond B3 organ
fmper cfl Percussive Flute

Performance

kamp — Amplitude.

kfreg — frequency.

kcl, ke2 -- Controlsfor the syntheser, asin thetable

kel kc2 Algorithm
fmtbell Modindex1 Crossfaseof twooutputs 5
fmrhode Modindex1 Crossfaseof twooutputs 5
fmwurlie Modindex1 Crossfaseof twooutputs 5
fmmetal Total mod Crossfade of two 3

index modulators
fmb3 Total mod Crossfade of two 4

index modulators
fmpercfl ~ Total mod Crossfade of two 4

index modulators
kvdepth -- Vibrator depth.
kvrate -- Vibrator rate.
Examples:
al fmtbell 31129.60,440,1, 1.2,02,6, 1,1,1,1,1
al fmrhode 31129.60,440,1, 1.2,0.2,12, 1,1,14,1
al fmwurlie 31129.60, 440,1, 1.2,0.2,8, 1,1,14,1
al fmmetal 31129.60, 110, 1, 1.2,0.2,55,1551,1
al fmb3 31129.60,440,1, 1.2,02,8, 1,1,11,1
al fmpercfl 31129.60, 440,0.1,0.1,05,12, 1,1,1,1,1

al fmvoice kamp, kfreg, kvowe, ktilt, kvibamt, kvibrate, ifnl, ifn2,
ifn3, ifnd, ivibfn

FM Singing Voice Synthesis,
Initialisation:

ifnl, ifn2, ifn3, ifn3 -- Tables, usualy of sinewaves.
Performance

kamp -- Amplitude control.

kfreq -- Base frequency of sound.

kvowe -- the vowel being sung, in the range 0-64; it is rounded to
the nearest integer.

ktilt -- the spectral tilt of the sound in the range 0 to 99.
kvibamt -- Depth of vibrato.

kvibrate -- Rate of vibrato.

Example

k1 line 0, p3, 64
al fmvoice 31129.60, 110, k1, 0, 0.005, 6, 1,1,1,1,1

al moog
ivin

kamp, kfreg, Kkfiltg, kfiltrate, kvibf, kvamp, iafn, iwfn,

An emulation of amini-Moog syntheser.

Initialisation.

81

iafn, iwfn, ivfn -- three table numbers containing the attack wave
form (unlooped), the main looping wave form, and the vibrato
waveform.

The files mandpluk.aiff and impuls20.aiff are suitable for the first
two, and asinewavefor thelast.

Performance.

kamp - Amplitude of note.

kfreq - Frequency of note played. It can be varied in performance.

kfiltq - Q of thefilter, in therange 0.8 t0 0.9

kfiltrate - rate control for thefilter in the range O to 0.0002

kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12.

kvamp - amplitude of the vibrato.

al mandol
iminfreq]

kamp, kfreq, kpluck, kdetune, kgain, ksize, ifn[,

An emulation of a mandoalin.
Initialisation.

ifn -- table number containing the pluck wave form. The file
mandpluk.aiff issuitablefor this.

iminfreq -- Lowest frequency to be played on the note. If it is

omitted it istaken to be the same astheinitial kfreq.

Performance.

kamp - Amplitude of note.

kfreq - Frequency of note played. It can be varied in performance.
kpluck - Thepluck postion, inrange0 to 1. Suggested valueis 0.4
kgain - theloopgain of the model, in the range 0.97 to 1.

kdetune - The proportional detuning between the two strings.
Suggested range 1 and 0.9

ksize - The size of the body of the mandolin. Range 0 to 2.

al voice kamp, kfreg, kphoneme, kform, kvibf, kvamp, ifn, ivfn
An emulation of ahuman voice.
Initialisation.

ifn, ivfn -- two table numbers containing the carrier wave form and
the vibrato waveform.

The files impuls20.aiff, ahh.aiff eeeaiff or ooo.aiff are suitable for
thefirst of these, and a sine wave for the second.

Performance.
kamp - Amplitude of note.
kfreq - Frequency of note played. It can be varied in performance.

kphoneme - an integer in the range O to 16, which select the formants
for the sounds "eee","ihh","ehh","aaa’,

"ahh","avw","ohh","uhh",

"uuu","ooo","rrr" " 1",

"mmm","nnn","nng","ngg".

At present the phonemes
"fff","sss","thh","shh",
"xxx","hee","hoo","hah",
bbb’ "dd"}jj" " 994",

"ww","zzz""thz","zhh"
arenot available.
kform - Gain on the phoneme. vaues 0.0 to 1.2 recommended.
kvibf - frequency of vibrato in Hertz. Suggested rangeis 0 to 12.

kvamp - amplitude of the vibrato.

GEN25, GEN27

These subroutines are used to congtruct functions from segments of
exponential curves (GEN25) or gtraight lines (GEN27) in breakpoint
fashion.

f# time size 25 x1y1x2y2x3y3...
f# time size 27 x1y1x2y2x3y3...

size - number of points in the table. Must be a power of 2 or power-
of-2
plus1 (seef statement).

x1, X2, x3, etc. - locations in table at which to attain the following y
value. Mugt beinincreasing order. If the last value is less than Sze,
then the rest will be set to zero. Should not be negative but can be
zero.

y1, y2, y3, etc. - Breakpoint values attained at the location specified
by the preceding x value. For GEN25 these must be non-zero and
mugt bealikein sign. No such restrictionsexist for GEN27.

Note: If p4 is podtive, functions are post-normalized (rescaled to a
maximum absolute value of 1 after generation). A negative p4 will
cause rescaling to be skipped.

Example: f 102572700100 1200 -1 256 0

This describes a function which begins at 0, rises to 1 at the 100"
table location, falls to -1, by the 200th location, and returns to O by
theend of the table. Theinterpolationislinear.

10257 2500.001 100 1 200 .001 256 0.001

Similar to above, but creates exponential curve. No vaues <=0 are
allowed in Gen25.

Windows GUI Changes

The treatment of graphs has changed significantly. In particular there
aretwo new menu items, to display the previous or next graph.

These work during the run, and also at the end. It can remember up
to

40 graphs.

Ingtead of a dialog asking for a click at the end, the system waits for
any character. During this time the menus can be used, so the graphs
can be redisplayed, or the output scrolled back. Also the text buffer
Sze has been increased.

Also for Windows, the output form devaudioO, devaudiol,.. or adcO,
adcl,... can be used to select which of many audio devices are to be
used. (devaudiol would refer to device 1 etc). The form devaudio
refersto device zero.

==John ff
1998 Jan 2

Release Notes for 3.48

These are the release notes for verson 3.48, which is mainly a bug-
fix release. These notes should be read in conjunction with earlier

rdlease notes. The main non-bug-fix material is described in the
language changes.

Language Changes

The input or output file in -i and -0 can start with a | to indicate a
process which is started to create or process audio files. This works
on Windows and Unix, but not (yet) DOS.

WAV format now supports floating samples correctly. (Richard
Dobson)

Macrosin orchestra and scores [Notes 1 and 2]

Repeat sectionsin Scores[Note 1]

#include available in orchestra and score [Notes 1 and 2]
* *] comments allowed in orchestra and score

Removal of limit on orchestra size (ARGSPACE and ORTEXT
problems)

The opcodes asin, acos and atan renamed as sininv, cosinv and taninv
S0 asto avoid name-space polution.

_ allowed aspart of aword. Words case significant.
Limited evaluation of expressionsin the score [Note 6]

Opcode Fixes

reverb2 wastuned to one particular sampling rate. Replaced by
nreverb opcode. (Richard Karpen)

wgbow, flute and brassfixed in various ways

Fixesin fof2 and fog (Ekman)

shaker used to ignore kreguency; now fixed

pvadd (Richard Karpen) [Note 3]

taninv2 in kk and aa contexts (equivalent to atan2 in C)

printk2 which prints when a k-value changes (Gabriel Maldonado)
[Note 0]

locsig, locsend, space, spsend, spdist (Richard Karpen) for locating
sound [Notes 7 and 8]

New GEN function 28 to read x,y values direct from afile.

Other Changes:

On Windows permissions of output files could be wrong.

Problem on SUN fixed, which gave slence sometimes and other
errors.

emacs modes have new opcodes added, and some support for
macros.

Pipesallowed in -L inputs, using a | asthefirst character of the
‘filename’.

-H2 and -H3 options to display heartbeat in a different way. -H1 is
equivalent to -H and -HO isequivalent to no -H option. [Note 5]

82

Windows GUI Changes

Output device selectable by menu (Richard Dobson). No equivalent
codefor input yet.

Reading MIDI filesfixed in interface.
xyin implemented in windows. [Note 4]

Heartbeat option on Extras dialog allows numbers now. [Note 5]

==John ff
1998 Apr 14

Note 0:
printk2

printk2 kvar [, numspaces]
INITIALIZATION

numspaces - number of space characters printed before the value of
kvar

PERFORMANCE

kvar - signal to be printed

Derived from Robin Whittle's printk, prints a new value of kvar each
time kvar changes. Useful for monitoring MIDI control changes
when

usng diders. Warning! don't use this opcode with normal,
continuoudy variant k-sgnals, because it can hang the computer, as
therate of printing istoo fast.

Note 1:
Changesto the Score Language
John ffitch April 1998

The 3.48 verson of Csound introduces a number of changes in the
language in which scores are presented to the system. These are all
upward compatible, and so do not require any changes in existing
scores. These changes should alow for simpler score writing, and
provide an eementary alternative to the full score-generation
systems. Similar changes have been made in the orchestra language.

Simple Macros

Macros are textual replacements which are made in the score as it is
being read. The macro system in Csound is a very smple one, and
usestwo specia charactersto indicate the presence of macros, the
characters# and $.

To define a macro one uses the # character.
#define NAME # replacement text#

The name of the macro can be any made from letters, upper or lower
case. Digits are not allowed. The replacement text is any character
string (not containing a #) and can extend over more than one line.
The replacement text is enclosed within the # characters, which
ensuresthat additional charactersare not inadvertently captured.

To use a macro the name is used following a $ character. The name
is

terminated by the next non-letter. If the need is to have the name
without a space a period can be used to terminate the name, which is
ignored. The string $NAME. is replaced by the replacement text
from

the definition. Of course the replacement text can also include macro
calls.

If amacro isnot required any longer it can be undefined with
#undef NAME

Example:
If anote-event hasa set of p-fieldswhich are repeated

#define ARGS# 1.01 2.33 138#
i1 01 8.001000 $ARGS
i1018.011500 $ARGS
i1018.021200 $ARGS
i10 1 8.031000 $ARGS

Thiswill get expanded before sorting into
i1018.001000 1.01 2.33138
i1018.011500 1.01 2.33138
i1018.0212001.01 2.33138
i1018.031000 1.01 2.33 138

This can save typing and is eader to change if for example one
needed to change one of the parameters. If there were two sets of p-
fields one could have a second macro (there is no real limit on the
number of macros one can define).

#define ARGSL # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
i10 1 8.001000 $ARGSL
i1018.011500 $ARGS2
i1018.021200 $ARGS1

i10 1 8.031000 $ARGS2

An alternative would be to use the second form of the macro,
described below.

Note: some care is needed with textual macros as they can sometimes
do drange things. They take no notice of any meaning, and so
spaces are dgnificant, which is why the definition has the
replacement text surrounded by # characters, unlike that in the C
programming language.

Used carefully smply macros are a powerful concept, but they can
be abused.

Advanced Macros

Macros can also be defined with parameters. This can be used in
more complex Stuations. In order to define a macro with arguments
thesyntax is

#define NAME(A#B#C) #replacement text#

Within the replacement text the arguments can be substituted by the
form $A. In fact the implementation defines the arguments as smple
macros. There may be up to 5 arguments, and the names can be any
choice of letters. Caseissignificant in macro names.

In use the argument form for example

#defineARG(A) #2.345 1.03 $A 234.9#

i1 0 1 8.00 1000 $ARG(2.0)

i1 +18.011200 $ARG(3.0)

which expandsto

i10 18.0010002.345 1.03 2.0 234.9
i1+18.0112002.345 1.03 3.0 234.9

Aswith the smple macros, these macros can also be undefined with

#undef NAME

Another Use For Macros

When writing a complex score it is sometimes all too easy to forget
to what the various instrument numbers refer. One can use macros to
give namesto the numbers. For example

83

#define Flute #i1#

#define Whoop #i2#

$FHute. 0 10 4000 440
$Whoop. 5 1

Multiple File Score

It is sometimes convenient to have the score in more than one file.
This use is supported by the #include facility which is part of the
macro system. A line containing the text

#include :filename:

where the character : can be replaced by any suitable character. For
most uses the double quote symbol will probably be the most
convenient.

This takes input from the named file until it ends, when input reverts
to the previous input. There is currently a limit of 20 on the depth of
included filesand macros.

A suggested use of #include would be to define a set of macros
which

are part of the composer's style.
repeated sections.

It could also be used to provide

s
#include :sectionl:

;1 Repeat that
s

#include :sectionl:
However there is an alternative way of doing repeats, described
below.

Repeated Sections

Sections can be repeated by using #include or by editing thetext. An
dternativeisthe new r directivein the score language.

r3 NN

starts a repeated section, which lasts until the next s, r or e directive.
The section is repeated 3 times in this example. In order that the
sections may be more flexible than smple editing, the macro NN is
given the value of 1 for the first time through the section, 2 for the
second, and 3 for the third. This can be used to change p-fied
parameters, or indeed ignored.

Warning: because of serious problems of interaction with macro
expangion, sections must start and end in the same file, and not in a
macro.

Evaluation of Expressions

In earlier versons of Csound the numbers presented in a score were
used as given. There are occasons when some smple evaluation
would be easier. This need is increased when there are macros. To
assg in this area the syntax of an arithmetic expressons within
square brackets [] has been introduced. Expressions built from the
operations +, -, *, and / are allowed, together with grouping with ().
The expressons can include numbers, and naturally macros whose
valuesare numeric or arithmetic strings. All calculationsare madein
floating point numbers. Note that unary minusis not yet supported.

Example:

r3 CNT

i1 0 [0.3*$CNT]

i1 + [($CNT./3)+0.2]
e

As the three copies of the section have the macro $CNT. with the
different values of 1, 2 and 3, thisexpandsto

S

i1 0 0.3

i1 0.3 0.533333
S

i1 0 0.6

i1 0.6 0.866667
S

i1 0 0.9

i1 0.9 12

e

This is an extreme form, but the evaluation system can be used to
ensure that repeated sections are subtly different.

Note 2:
Changesto the Orchestra Language

John ffitch April 1998

In verson 348 a macro and multiple file sysem has been
incorporated into the orchestra language. This is sSmilar to the macro
system in the score language, but is independent.

Simple Macros

Macros are textual replacements which are made in the orchestra as it
is being read. The macro system in Csound is a very smple one, and
uses two special characters to indicate the presence of macros, the
characters# and $.

To define a macro one uses the # character.
#define NAME # replacement text#

The name of the macro can be any made from letters, upper or lower
case. Digits are not allowed. The replacement text is any character
string (not containing a#) and can extend over more than oneline.

The replacement text is enclosed within the # characters, which
ensuresthat additional charactersare not inadvertently captured.

To use a macro the name is used following a $ character. The name
is terminated by the next non-letter. If the need is to have the name
without a space a period can be used to terminate the name, which is
ignored. The string $NAME. is replaced by the replacement text
from the definition. Of course the replacement text can also include
macro calls.

If amacro isnot required any longer it can be undefined with
#undef NAME
Example:

#define REVERB #ga = gat+al
out al#

instr 1
al oscil
$REVERB.

endin

ingtr 2
al repluck
$REVERB.

endin

Thiswill get expanded before compilation into

ingtr 1
al oscil
ga=gatal
out al
endin

ingtr 2
al repluck
ga=gatal
out al
endin

This can save typing, and in the case, for example, of a general
effects processng sequence, it can lead to a coherent and consstent
use.

This form is limiting in at least having the variable names fixed. An
alternative would be to use the second form of the macro, described
below.

Note: some care is needed with textual macros as they can sometimes
do drange things. They take no notice of any meaning, and so
spaces are dgnificant, which is why the definition has the
replacement text surrounded by # characters, unlike that in the C
programming language.

Used carefully smply macros are a powerful concept, but they can
be abused.

Advanced Macros

Macros can also be defined with parameters. This can be used in
more complex Stuations. In order to define a macro with arguments
thesyntax is

#define NAME(A#B#C) #replacement text#

Within the replacement text the arguments can be substituted by the
form $A. In fact the implementation defines the arguments as smple
macros. There may be up to 5 arguments, and the names can be any
choice of letters. Caseissignificant in macro names.

In use the argument form for example

#define REVERB(A) #ga = ga+$A.
out $A#
ingtr 1
al oscil
$REVERB(al)
endin

ingtr 2
a2 repluck
$REVERB(a2)

endin

to which expands

instr 1
al oscil
ga=gatal
out al
endin
ingtr 2
a2 repluck
ga=gata2
out a2
endin

Aswith the smple macros, these macros can also be undefined with
#undef NAME

Multiple File Orchestras

It is sometimes convenient to have the orchestra arranged in a
number of files, for example with each instrument in a separate file.
This style is supported by the #include facility which is part of the

macro system. A line containing the text

#include :filename:

where the character : can be replaced by any suitable character. For
most uses the double quote symbol will probably be the most
convenient.

This takes input from the named file until it ends, when input reverts
to the previous input. There is currently a limit of 20 on the depth of
included files and macros.

Another suggested use of #include would be to define a set of macros
which are part of the composer’s style.

An extreme form would be to have each insrument defines as a
macro, with the instrument number as a parameter. Then an entire
orchestra could be constructed from a number of #include statements
followed by macro calls.

#include :clarinet:
#include :flute:
#include :bassoon:
$CLARINET(1)
$FLUTE(2)
$BASSOON(3)

It must be stressed that these changes are at the textual level and so
take no cognisance of any meaning.

Note 3:
pvadd
Created by Richard Karpen, 1998

a2 pvadd ktimpnt, kfmod, ifile, ifn, ibins [, ibinoffset, ibinincr]
DESCRIPTION

pvadd reads from a pvoc file and uses the data to perform additive
synthesis usng an internal array of interpolating oscillators. The user
supplies the wave table (usually one period of a sne wave), and can
choose which analysis binswill be used in the re-synthesis.
PERFORMANCE

ktimpnt, kfmod, and ifile are used in the same way asin pvoc.

ifn isthe table number of a stored function containing a Sne wave.

ibinsisthe number of binsthat will be used in the resynthesis (each
bin counts as one oscillator in the re-synthesis).

ibinoffset isthefirst bin used (it is optional and defaults to 0).

ibinincr sets an increment by which pvadd counts up from ibinoffset
for ibins components in the re-synthess (see below for a further
explanation).

EXAMPLE:

ktime line O, p3, p3
asg pvadd ktime, 1, "oboe.pvoc’, 1, 100, 2

In the above, ibins is 100 and ibinoffset is 2. Using these settings the
resynthesis will contain 100 components beginning with bin #2 (bins
are counted gtarting with 0). That is, resynthesis will be done using
bins 2-101 inclusive. It is usually a good idea to begin with bin 1 or 2
since the Oth and often 1st bin have data that is neither necessary nor
even helpful for creating good clean resynthesis.

ktime line 0, p3, p3
asg pvadd ktime, 1, "oboepvoc”, 1, 100, 2, 2

The above is the same as the previous example with the addition of
thevalue 2 used for the optional ibinincr argument. This result will

85

il result in 100 components in the resynthesis, but pvadd will count
through the bins by 2 instead of by 1. It will use bins 2, 4, 6, 8, 10,
and so on. For ibins=10, ibinoffset=10, and ibinincr=10, pvadd
would use bins 10, 20, 30, 40, up to and including 100.

USEFUL HINTS:

By using several pvadd units together, one can gradually fade in
different parts of the resynthess, creating various "filtering" effects.
The author uses pvadd to synthesis one bin at a time to have control
over each separate component of the re-synthesis.

If any combination of ibins, ibinoffset, and ibinincr, creates a
Stuation where pvadd is asked to used a bin number greater than the
number of binsin the analyss, it will just use al of the available bins
and give no complain. So to use every bin just make ibins a big
number (ie. 2000).

Expect to have to scale up the amplitudes by factorsof 10-100 by the
way.

Note 4:

When xyin is called the postion of the mouse within the output
window is used to reply to the request. This smple mechanism does
mean that only one xyin can be used accurately at once. The position
of themouse isreported in the output window

Note 5:

-H1 generatesa ‘rotating lin€' progressreport.

-H2 generatesa . everytime a buffer iswritten.

-H3 reportsthe size in seconds of the output.

-H4 soundsa bell for every buffer of the output written.

Note 6:

Expressions enclosed in square brackets [] are evaluated at read-time
for scores. This alows 4-function arithmetic and brackets (no unary
minus yet) on numbers and macros whose values are numbers. It can
be used with repeatsto change timing or dynamics.

Note 7:
al, a2 locsig adg, kdegree, kdistance, kreverbsend
al, a2, a3, a4 locsig adg, kdegree, kdistance, kreverbsend
al, a2 locsend
al,a2,a3,a4 locsend

DESCRIPTION

locsg takes an input signal and distributes it among 2 or 4 channdls
usng values in degrees to calculate the balance between adjacent
channels. It also takes arguments for distance (used to attenuate
signals that are to sound as if they are some distance further than the
loudspeaker itsdlf), and for the amount the signal that will be sent to
reverberators. This unit is based upon the example in the Charles
Dodge/ Thomas Jerse book, "Computer Music," page 320.

locsend depends upon the existence of a previoudy defined locsig.
The number of output signals must match the number in the previous
locsig. The output signals from locsend are derived from the values
given for distance and reverb in the locsig and are ready to be sent to
local or global reverb units (see example below). The reverb amount
and the balance between the 2 or 4 channels are calculated in the
sameway as described in the Dodge book (an essential text!).

PERFORMANCE
kdegree - value between 0 and 360 for placement of the signal ina 2

or 4 channe space configured as al=0, a2=90, a3=180, a4=270
(kdegree=45 would balanced the signal equally between al and a2).

locsg maps kdegree to sin and cos functions to derive the signal
balances (ie.: asig=1, kdegree=45, al=a2=.707).

kdistance - value >= 1 used to attenuate the signal and to calculate
reverb level to smulate distance cues. As kdistance gets larger the
sound should get softer and somewhat more reverberant (assuming
the use of locsend in this case).

kreverbsend - the percentage of the direct signal that will be factored
aong with the distance and degree values to derive signal amounts
that can be sent to areverb unit such asreverb, or reverb2.

EXAMPLE:

asig some audio signal

kdegreeline0, p3, 360

kdigtanceline 1, p3, 10

al, a2, a3, a4 locsg asig, kdegree, kdistance, .1
arl, ar2, ar3, ar4 locsend

gal = gal+arl
ga2 = gaz2+ar2
ga3 = ga3+ar3
gad = gad+ard

outq al, a2, a3, a4
endin

instr 99 ; reverb instrument

al reverb2 gal, 2.5, .
a2 reverb2 ga2, 2.5, .
a3 reverb2 ga3, 2.5, .
a4 reverb2 gad, 2.5, .

oo o

outq al, a2, a3, a4
gal=0
ga2=0
ga3=0
ga4=0

In the above example, the signal, asig, is sent around a complete
circle once during the duration of a note while at the same time it
becomes more and more "distant” from the listeners location. Locsig
sends the appropriate amount of the signal internally to locsend. The
outputs of the locsend are added to global accumulators in a common
Csound style and the global signals are used as inputs to the reverb
unitsin a separate instrument.

locsg is useful for quad and stereo panning as well as fixed placed of
sounds anywhere between two loudspeakers. Below is an example of
thefixed placement of soundsin astereofield.

instr 1

al, a2 locsg asig, p4, p5, .1
arl, ar2 locsend

gal=gal+arl
ga2=ga2+ar2
outsal, a2
endin

instr 99 ; reverb....
endin

A few notes

;place the sound in the | eft speaker and near

i10101

;place the sound in the right speaker and far

i1119025

;place the sound equally between left and right and in the middle
ground distance

1214512

e

86

The next example shows a smple intuitive use of the distance value
to smulate doppler shift. The same value is used to scae the
frequency asisused asthe distance input to locsig.

kdigtanceline 1, p3, 10

kfreg = (ifreq* 340) / (340 + kdistance)
asgoscili iamp, kfreq, 1
kdegreeline0, p3, 360

al, a2, a3, a4 locsg asig, kdegree, kdigtance, .1
arl, ar2, ar3, ar4 locsend

Note 8:

al, a2, a3, a4 space adig, ifn, ktime, kreverbsend [,kx, ky]
al, a2, a3, a4 spsend
k1 spdist ifn, ktime, [,kx, ky]

DESCRIPTION

space takes an input signal and digtributes it among 4 channels usng
cartesan xy coordinates to calculate the balance of the outputs. The
Xy coordinates can be defined in a separate text file and accessed
through a Function statement in the score using Gen28 (description
of Gen28 given below), or they can be specified using the optional
kx, ky arguments. There advantages to the former are: 1. A graphic
user interface can be used to draw and edit the trajectory through the
cartesan plane; 2. The file format is in the form timel X1 Y1 time2
X2 Y2 time3 X3 Y3 alowing the user to define a timetagged
trajectory. space then alows the user to specify a time pointer (much
as is used for pvoc, Ipread and some other units) to have detailed
control over thefinal speed of movement.

spsend depends upon the existence of a previoudy defined space.
The output signals from spsend are derived from the values given for
XY and reverb in the space and are ready to be sent to local or global
reverb units (see example below).

spdist uses the same xy data as space, also ether from a text file
usng Gen28 or from x and y arguments given to the unit directly.
The purpose of this unit is to make available the values for distance
that are calculated from the xy coordinates. In the case of space the
Xy values are used to determine a distance which is used to attenuate
the signal and prepare it for use in spsend. But it is also useful to
have these values for distance available to scale the frequency of the
signal beforeit is sent to the space unit.

PERFORMANCE

The configuration of the XY coordinates in space places the signal in
the following way: al is-1, 1; a2 is 1, 1; a3 is-1, -1; a4 is 1, -1. This
assumes a loudspeaker set up as al isleft front, a2 isright front, a3 is
left back, a4 is right back. Values greater than 1 will result in sounds
being attenuated as if in the distance. Space considers the speakers to
be at a distance of 1; smaller values of XY can be used, but space
will not amplify the signal in this case. It will, however balance the
signal so that it can sound as if it were within the 4 speaker space.
x=0, y=1, will place the sgnal equally balanced between left and
right front channels, x=y=0 will place the sgnal equaly in al 4
channels, and so on. Although there must be 4 output signal from
space, it can be used in a 2 channel orchestra. If the XY’'s are kept so
that Y>=1, it should work well to do panning and fixed localization
inagereofield.

ifn - number of the stored function created usng Gen28. This
function generator reads a text file which contains sets of three values
representing the xy coordinates and a time-tag for when the signal
should be placed at that location. The file should look like:

0 -1 1
1 1 1
2 4 4
21 -4 -4
3 10 -10
5 -40 0

If that file were named "move" then the Gen28 call in the score
would like:

f100 "move"

Gen28 takes 0 as the size and automatically allocates memory. It
creates values to 10 milliseconds of resolution. So in this case there
will be 500 values created by interpolating X1 to X2 to X3 and so on,
and Y1 to Y2 to Y3 and so on, over the appropriate number of values
that are stored in the function table. In the above example, the sound
will begin in the left front, over 1 second it will move to the right
front, over another second it move further into the distance but till in
the left front, then in just 1/10th of a second it moves to the left rear,
a bit digtant. Finally over the last .9 seconds the sound will move to
the right rear, moderately distant, and it comes to rest between the
two left channels (due west!), quite distant. Since the values in the
table are accessed through the use of a time-ponter in the space unit,
the actual timing can be made to follow the file's timing exactly or it
can be made to go faster or dower through the same trgjectory. If you
have access to the GUI that allows one to draw and edit the files,
there is no need to create the text files manually. But as long as the
file is ASCII and in the format shown above, it doesn’'t matter how it
ismadel IMPORTANT: If ifn is O then space will take its values for
thexy coordinatesfrom kx and ky.

ktime - index into the table containing the xy coordinates. If used
like:

ktimelineO, 5,5
al, a2, a3, a4 space adig, 1, ktime, ...

with the file "move" described above, the speed of the signd’s
movement will be exactly as desribed in that file. However:

ktimeline0, 10, 5
thesignal will move at half the speed specified. Or in the case of:
ktimeline5, 15, 0

the sgnal will move in the reverse direction as specified and 3 times
dower! Finaly:

ktimeline 2, 10, 3

will cause the signal to move only from the place specified in line 3
of the text file to the place specified in line 5 of the text file, and it
will take 10 secondsto doit.

kreverbsend - the percentage of the direct signal that will be factored
aong with the distance as derived from the XY coordinates to
calculate sgnal amounts that can be sent to reverb units such as
reverb, or reverb2.

kx, ky - when ifn is 0, space and spdist will use these values as the
XY coordinates to localize the signal. They are optional and both
default to 0.

EXAMPLE:

asig some audio signal

ktimeline 0, p3, p10

al, a2, a3, a4 aceasig, 1, ktime, .1
arl, ar2, ar3, ar4 spsend

gal = gal+arl
ga2 = ga2+ar2
ga3 = ga3+ar3
gad = gad+ard

outq al, a2, a3, a4
endin

instr 99 ; reverb instrument

al reverb2 gal, 2.5, .5
a2 reverb2 ga2, 2.5, .5

87

a3 reverb2 ga3, 2.5, .5
ad reverb2 ga4, 2.5, .5

outqal, a2, a3, a4
gal=0
ga2=0
ga3=0
ga4=0

In the above example, the Sgnal, asig, is moved according to the data
in Function #1 indexed by ktime. space sends the appropriate amount
of the signa internally to spsend. The outputs of the spsend are
added to global accumulators in a common Csound style and the
global sgnals are used as inputs to the reverb units in a separate
instrument.

space can useful for quad and stereo panning as well as fixed placed
of sounds anywhere between two loudspeakers. Below is an example
of the fixed placement of sounds in a stereo field using XY values
from the score instead of afunction table.

ingtr 1

al, a2, a3, a4 aceasg, 0, 0, .1, p4, p5
arl, ar2, ar3, ar4 spsend

gal=gal+arl
ga2=ga2+ar2
outsal, a2
endin

instr 99 ; reverb....
endin

A few notes: p4 and p5 arethe X and Y values

;place the sound in the | eft speaker and near

i101-11

;place the sound in the right speaker and far

1114545

;place the sound equally between left and right and in the middle
ground distance

i121012

e

The next example shows a smple intuitive use of the distance values
returned by spdist to smulate doppler shift.

ktimelineO, p3, 10

kdist spdist 1, ktime

kfreq = (ifreq* 340) / (340 + kdist)
asgoscili iamp, kfreq, 1

al, a2, a3, ad space asg, 1, ktime, .1
arl, ar2, ar3, ar4 spsend

The same function and time values are used for both spdist and
space. This insures that the distance values used internally in the
space unit will be the same as those returned by spdist to give the
impression of adoppler shift!

Release Notes for 3.49

These are the release notes for verson 3.49, which is a large
collection of bug-fixes and new code. These notes should be read in
conjunction with earlier release notes. Note that this incorporates all
changes since 3.48, including sub-rel eases.

Language Changes

-J option sdlects IRCAM format in the samewas as -W and -A

Improved diagnostics in orchestra reading

b opcode in score to reset the clock

Increase number of argumentsto about 800 (till not dynamic)
Improved recognition of # at start of line

Stop redrawing of graphs in some circumstances

strset now works, and unlimited in number; can neused in pv, Ipc,
adsyn amd convolve cases aswell.

Removed a large number of 'namespace polution' opcodes to other
names
e itableisnow table
kgaussisnow gauss
ktableseg and ktablexseg renamed as tableseg
and tablexseg
Use of large instrument numbers now correct
Corrected use of [] in scores
Freed space problem in GEN20
Digitsallowed in macros names except at start
-z option does not report internal opcodes
AIFC supported at least for floats
Included filesin orchestra us a pathname look-up
v opcode in scoresfor local textual varying of time
Allow Mac, Unix or PC files to be read on other platforms
Ouput filenull is thrown away (ie no sound file generated)
MIDI control message PROGRAM_TY PE recognised
Rewrite us of \ asline continuation in orchestra
New ramp functions in score introduced by { and } give ramps
driven by

expon rather than line

The ramp function ~ givesa random value (uniform distribution) in
range on theramp

Opcode Fixes

Internal bug in cross2 fixed which could confuse a second note
wgfluteimproved so asnot to reinitialise so much

diskin and soundin fixed a little

aftertouch had wrong arguments

shaker has argument removed which was not used

Skipinitialisation in physical model instrumentsif lowest frequency
isnegative (for legato sounds)

Argumentsto specptrk and specdisp now agree with manual

envlpr codeincluded -- omitted by mistake earlier

dcblockr -- DC Blocking filter
flanger -- asit says

lowres, lowresx and vlowres -- lowpass resonent filters

88

tonex atonex resonx -- more multiplefilters
spectrum -- calculate w variables

mirror, wrap -- actions on large amplitudes
ntrpol -- interpolation

trigger -- trigger events

ftsr -- samplerate of a f-table

waguidel, wguide2 -- primitive wave guides
GEN23 -- read a table of numbers

adsr and madsr -- classical ADSR envelope
biquad -- a new filter

moogvcf -- another one

rezzy -- and another

Other Changes:

Solarisaudio corrected
Bug in line eventsfor scorefixed

voscili opcode removed as did not work well and the functionality
exigtselsewhere

Scot removed

Windows GUI Changes

Made buffer sizesin extras window independednt and remembered
Stop redrawing of graphs

OK button renamed Render

Remove referencesto Pedal

Added project button to set orc/sco/wav in one go

Experimental control opcodeswith non-MIDI diders

==John ff
1998 Oct 18

dcblockr

aout dcblockr ain[, igain]

INITIALISATION

igain -- the gain of teh filter, which defaultsto 0.99
PERFORMANCE

Implementsthe DC blocking filter

YIi] = X[i] - X[i-1] + (igain* Y[i=1])
Thisisdueto P.Cook, and coded by JPff

flanger
ar flanger asig, adel, kfeedback, imaxd
DESCRIPTION

auser controlled flanger
INITALIZATION

imaxd - maximum delay in seconds (needed for inital memory
alocation)

PERFORMANCE

ar - output signal
asig - input sgnal
adel - delay in seconds
kfeedback - feedback amount (in normal tasks this should not exceed
1,
even if bigger valuesare allowed)

This unit is useful for generating chourses and flangers. The delay
mugt be varied at a-rate connecting adel to an oscillator output. Also
thefeedback can vary at k-rate. Thisopcodeisimplemented to allow
kr different than s (else delay could not be lower than ksmps)
enhancing realtime performance. (BtW: this unit is very smilar to
wguidel, the only difference is flanger does not have the lowpass
filter.).

lowres, lowresx

ar lowres asg, keutoff, kresonance [,istor]
ar lowresx asig, keutoff, kresonance [, inumlayer, istor]
DESCRIPTION

lowresisa resonant lowpassfilter.
lowresx is equivalent to more layer of
arguments, serially connected.

lowres, with the same

INITIALIZATION

inumlayer - number of elements of lowresx stack. Default value is 4.
Thereisno maximum.

istor - initial disposition of internal data space.

A zero value will clear the space; a non-zero value will alow
previousinformation to remain. The default valueisO.

PERFORMANCE

ar - output signal

asg - input signal

keutoff - filter cutoff frequency point
kresonance - resonance amount

lowres is a resonant lowpass filter derived from a Hans Mikelsons
orchestra. This implementation is very much faster than
implementing it in Csound language, and it allows kr lower than <.
keutoff is not in cps and kresonance is not in dB, so experiment for
finding best results.

lowresx is equivalent to more layer of lowres, with the same
arguments, serially connected. Using a stack of more filters alows a
sharper fregency cutoff. It is very faster than using more lowres
ingtances in Csound orchestra, because only one initialization and 'k’
cycle are needed at time, and the audio loop falls enterely insde the
cache memory of processor.

viowres

ar viowres adg, kfco, kres, iord, ksep;

89

DESCRIPTION

a bank of filters in which fregency cutoff can be separated under user
control

INITIALIZATION
iord - total nuber of filter (1 to 10)
PERFORMANCE

ar - output signal

asig - input sgnal

kfco - frequency cutoff (not in cps)

ksep - frequency cutoff separation for each filter

vliowres (variable resonant lowpass filter) allow a variable response
curve in resonant filters. It can be thinked as a bank of lowpass
resonant filters with the same resonance, serially connected. The
frequency cutoff of each filter can vary with the kcutoff and ksep
parameters.

tonex atonex resonx

ar tonex asig, khp[, inumlayer, istor]
ar atonex adg, khp[, inumalayer, istor]
ar resonx asg, kcf, kbw[, inumlayer, iscl, istor]

INITALIZATION
inumlayer - number of elements of filter stack. Default valueis 4.

isg - someastone, atone and reson
istor - some astone, atone and reson
iscl - some asreson

PERFORMANCE

ar - output signal
asg-input sgnal

khp - some astone, atone
kcf - someasreson

kbw - some asreson

tonex, atonex and resonx are equivalent to more layer of tone, atone
and reson, with the same arguments, serially connected. Using a
stack of more filters allows a sharper frequency cutoff. They are very
faster than using more instances in Csound orchestra of old opcodes,
because only one initialization and 'k’ cycle are needed at time, and
the audio loop fallsenterely inside the cache memory of processor.

spectrum
wsig spectrum xgg, iprd, iocts, ifrgs, iq[,ihann, idbout, idsprd,
idgnrg]

Generate a congtant-Q, exponentially-spaced DFT across a octaves
of amultiply-downsampled control or audio input signal.
INITIALIZATION

ihann (optional) - apply a hamming or hanning window to the input.
The default is 0 (hamming window)

idbout (optional) - coded converson of the DFT output: 0 =
magnitude, 1 = dB, 2 = mag squared, 3 = root magnitude. The
default valueis O (magnitude).

idisprd (optional) - if non-zero, display the composite downsampling
buffer every idisprd seconds. The default valueisO (no display).

idsnes (optional) - if non-zero, display the hamming or hanning
windowed sinusoids used in DFT filtering. The default valueisO (no

sinusoid display).
PERFORMANCE

This unit firgt puts signal asg or ksig through iocts of successve
octave decimation and downsampling, and preserves a buffer of
down-sampled values in each octave (optionaly displayed as a
composite buffer every idisprd seconds). Then at every iprd seconds,
the preserved samples are passed through a filter bank (ifrgs parallel
filters per octave, exponentially spaced, with frequency/bandwidth Q
of ig), and the output magnitudes optionally converted (idbout) to
produce a band-limited spectrum that can be read by other units.

The sages in this process are computationally intensive, and
computation time varies directly with iocts, ifrgs, iq, and inversdy
with iprd. Settings of ifrgs = 12, iq = 10, idbout = 3, and iprd = .02
will normally be adequate, but experimentation is encouraged.

ifrgs currently has a maximum of 120 divisons per octave. For
audio input, the frequency bins are tuned to coincide with A440.

This unit produces a sdf-defining spectral datablock wsig, whose
characteritics used (iprd, iocts, ifrgs, idbout) are passed via the data
block itself to all derivative wdgs. There can be any number of
spectrum units in an instrument or orchestra, but all wsig hames must
be unique.

Example:

adg in
wsg spectrum asig,.02,6,12,33,0,1,1

; et external audio

; downsamplein 6 octs
;& calca72 pt

; dft (Q 33, dB out) every 20 msecs

mirror, wrap --

idest wrap idg, ilow, ihigh
kdest wrap ksg, klow, khigh
adest wrap asig, klow, khigh
idest mirror idg, ilow, ihigh
kdest mirror ksg, klow, khigh
adest mirror asg, klow, khigh
DESCRIPTION

Wraps the signal in various ways (smilar to limit opcode by Robin
Whittle).

INITIALIZATION - PERFORMANCE

xdest - output signal
Xsg - inputignal
xlow - low threshold
xhigh - high threshold

mirror "reflects' the Sgnal that exceeds low and high thresholds.
wrap wraps-around the signal that exceeds low and high thresholds.

These opcodes are useful in several stuations, such as for table
indexing and for clipping and modeling irate, krate or arate sgnals.
wrap is also useful for wrapping-around tables data when maximum
index isnot a power of two (see table and tablei).

Another use of wrap isin cyclical event repeating with arbirary cycle
length.

ntrpol

ir ntrpol isigl, iSg2, ipoint [, imin, imax]

kr ntrpol ksgl, ksig2, kpoint [, imin, imax]
ar ntrpol asgl, asg2, kpoint [, imin, imax]
DESCRIPTION

calculates the weighted mean value (i.e. linear interpolation) of two
input sgnals

90

INITALIZATION
imin - minimum xpoint value (optional, default 0)
imax - maximum xpoint value (optional, default 1)

PERFORMANCE

Xr - output signal

xsgl, x9g2 - input Sgnals

Xpoint - interpolation point beetween the two values

nterpol opcode outputs the linear interpolation beetween two input
values. xpoint is the distance of evaluation point from the first value.
With the default values of imin and imax, (0 and 1) a zero value
indicates no distance from the first value and the maximum distance
from the second one. With a 0.5 ntrpol value will output the mean
value of the two inputs, indicating the exact half point between xsgl
and xsg2. A 1 value indicates the maximum distance from the first
value and no distance from the second one.

The range of xpoint can be also defined with imin and imax to make
easer its management.

These opcodes are useful for crossfading two signals.

trigger
kout trigger kdg, kthreshold, kmode
DESCRIPTION

informswhen a krate signal crossesa threshold

PERFORMANCE

kout - output signal (a stream of zeroeswith some 1)
ksg - input signal

kthreshold - trigger threshold

kmode-canbe 0, 1or 2

Normally trigger outputs zeroes. only each time ksg crosses
kthreshold 'trig outputsa 1. There are three modes of using ktrig:
kmode = 0 - (down-up) ktrig outputs a 1 when current value of ksig
is higher than kthreshold while old value of ksig was equal or lower
than kthreshold

kmode = 1 - (up-down) ktrig outputs a 1 when current value of ksig
is lower than kthreshold while old value of ksig was equal or higher
than kthreshold

kmode = 2 - (both) ktrig outputs a 1 in both the two previous cases.

ftsr(x)
DESCRIPTION

this function returns the sampling-rate of a GENO1 or GEN22
generated table. The sampling-rate is determined from the header of
the original file. If the original file has no header, or the table was not
created by these two GENSsftsr returns 0.

wguidel, wguide2

DESCRIPTION

simple waveguide blocks

ar wguidel asg, kfreg, keutoff, kfeedback;

ar wguide2 adg, kfregql, kfreg2, keutoffl, keutoff2,

kfeedback1, kfeedback?2
PERFORMANCE

wguidel is the most elemental waveguide model consisting of one
delay line and onefirst-order lowpassfilter.

wguide? is a model of beaten plate conssting of two parallel delay
lines and two firgt-order lowpass filters. The two feedabak lines are
mixed and sent to the delay again each cycle.

adg is the input of excitation noise, kfreq the frequency (i.e. the
inverse of delay time), kcutoff is the filter cutoff frequency in Hz and
kfeedback isthe feedback factor.

Implementing waveguide algoritms as opcodes, instead of as orc
ingtr, allowsthe user to set kr different than sr, alowing better
performance particulary when using real -time.

GEN23
This subroutine reads numeric valuesfrom an external acii file
f# time sze-23 "filename.txt"

The numeric values contained in "filename.txt" (which indicates the
complete pathname of the character file to be read), can be separated
by spaces, tabs, newline characters or commas. Also words that
contains non-numeric characters can be used as comments since they
areignored.

All characters following ;' (comment) are ignored until next line
(numberstoo).

adsr, madsr

kr adsr iatt, idec, idev, irdl[, idelay]
ar adsr iatt, idec, idev, irel[, idelay]
DESCRIPTION

Calculatesthe classical ADSR envelope
INITALIZATION

iatt - duration of attack phase

idec - duration of decay

idev - level for sugtain phase

irel - duration of release phase

idel - period of zero before the envelope starts

PERFORMANCE
The envelopeisthe range 0 to 1 and may need to be scaled further.

Thelength of the sustain is calculated from then length of the note.

This means ads is not suitable for use with MIDI events. The
opcode madsr uses the linsegr mechanism and so can be used in
MIDI applications

Sweepable Filters
ar biquad asig, kb0, kb1, kb2, ka0, kal, ka2
arrezzy asg, kfco, kres
ar moogvcf asg, kfco, kres

Implementation of a sweepable general purpose filter and two
sweepabl e resonant low-passfilters.

PERFORMANCE
biquad isa general purpose biquadratic digital filter of the form:
a0*y(n) + al*y[n-1] + a2*y[n-2] = bO*x[n] + b1*x[n-1] + b2*x[n-2]

Thistype of filter is often encountered in digitd signal processing
literature. It allowssix user defined k-rate coefficients.

rezzy is a resonant low-pass filter created empirically by Hans
Mikelson.

kfco isthefilter cut-off frequency in Hz

kresisthe amount of resonance. Valuesof 1 to 100 are
typical. Resonance should be one or greater.

91

moogvcf is a digital emulation of the Moog diode ladder filter
configuration. This emulation is based loosdly on the paper
"Analyzing the Moog VCF with Condderations for Digital
Implemnetation” by Stilson and Smith (CCRMA). This version was
originally coded in Csound by Josep Comauncosas. Some
modificationsand conversion to C were done by Hans Mike son.

Note: Thisfilter requires that the input signal be normalized to one.
kfco isthefilter cut-off frequency in Hz.

kresisthe amount of resonance with self oscillation occurring when
kresisapproximately one.

Examples

;biquad example

kfcon = 2+3.14159265*kfco/sr

kalpha = 1-
2*krez* coy kfcon)* cog(kfcon)+krez*krez* cos(2*kfcon)

kbeta = krez*krez*sin(2*kfcon)-2*krez* cog(kfcon)*sin(kfcon)
kgama = 1+cos(kfcon)

kml = kalpha*kgamatkbeta* sin(kfcon)

km2 = kalpha*kgamakbeta*sn(kfcon)

kden = grt(kml*kml+km2*km?2)

kb0 = 1.5*(kalpha*kalphatkbeta*kbeta)/kden
kbl = kbO

kb2 = 0

kaO = 1

kal = -2*krez*cogkfcon)

ka2 = krez*krez

ayn biquad axn, kb0, kb1, kb2, ka0, kal, ka2

outs ayn*iamp/2, ayn*iamp/2

; Sta Dur Amp Pitch Fco Rez
i148.0 1.0 20000 6.00 1000 .8
i14+ 1.0 20000 6.03 2000 .95

;rezzy example

kfco expseg 100+.01*ifco, .2*idur, ifco+100, .5*idur, ifco*.1+100,
.3*idur, .001*ifco+100

apulsel buzz 1,ifqc, sr/2/ifqe, 1; Avoid aliasing

asaw integ apulsel
axn = asaw-5
ayn rezzy axn, kfco, krez

outs ayn*iamp, ayn*iamp

; Sta Dur Amp Pitch Fco Rez
i10 0.0 1.0 20000 6.00 1000 2
i10 + 1.0 20000 6.03 2000 10

;moogvcf example
apulsel buzz 1,ifqc, sr/2ifac, 1 ; Avoid aliasng
asaw integ apulsel
ax = asaw-5
ayn moogvcf ax, kfco, krez
outs ayn*iamp, ayn*iamp

; Sta Dur Amp Pitch Fco Rez
i11 4.0 1.0 20000 6.00 1000 .4
i11 + 1.0 20000 6.03 2000 .7
Author

HansMikelson

October 1998

Release Notes for 3.493

These are the release notes for version 3.493, which will eventually
becone 3.50

Bug Fixes

Pow now available again.
Internal changesto parser to make fewer calls to stremp
Correctionsto rand in a-rate case and 16 bit randoms

Language Changes

hetro had awrong constant which would give rise to alittle noise.

If the incorrect out opcode is used it now attempts to correct to the
correct one, which isnot necessarily correct.

new names dumpk rather than kdump introduced.

kon renamed midion

kfilter2 renamed filter2 (still not sureit worksthough)

The opcodes rand randi and randh take an additional, optional
argument which if non zero gives a 31bit random nuber rather than

the 16bit one.

Rising to a power isavailable in expressonswith the operator.
use with some caution as | am not sure that the precidenceis correct.

Aninternal changes has changed the conditional compilation flag for
the Ingalls port from _ MWERKS__ to macintosh; this should help
the BeOS port.

Opcode Fixes

sndwarp had bugs on Linux

ramnd, randh and randi now take an additional operand, which if
non-zero use a better randon number generator

bug in ntrpol fixed

MIDI on Linux may work.

schedule -- schedule an instrument event
schedwhen -- conditional scheduling

Ifo -- Low Frequency Oscilator with 6 shapes
midion2 -- MIDI turnon (G.Maldonado)
midiin -- (G.Maldonado)

midiout -- (G.Maldonado)

nrpn -- (G.Maldonado)

cpstmid -- (G.Madonado)

streson -- string resonator (V.Lazzarini)

Other Changes:

==John ff
1998 Nov 1

schedule, schedwhen

schedule ing, iwhen, idur, ...
schedwhen ktrigger, kingt, kwhen, kdur,

PERFORMANCE

schedule adds a new score event. The arguments arethesame asin a
score. Thewhen time (p2) is measured from the time of thisevent.

If the duration is zero or negative the new event is of MIDI type, and
inherits the release sub-event from the scheduling ingtruction.

In the case of schedwhen the event is only scheduled when the krate
valuektrigger isfirst non-zero.

Examples:

;; Double hit and 1sec separation

instr 1
schedule 2, 1,05,p4,p5

al shaker p4, 60, 0.999, 0, 100, O
out al

endin

instr 2

al marimba p4, cpspeh(ps), p6, p7, 2, 6.0, 0.05, 1, 0.1
out al

endin

ingtr 3
kr table kr, 1

schedwhen kr, 1,0.25, 1, p4, p5
endin

Ifo

kr Ifo
ar Ifo

kamp, kepd, itype]
kamp, kepd, itype]

DESCRIPTION
A LFO of various shapes
INITALIZATION

itype -- determine the form of the oscilator
(default) O: sine

. triangles

: square (biplar)

. square (unipolar)

: saw-tooth

. saw-tooth(down)

AR WN P

The sinewave isimplemented asa 4096 table and linear
interpolation. The othersare calcul ated.

PERFORMANCE

ar, kr - output signal
kamp - amplitude
keps - frequency of oscilator

EXAMPLE:

ingtr 1

kp Ifo 10,5,4

ar oscil p4, p5+kp, 1
out ar

endin

minion2

93

midion2 kchn, knum, kvel, ktrig
DESCRIPTION

sends note on and off messages to the midi out port when triggered
by a value different than zero.

PERFORMANCE

kechn - midi channel

knum - midi note number

kvel - note velocity

ktrig - trigger input signal (normally 0)

Similary to 'midion’, this opcode sends note-on and note-off
messages to the midi out port, but only when ktrig is different than
zero. This opcode is thinked to work toghether with the output of the

‘trigger' opcode.
(G.Maldonado)

pctrlinit

(G.Maldonado)

dpctrlinit

(G.Maldonado)

midiin

kstatus, kchan, kdatal, kdata2 midiin
DESCRIPTION
returns a generic midi message received by the midi in port

PERFORMANCE
kstatus - the type of midi message. Can be:
128 (note off),
144 (note on),
160 (polyphonic aftertouch),
176 (control change),
192 (program change),
208 (channel aftertouch),
224 (pitch bend)
or 0if no midi message are pending in theMIDI IN buffer.

kchan - midi channel (1-16)
kdatal, kdata2 - message-dependent data values

midiin has no input arguments, because it reads at the midi in port
implicitly. It works at k-rate. Normally (i.e. when no messages are
pending) kstatus is zero, only each time midi data are present in the
midi in buffer, kstatusis set to the type of the relative messages.

(G.Maldonado)

midiout

midiout kstatus, kchan, kdatal, kdata2
DESCRIPTION
sends a generic midi message to the midi out port

PERFORMANCE
kstatus - the type of midi message. Can be:
128 (note off),
144 (note on),
160 (polyphonic aftertouch),
T6 (control change),
192 (program change),
208 (channel aftertouch),
224 (pitch bend)
or 0 when no midi messages must be sent to the MIDI
OUT port.

kchan - midi channel (1-16)
kdatal, kdata2 - message-dependent data values

midiout has not output arguments, because it sends the message to
the midi out port implicitly. It works at k-rate. It sends a midi
message only when kstatusis different than zero.

Warning! Normally kstatus should be set to 0, only when the user
intend to send a midi message, it can be set to the corresponding
message type number.

(G.Maldonado)

nrpn
nrpn kchan, kparmnum, kparmvalue
DESCRIPTION

sends a nprn (Non Registered Parameter Number) message to the
midi out port each time one of the input arguments changes.

PERFORMANCE

kchan - midi channel
kparmnum - number of NRPN parameter
kparmvalue - value of NRPN parameter

This opcode sends new message when the MIDI trandated value of
one of the input arguments changes. It operates at k-rate. Useful with
the midi instruments that recognize NRPNs (for example with the
newest sound-cards with internal midi syntheszer such as SB
AWE32, AWE64, GUS etc. in which each patch parameter can be
changed during the performance via NRPN)

(G.Maldonado)

cpstmid
icps cpstmid ifn
INITIALIZATION

ifn - function table containing the parameters
(numgrades, interval, basefreg, basekeymidi) and
the tuning ratios.

(init rate only)

This unit is smilar to cpamidi, but alows fully customized micro-
tuning scales. It requires five parameters, the first ifn is the function
table number of the tuning ratios, and the other parameters must be
stored in the function tables itself. The function table ifn should be
generated by the GEN2 and the first four values stored in this
function are: numgrades (the number of grades of the micro-tuning
scale), interval (the frequency range covered before repeeting the
grade ratios, for example 2 for one octave, 1.5 for a fift etcetera),
basefreq (the base frequency of the scale in cps), basekeymidi (the
midi-note-number to which to assign the bassfreq unmodified).

After these four values, the user can begin to insert the tuning ratios.
For example, for a standard 12-grade scale with the base-frequency
of 261 cps assgned to the key-number 60, the corresponding f-
statement in the score to generate the table should be:

; numgrades basefreq tuning-ratios (eg.temp)

; interval basekeymidi

f1064-2122 261 60 1 1.059463094359 1.122462048309
1.189207115003 ..€tc...

Another example with a 24-grade scale with a base frequency of 440
assgned to the key-number 48, and a repetition interval of 1.5:

94

; numgrades basefreq tuningratios.......
; interval basekeymidi
f1064-2 24 15 440 48 1 1.01 1.02 1.03 ..etc...

(G.Maldonado)

ar streson asig, kfr, ifdbgain

An audio sgnal is modified by an string resonator with variable
fundamental frequency.

INITIALIZATION

ifdbgain - feedback gain, between 0 and 1, of the internal delay line.
A value close to 1 creates a dower decay and a more pronounced
resonance. Small values may leave the input signal unaffected.
Depending on thefilter frequency, typical values are > .9.

PERFORMANCE

streson passes the input asig through a network composed of comb,
low-pass and all-pass filters, smilar to the one used in some versons
of the Karplus-Strong algorythm, creating a string resonator effect.
The fundamental frequency of the "string” is controled by the k-rate
variable kfr.This opcode can be used to sSmulate sympathetic
resonancesto an input sgnal.

streson is an adaptation of the StringFIt object of the SndObj Sound
Object Library developed by the author.

Victor Lazzarini

Music Department

National University of Ireland, Maynooth
Maynooth Co.Kildare

Irdland

Release Notes for 3.50

These are the release notes for verson 3.50. This accumulates a
number of changes which have been released in bits, but there are
even more here than previoudly released.

It incorporates significant bodies of code from Gabried Maldonado
and hans Mikelson, with contributions from Richard Boulanger,
V.Lazzarini, Greg Sulliven, rasmus ekman, matt ingalls, Ed Hall, and
many others who assisted in identifying bugs etc. (I realy should
maintain records of them all, but they know who they are | hope).

Bug Fixes

Pow now available again.

Internal changesto parser to make fewer calls to stremp
Correctionsto rand in a-rate case and 16 bit randoms
Two bugsin extending |abels and goto tables corrected
Minor bug in extending instrument numbersfixed

Language Changes

hetro had awrong constant which would give rise to alittle noise.

If theincorrect out opcodeis used it now attemptsto correct to the
correct one, which isnot necessarily correct.

new names dumpk rather than kdump introduced.
kon renamed midion

kfilter2 renamed filter2 (still not sureit worksthough)

The opcodes rand randi and randh teke an additional, optional
argument which if non zero gives a 31bit random nuber rather than
the 16bit one.

Rising to a power isavailable in expressonswith the operator.
use with some caution as | am not sure that the precidence is correct.

Aninternal changes has changed the conditional compilation flag for
the Ingalls port from _ MWERKS__ to macintosh; this should help
the BeOS port.

Thesinglefile .csd input has been extended for all command-line
versons, and possibly for Windows. It can not decode additional
parameters.

Id a file .csoundrc exigts, it is read to set parameters firgt, which can
be overridden. It used the .csd form so options are written as on the
command line, with optional newlines at appropriate places. It does
not set orc/sco names (asfar asi can understand it)

Opcode Fixes

sndwarp had bugs on Linux

rand, randh and randi now take an additional operand, which if non-
zero use a better randon number generator

bug in ntrpol fixed
MIDI on Linux may work, or may not....
Many changesto the pitchbend opcodes

moogvcf and rezzy can accept a-rate parameters, and moogvcf takes
an optional scaling factor

foscil/foscili can take a-rate amplitude and frequency

biquad has an additional optional argument, which if non zero skips
initialisation.

schedule -- schedule an instrument event
schedwhen -- conditional scheduling

Ifo -- Low Frequency Oscilator with 6 shapes
midion2 -- MIDI turnon (G.Maldonado)
midiin -- (G.Madonado)

midiout -- (G.Maldonado)

nrpn -- (G.Maldonado)

cpstmid -- (G.Madonado)

streson -- string resonator (V.Lazzarini)

mod opcodes -- to complete arithmetic operations
dider8, dider8f, idider8

dider16, dider16f, idider16

dider32, dider32f, idider32

dider64, dider64f, idider64

sl6éb14, islébld, s32b14,
(G.Maldonado)

is32b14 - MIDI dider controls

vco -- (Hans Mikel son)

planet -- (Hans Mikelson)

digortl -- (Hans Mikel son)

pareq -- Implementation of Zoezer's Parmentric Equalizer Filters
(HansMikelson)

deltapn -- (Hans Mikelson)

Experimental opcodes:

ocil3 -- Just like oscili but with cubic interpolation
foscil3

losil3

table3

itable3

deltap3
vdelay3

Other Changes:

use of kdump or kon, while till alowed gives a message about
deprecated opcodes.

Windows GUI Changes

Nonei think

==John ff
1999 Orthodox Christmas

schedule, schedwhen

schedule ing, iwhen, idur,
schedwhen ktrigger, kingt, kwhen, kdur,
PERFORMANCE

schedule adds a new score event. The arguments are thesame asina
score. Thewhen time (p2) is measured from the time of thisevent.

If the duration is zero or negative the new event isof MIDI type, and
inherits the release sub-event from the scheduling instruction.

In the case of schedwhen the event is only scheduled when the krate
valuektrigger isfirst non-zero.

Examples:

;; Double hit and 1sec separation

instr 1
schedule 2, 1,05,p4,p5

al shaker p4, 60, 0.999, 0, 100, 0
out al

endin

instr 2
al marimba p4, cpspeh(ps), p6, p7, 2, 6.0, 0.05, 1, 0.1
out al

endin
ingtr 3
kr table kr,1
schedwhen kr, 1,0.25, 1, p4, p5
endin
Ifo
kr Ifo kamp, kepd, itype]
ar Ifo kamp, kepd, itype]
DESCRIPTION

95

A LFO of various shapes
INITALIZATION

itype -- determine the form of the oscilator
(default) O: sine

: triangles

: sguare (biplar)

: sguare (unipolar)

: saw-tooth

: saw-tooth(down)

GO WNBRE

The sne wave is implemented as a 4096 table and linear
interpolation. The othersare calculated.

PERFORMANCE
ar, kr - output signal

kamp - amplitude
keps - frequency of oscilator

EXAMPLE:

ingtr 1

kp Ifo 10,5,4

ar oscil p4, p5+kp, 1
out ar

endin

minion2

midion2 kchn, knum, kvel, ktrig
DESCRIPTION

sends note on and off messages to the midi out port when triggered
by a value different than zero.

PERFORMANCE

kechn - midi channel

knum - midi note number

kvel - note velocity

ktrig - trigger input signal (normally 0)

Similary to 'midion’, this opcode sends note-on and note-off
messages to the midi out port, but only when ktrig is different than
zero. This opcode is thinked to work toghether with the output of the

'trigger' opcode.
(G.Maldonado)

midiin
kstatus, kchan, kdatal, kdata2 midiin

DESCRIPTION
returns a generic midi message received by the midi in port

PERFORMANCE
kstatus - the type of midi message. Can be:
128 (note off),
144 (note on),
160 (polyphonic aftertouch),
176 (control change),
192 (program change),
208 (channel aftertouch),
224 (pitch bend)
or 0if nomidi message are pending inthe MIDI IN buffer.

kchan - midi channel (1-16)
kdatal, kdata2 - message-dependent data values

96

midiin has no input arguments, because it reads at the midi in port
implicitly. It works at k-rate. Normally (i.e. when no messages are
pending) kstatus is zero, only each time midi data are present in the
midi in buffer, kstatusis set to the type of the relative messages.

(G.Maldonado)

midiout

midiout kdtatus, kchan, kdatal, kdata2
DESCRIPTION
sends a generic midi message to the midi out port

PERFORMANCE
kstatus - the type of midi message. Can be:
128 (note off),
144 (note on),
160 (polyphonic aftertouch),
176 (control change),
192 (program change),
208 (channel aftertouch),
224 (pitch bend)
or 0 whennomidi messages must be sent to the MIDI
OUT port.
kchan - midi channel (1-16)
kdatal, kdata2 - message-dependent data values

midiout has not output arguments, because it sends the message to
the midi out port implicitly. It works at k-rate. It sends a midi
message only when kstatus is different than zero.

Warning! Normally kstatus should be set to 0, only when the user
intend to send a midi message, it can be set to the corresponding

message type number.
(G.Maldonado)

nrpn
nrpn kchan, kparmnum, kparmvalue
DESCRIPTION

sends a nprn (Non Registered Parameter Number) message to the
midi out port each time one of theinput arguments changes.

PERFORMANCE

kchan - midi channel
kparmnum - number of NRPN parameter
kparmvalue - value of NRPN parameter

This opcode sends new message when the MIDI trandated value of
one of the input arguments changes. It operates at k-rate. Useful with
the midi instruments that recognize NRPNs (for example with the
newest sound-cards with internal midi syntheszer such as SB
AWE32, AWE64, GUS etc. in which each patch parameter can be
changed during the performance via NRPN)

(G.Maldonado)

cpstmid

icps cpstmid ifn

INITIALIZATION

ifn - function table containing the parameters
(numgrades, interval, basefreg, basekeymidi) and
thetuning ratios.

(init rate only)

This unit is smilar to cpamidi, but alows fully customized micro-
tuning scales. It requires five parameters, the first ifn is the function
table number of the tuning ratios, and the other parameters must be
stored in the function tables itsalf. The function table ifn should be
generated by the GEN2 and the first four values stored in this
function are: numgrades (the number of grades of the micro-tuning
scale), interval (the frequency range covered before repeeting the
grade ratios, for example 2 for one octave, 1.5 for a fift etcetera),
basefreq (the base frequency of the scale in cps), basekeymidi (the
midi-note-number to which to assign the basefreq unmodified).

After these four values, the user can begin to insert the tuning ratios.
For example, for a standard 12-grade scale with the base-frequency
of 261 cps assgned to the key-number 60, the corresponding f-
statement in the score to generate the table should be:

; numgrades basefreq

; nterval basekeymidi
f1064-2122 261 60 1 1.059463094359 1.122462048309
1.189207115003 ..€tc...

tuningratios (eg.temp) ..

Another example with a 24-grade scale with a base frequency
of 440 assigned to the key-number 48, and a repetition interval of
1.5:

; numgrades basefreq tuningratios.......
; interval basekeymidi
f1064-2 24 15 440 48 1 1.01 102 1.03 ..etc...

(G.Maldonado)

ar streson asig, kfr, ifdbgain

An audio signal ismodified by an string resonator with varigble
fundamental frequency.

INITIALIZATION

ifdbgain - feedback gain, between O and 1, of the interna
delay line. A value close to 1 creates a dower decay and a more
pronounced resonance. Small values may leave the input signa
unaffected. Depending on thefilter frequency, typical values are > .9.

PERFORMANCE

streson passes the input asig through a network composed of comb,
low-pass and all-pass filters, smilar to the one used in some versons
of the Karplus-Strong algorythm, creating a string resonator effect.
The fundamental frequency of the "string" is controled by the k-rate
variable kfr.This opcode can be used to sSmulate sympathetic
resonancesto aninput sgnal.

streson is an adaptation of the StringFIt object of the SndObj Sound
Object Library developed by the author.

Victor Lazzarini

Music Department

National University of Ireland, Maynooth
Maynooth Co.Kildare

Ireland

Expression:

kr = ka % kb
ar= ka% ab
ar= aa%kb
ar= aa%ab
PERFORMANCE

Returnsthe valus a reduced by b, so the result in absolute vaue that
the absoute value of b, by repeated subtraction. Thisisthe sameas
amodulusfunction in theinteger case.

ar vco kamp, kfgc, iwave, kpw, isne, imaxd

Implementation of an band limited analog modeled oscillator based
on integration of band limited impulses.

Performance
Vo can be used to simulate a variety of analog wave forms.
kamp determines the amplitude, kfqc is the frequency of the wave,

iwave determines the waveform 1 = sawtooth, 2 = Square/PWM, 3 =
triangle/Saw Ramp

kpw determines the pulse width when iwave is st to 2 and
determines Saw/Ramp character when iwave is set to 3. The value of
kpw should be between 0 and 1. A value of .5 will generate a square
wave or atriangle wave depending on iwave.

isine should be the number of a stored snewavetable.

imaxd is the maximum delay time. A time of 1/ifgc may be required
for the pwm and triangle waveform. To bend the pitch down this
value mugt be aslarge as 1/(minimum freguency).

Example

instr 10
idur = p3; Duration
iamp = p4 ; Amplitude
ifgc = cpspeh(p5) ; Frequency
iwave = p6 ; Sedected wave form 1=Saw, 2=Sgquare/PWM,
3=Tri/Saw-Ramp-Mod
isne=1
imaxd = L/ifgc* 2 ; Allows pitch bend down of two octaves
kpw1 oscil .25, ifqc/200, 1
kpw = kpwl + .5
asig veo iamp, ifqc, iwave, kpw, 1, imaxd
outsasig, asig ; Ouput and amplification
endin

1065536101

; Sta Dur Amp Pitch Wave
i10 0 2 20000 5.00 1
i10+...2
i10....3

i10 .2 20000 7.00 1
i10....2

i10....3

i10 . 2 20000 9.00 1
i10....2

i10....3

i10.2 20000 11.00 1
i10....2

i10....3

Author

HansMikelson

December 1998

aout distortl asig, kpregain, kpostgain, kshapel, kshape2

Implementation of modified hyperbolic tangent distortion.

PERFORMANCE

digtort1 can be used to generate wave shaping distortion based on a
modification of the tanh function.

exp(asig * (pregain + shapel)) - exp(asig* (pregain+shape2))
aout =

exp(asig*pregain) + exp(-asig*pregain)

97

asgistheinput signal.

kpregain determines the amount of gain applied to the signal before
waveshaping. A value of 1 givesdlight distortion.

kpostgain determines the amount of gain applied to the signal after
waveshaping.

kshapel determines the shape of the podtive part of the curve. A
value of zero gives a flat clip, smal postive values give doped
shaping.

kshape2 determines the shape of the negative part of the curve.

Example
gadigt init O
instr 1
iamp = p4
ifqe = cpspch(pS)
asig pluck iamp,ifqc, ifgc, 0, 1
gadist = gadigt + asig
endin
instr 50

kpre init p4

kpost init p5

kshapl init p6

kshap2 init p7

aout distortl gadist, kpre, kpost, kshapl, kshap2
outs aout, aout

gadigt = 0
endin

; Sta Dur Amp Pitch
i1 0.0 3.0 10000 6.00
i1 0.5 2.5 10000 7.00
i1 1.0 2.0 10000 7.07
i1 1.5 1.5 10000 8.00

; Sta Dur PreGain PostGain Shapel Shape2
i500 3 2 1 0 O
Author

HansMikelson
December 1998

PS Name chosen to avoid clash with X TC's distort opcode

outx, outy, outz planet kmassl, kmass2, ksep, i, iy, iz, ivx, ivy, ivz,
idelta, ifriction

Signal generator which loosdly smulates a planet orbiting in a binary
star system.

PERFORMANCE

planet smulates a planet orbiting in a binary star system. The outputs
are the x, y and z coordinates of the orbiting planet. It is possible for
the planet to achieve escape velocity by a close encounter with a star.
This makesthis system somewhat unstable.

kmassl isthe massof thefirst star,

kmass2 isthe mass of the second star,

ksep determines the distance between the two stars,

iX, iy, izaretheinitial x, y and z coordinates of the planet,

ivx, ivy, ivz aretheinitial velocity vector componentsfor the planet.

idelta isthe step sSize used to approximate the differential equation.

ifriction is a value for friction which can used to keep the system
from blowing up.

Example
instr 1

idur = p3
iamp = p4
kml = p5
km2 = pbé
ksep = p7
ix = p8
iy = p9
iz = plo
ivx = pl1
ivy = pl2
ivz = pl3
ih = pl4
ifric = pl5

kamp linseg 0, .002, iamp, idur-.004, iamp, .002, 0

ax, ay, az planet km1, km2, ksep, ix, 1y, iz, ivx, ivy, ivz, ih, ifric
outs ax*kamp, ay*kamp
endin

; Sta Dur Amp M1 M2 Sep X Y Z VX VY VZ h Frict

i10 1 5000 .5.35220.10.5.6-1.5-01
itl+ .. 500 01056-1.5 01
3

i1. . . 4 2 0.105.6-1.5 00
il. .. 332 0.105.61501
il. . . 25632 0.105.6.1.5 10
il . 252 010561110
Author

HansMikelson

December 1998

Banksof diders

dider8,dider16,dider32,dider64
dider8f, dider16f,dider32f,dider64f
idider8,idider16,idider32,idider64
s16b14,is16b14,s32b14,is32b14

SYNTAX

k1,k2,k3,k4,k5,k6,k7,k8 slider 8 ichan, ictinuml, iminl, imax1, initl,
ifnl, ..., ictinum8, imin8, imax8, init8, ifn8

ki, ..., k16 dlider16 ichan, icttnuml, iminl, imaxl, initl, ifnl,
..oy iCHINUM16G, iMiN16, imax16, initl6, ifnl6

ki, ..., k32 dlider32 ichan, ictthuml, iminl, imaxl, initl, ifnl,
<y iCtINUM32, iMiN32, imax32, init32, ifn32

ki, ..., k64 dlider64 ichan, ictthuml, iminl, imaxl, initl, ifnl,
..., ICHINUMG4, iMiN6G4, imax64, inité4, ifn64

k1,k2,k3,k4,k5k6,k7,k8 dlider8f ichan, ictinuml, iminl, imaxl,
initl, ifn, icutoffd,, ictinum8, imin8, imax8, init8, ifn8, icutoff8

ki, ..., k16 dlider16f ichan, ictlhuml, iminl, imaxl, initl, ifnl,
icutoffl,, ictinum16, iminl6, imax16, init16, ifnl6, icutoff16

ki, ..., k32 dlider32f ichan, ictlnuml, iminl, imaxl, initl, ifnl,
icutoffl, ..., ictinum32, imin32, imax32, init32, ifn32, icutoff32

ki, ..., k64 dlider64f ichan, ictlnuml, iminl, imaxl, initl, ifnl,
icutoffl, ..., ictinum64, imin64, imax64, inité4, ifn64, icutoff64

i1, ..., i8 idider8 ichan, ictinuml, iminl, imax1, ifnl,, ictinum8,
imin8, imax8, ifn8

i1, .. , i16 idider16 ichan, ictthuml, iminl, imax1, ifnl, ...,
ictinum16, iminl6, imax16, ifnl16

i1, .., i32 idider32 ichan, ictlhuml, iminl, imax1, ifnl, ...,
ictinum32, imin32, imax32, ifn32

i1, .. , i64 idider64 ichan, ictthuml, iminl, imax1, ifnl, ...,
ictinum64, iminé4, imax64, ifn64

i1, ..., 116 s16b14 ichan, ictino_msbl, ictino_lsbl, iminl, imax1,
initvaluel, ifnl, ... , ictino_msb16, ictlno_Ish16, iminl6, imax16,
initvaluel6, ifnl16

i1, ..., i16 isl6bl14 ichan, ictino_msbl, ictlno_Isbl, iminl, imax1,
ifnd, ictino_msb16, ictino_lsh16, iminl6, imax16, ifn16

i1, ..., 132 s32b14 ichan, ictino_msbl, ictino_lsbl, iminl, imax1,
initvaluel, ifnl, ... , ictino_msb32, ictlno_Ish32, imin32, imax32,
initvalue32, ifn32

i1, ..., i32 is32b14 ichan, ictlno_msbl, ictlno_Isbl, iminl, imax1,
ifn, ictino_msb32, ictino_lsh32, imin32, imax32, ifn32
DESCRIPTION

MIDI dider control banks

INITIALIZATION
il ...i64 - output values
ichan - midi channel (1-16)

ictinum1 ... ictinum64 - midi control number

ictino_msb1 ictino_msh32 - midi control number (most
significant byte)

ictino_Ishl ictlno_Isb32 - midi control number (less sgnificant
byte)

iminl ... imin64 - minimum valuesfor each controller

imax1 ... imax64 - maximum values for each controller

initl ... init64 - inital value for each controller

ifnl ... ifn64 - function table for conversion for each controller

icutoffl ... icutoff64 - low pass filter frequency cutoff for each
controller

PERFORMANCE
k1 ... k64 - output values

ididerN, diderN and diderNf are banks of MIDI controller (useful
when using midi mixer such as KAWAI MM-16 or others for
changing whatever sound parameter in realtime. A software dider
bank will be avalaible within short time).

The raw midi control messages at the input port are converted to
agreewith iminN and imaxN, and aninitial value can be set. Also an
optional non-interpolated function table with a custom trandation
curveisallowed, useful for enabling exponential response curves.

When no function table trandation is required, set the ifnN value to
0, ese st ifnN to a valid function table number. When table
trandation is enabled (i.e. setting ifnN value to a non-zero number
referring to an aready allocated function table), initN value should
be set equal to iminN or imaxN value, else the initial output value
will not be the same as specified in initN argument.

dider8 allows a bank of 8 different midi control message numbers,
diderl6 doesthe samewith a bank of 16 controls, and so on.

diderNf filter the sgnal before output for eliminating discontinuities
due to the low resolution of the MIDI (7 bit); the cutoff frequency
can be set separately for each controller (suggested range: .1 to 5
cps). Warning! diderNf opcodes do not output the required initial

value immediately, but only after some k-cycle because the filter
dightly delays the output.

As the input and output arguments are many, you can split the line
usng \' (backdash) character (new in 3.47 version) to improve the
readability. Using these opcodes is quite more efficient than using
the separate ones (ctrl7 and ktone) when more controllers are
required.

In ididerN there is not an initial-value input argument because the
output is get directly from current status of internal controller array
of Csound.

isNb14 and sNb14 opcodes are the 14-bit versions of these banks of
controllers.

ar pareq asg, ke, iv,iq, imode

iv isvolume boogt or cut

iqisthe quality factor (sgrt(.5) is no resonance)
imode is 0=Peaking EQ, 1=Low Shelf, 2=High Shelf

Performance

kcisthe centre of shelf value
asg istheincoming signal

Eqgample:
instr 15
ifc = p4 ;Center/ Shdf
iq = p5 ;Quadlity factor sgrt(.5) isno resonance
iv = ampdb(p6) ;Volume Boost/Cut
imode = p7 ;Mode 0=Peaking EQ, 1=Low Shdlf, 2=High Shelf
kfc linseg ifc*2, p3, ifc/2
asg rand 5000 ; Random number source for testing

aout pareqasig, kfc, iv, iq, imode ; Parmetric equalization

outs aout, aout ; Output the results
endin
; SCORE:
; Sta Dur Feenter Q Boost/Cut(dB) Mode
i15 0 1 10000 2 12 1
i15 + . 5000 2 12 1
i15 . . 1000 707 -12 2
i15 .. 5000 1 -12 0
HansMikelson

oscil3, foscil3, loscil3, vdelay3, table3, itable3, deltap3

These are experimental opcodeswhich use cubic interpolation rather
than teh linear interpolation of oscili, foscili, loscili, vdday, table,
itablel and deltapi. Tegting so far has shown that oscil3 works and
gives a better sound (on a 32 point sine wave). The others have not
been tested and so shoudl be used with some care. Feedback on these
ismost acceptable

JPrf

Release Notesfor 3.51

These are the release notes for verson 3.51. This is mainly a small
number of bug fixes from 3.50, but rather significant ones.

Bug Fixes

Use of C-style comment /* .. */ now works on both orchestra and
score

Another attempt to get line continations working
Language Changes

99

Lines gtarting # or ; in .csoundrc or in the options part of a .csd file
are treated as comments. Comments can also start where an option is

expected.
Opcode Fixes

wgbow -- the pitch control was all wrong and has been rewritten.
Also the bow dope had been removed; now restored.

ocil3 at k-rate wastotally wrong; fixed

envlpxr -- inadvertently lost; exponential, MIDI controlled envel ope

xadsr -- ADSR opcode with exponential lines rather than linear
mxads - ADSR with exponential curves and MIDI sendtive to
release

Other Changes:

Codefor follow recast

Windows GUI Changes

Canlook for .c«d filesin orchestrafield

==John ff
1999 in timefor Luigi Nono's Birthday

Release Notesfor 3.53

These are therelease notesfor version 3.53.

Bug Fixes

Invdelay it was possiblefor an error on wrapping the delay

(PC only) the shaker opcode did not work due to afile transfer
failure.

envlpxr could cause a crash due to atyping error
Bug in wgflute which caused silent notes eliminated
Bug in diskin/soundin fixed

cpsmidi nolonger attemptsto track pitchbend

Language Changes

Internal changes to NeXT added in many places (thanks to Stephen
Brandon)

Strings are now recognised in scores for a large number fo opcodes
(convalve, adsyn, diskin, soundin, pvoc etc.

ftlen upgraded so it works with deferred function tables (it loads the
file)

opcode ondur/ondur2 renamed to noteondur/noteondur2.

peakk renamed peak (with internal discrimination)

Ingde [] in the score the form ~ will give a randon number in the
rangeO to 1.

Opcode Fixes

ftsr -- this opcode/function got lost a some stage, mea cul pa
mandol -- not accepts a negative base-frequency to skip initialisation
In various wg opcodes, if minimum frequency is not given and the

frequency is a k-rate value, ingtead of an error, a minimum of 50Hz
isassumed with a warning

nestedap -- nested allpassfilters
lorenz -- ode generator
pitch -- a spectrum-based pitch-tracker

Other Changes:

==John ff
1999 Budget Day

nestedap implements three different nested all-passfilters useful for
implementing reverbs.

aout nestedap asg, imode, imaxdelay, idelayl, igainl [, idday2,
igain2, idelay3, igain3]

Mode 1 isa smple al-passfilter.
Mode 2 isa single nested all-passfilter
Mode 3 isa double nested all-passfilter.

Note imaxdelay is not currently used but will be necessary if k-rate
delay isimplemented.

Example:

instr 5

insnd =

gasig diskin insnd, 1

endin

instr 10
imax = 1
idel1 = p4
iganl = p5
idel2 = pé
igan2 = p7
idel3 = p8
igan3 = p9
idel4 = p10
igand = pll
idel5 = p12
igan5 = p13
idel6 = pl4
igané = p15

afdbk init 0

aoutl nestedap gasig+afdbk* .4, 3, imax, idel1, igainl, idel2,
igain2, idel3, igain3

aout2 nestedap aoutl, 2, imax, idel4, igaind, idel5, igain5
aout nestedap aout2, 1, imax, idel6, igainé

afdbk butterlp aout, 1000

100

outs
gasig =
endin
108192101

gasig+(aput+aoutl)/2, gasig-(aout+aoutl)/2
0

; Diskin
; Sta Dur Soundin
i50 3 1

; Reverb

; Sta Dur Ddl Gainl D2 Gain2 Dd3 Gain3 De4 Gaind Del5
Gain5 Del6 Gainb

il00 4 97 11 23 .07 43 09 72 2 53 2 119 .3

lorenz implementsthe lorenz system of equations:

ax, ay, az lorenz ksv, krv, kbv, kh, ix, iy, iz, iskip

instr 20
ksv = p4
krv = p5
kbv = p6

ax, ay,azlorenz ksv, krv, kbv, .01, .6, .6, .6, 1
outs ax*1000, ay* 1000
endin

; Lorenz system
; StaDur S RV
i205 1 10 28 2.667

pitch isa spectrum-based pitch tracker

koct, kamp pitch asig, iupdte, ilo, ihi, idbthresh[, ifrgs, iconf, istrt,
iocts, ifrgs, iq, inptls, irolloff, istor]

The input signal is analysed to give a pitch/amplitude pair for the
srongest pitch in the signal. The value is updates every iupdte
seconds.

INITIALISATION

ilo, ihi -- rangein which pitch is detected (as decimal octaves)

idbthresh -- energy level in decibells necessary for pith to be
detected. Once started it continues until itis 6bd down

iconf -- the number of conformations needed for an octave jump.
Default valueis 10

istrt -- gtarting pitch for tracker, defaults to average of ilo and
ihi.

iocts -- number of octave decimationsin spectrum, defaulting to 6

ifrgs -- number of divisons of an octave, defaultsto 12 and is
limited to 120

iq-- Q rate of analysis, dafaulting to 10

inptls, irolloff -- number of harmonic partials used in matching.
Defaulst to 4 and 0.6

istor -- isnone zero skipsinitialisation

PERFORMANCE

Using the same techniques as spectrum and specptrk estimates the
pitch of thesignal. Pitch is reported in decima octave form, and

amplitudein db

While the default settings are reasonable for general use, some
experimentation may be necessary for complex sounds.

Release Notesfor 3.54

These arethe release notesfor version 3.54

Bug Fixes

in -0 there were some bracketing difficulties.

Arguments in macros are now checked for length overflowing
internal buffer

fmdop opcodes could give rubbish die to uninitialised array.
Function nsamp made usable

Language Changes

For piped output to work there must not be a WAV or AlFF header
(they require a rewind). Thisisnot checked.

The default sound file is test, test.wav or test.aif depending on
selected format.

Thereare now y and z type argumentsin entry.c (from Gabriel)
When using line events the e event is now accepted

Both .csd and .CSD files are accepted asdescription files

The system expectsto have afile csound.txt for strings. This alows

for languages other than American.

Opcode Fixes

An error message in pvread said it was from pvoc. Changed to
correct opcode.

pareq, rezzy, moogvcf and biquad optimised alittle

sum -- add together arbitrary number of arguments

product -- multiply arbitrary number of arguments

Other Changes:

Internal changes to optimise al irate random opcodes, not much
though.

Internally the variable PMASK has been renamed PHMASK as (a)
that is a better description and (b) it caused problems on Solaris

Windows GUI Changes

Automatic adding of .wav or .af on sound files

==John ff
1999 May 17

aout sum al, a2, a3, ...
aout product al, a2, a3, ...

101

DESCRIPTION
The signals are added or multiplied together to give the output signal.
PERFORMANCE

al, a2,.. -- audio inputs

Release Notes for 3.55

These are therelease notesfor version 3.55

Bug Fixes

only in opcodes (below)

Language Changes

The environment variable CSSTRNGS is used to identify the string
database. If it is not present it looks in SSDIR SADIR etc and finally
/usr/local/lib

This can be overridden with a -j filename option

Opcode Fixes

linseg, linsegr -- an off-by-one error corrected in al cases

buzz, gbuzz -- error case reported only once per note instead of every
k-cyclein error.

loscil3 -- ignored the amplitude leading to usually quiet output

mandolin -- Bug fixed which stop theinitial pluck, and also rescaled

svfilter -- Implementation of a resonant second order filter, with
simultaneous lowpass, highpass and bandpass outputs.
hilbert -- An1IR implementation of aHilbert transformer.

resonr, resonz -- Implementations of a second-order, two-pole two-
zero bandpassfilter with variable frequency response.

mac, maca-- Multiply and Accumulate instructions

Other Changes:

devaudio as an output device was
devaudio.wav

incorrectly changed to

==John ff
1999 June 20

hilbert

ared,aimag hilbert adsg
DESCRIPTION
An IR implementation of aHilbert transformer.
PERFORMANCE

hilbert is an IIR filter based implementation of a broad-band 90
degree phase difference network. The input to hilbert is an audio
signal, with a frequency range from 15 Hz to 15 kHz. The outputs of
hilbert have an identical frequency response to the input (i.e. they
sound the same), but the two outputs have a congant phase
difference of 90 degrees, plus or minus some small amount of error,
throughout the entire frequency range - the outputs are in quadrature.
hilbert is useful in the implementation of many digita signal
processing techniquesthat requirea signal in phase quadrature. areal
correponds to the cosine output of hilbert, while aimag corresponds
to the sine output; the two outputs have a congtant phase difference
throughout the audio range that corresponds to the phase relationship
between cosine and sine waves.

Internally, hilbert is based on two parallel 6th-order allpass filters.
Each allpass filter implements a phase lag that increases with
frequency; the difference between the phase lags of the paralld
alpass filters at any given point is approximately 90 degrees. Unlike
an FIR-based Hilbert transformer, the output of hilbert does not have
a linear phase response. However, the IR structure used in hilbert is
far more efficient to compute, and the nonlinear phase response can
be used in the creation of interesting audio effects, as in the second
example below.

AUTHOR
Sean Cogtello

Seattle, Washington
1999

svfilter
alow, ahigh, aband svfilter asig, kef, kq[, iscl]
DESCRIPTION

Implementation of a resonant second order filter, with smultaneous
lowpass, highpass and bandpass outputs.

INITIALIZATION

iscl - coded scaling factor, smilar to that in reson. A non-zero value
signifies a peak response factor of 1, i.e. al frequencies other than
kcf are attenuated in accordance with the (normalized) response
curve. A zero value signifies no scaling of the signal, leaving that to
some later adjustment (see balance). The default valueisO.

PERFORMANCE

svfilter is a second order state-variable filter, with k-rate controls for
cutoff frequency and Q. As Q is increased, a resonant peak forms
around the cutoff frequency. svfilter has simultaneous lowpass,
highpass, and bandpassfilter outputs; by mixing the outputs together,

a variety of frequency responses can be generated. The dtate-variable
filter, or "multimode" filter was a common feature in early analog
synthesizers, due to the wide variety of sounds available from the
interaction between cutoff, resonance, and output mix ratios. Svfilter
is well suited to the emulation of "analog" sounds, as well as other
applications where resonant filtersare called for.

asig - Input signal to befiltered.

kef - Cutoff or resonant frequency of thefilter, measured in cps.

kg - Q of the filter, which is defined (for bandpass filters) as
bandwidth/cutoff. kq should be in a range between 1 and 500. As kq
is increased, the resonance of the filter increases, which corresponds
to an increase in the magnitude and "sharpness’ of the resonant peak.
When using svfilter without any scaling of the signal (where iscl is
either absent or 0), the volume of the resonant pesk increases as Q
increases. For high values of Q, it is recommended that iscl be set to
a non-zero value, or that an external scaling function such as balance
isused.

svfilter is based upon an agorithm in Hal Chamberlin's Musical
Applications of Microprocessors (Hayden Books, 1985).

AUTHOR
Sean Cogtello

Seattle, Washington
1999

resonr, resonz

ar resonr adg, kcf, kbw[iscl, istor]
a resonz asig, kef, kbwl[,iscl, istor]

DESCRIPTION

Implementations of a second-order, two-pole two-zero bandpass
filter
with variable frequency response.

INITIALIZATION

The optional initialization variables for resonr and resonz are
identical to the i-time variablesfor reson.

igor - initial dispodtion of internal data space. Since filtering
incorporates a feedback loop of previous output, the initial status of
the storage space used is dgnificant. A zero value will clear the
gpace; a non-zero value will allow previous information to remain.
The default valueisO.

iscl - coded scaling factor for resonators. A value of 1 dgnifies a
pesk response factor of 1, i.e. al frequencies other than kcf are
attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overal RMS value
equals 1. (This intended equalization of input and output power
assumes all frequencies are physically present; hence it is most
applicable to white noise) A zero value signifies no scaling of the
signal, leaving that to some later adjustment (see balance). The
default valueisO.

PERFORMANCE

resonr and resonz are variations of the classic two-pole bandpass
resonator (reson). Both resonr and resonz have two zeroes in their
transfer functions, in addition to the two poles. resonz has its zeroes
located at z = 1 and z = -1. resonr has its zeroes located at +sqrt(R)
and -sgrt(R), where R is the radius of the poles in the complex z-
plane. The addition of zeroes to resonr and resonz results in the
improved selectivity of the magnitude response of these filters at
cutoff frequencies close to 0, at the expense of less sdectivity of
frequencies above the cutoff pesk. resonr and resonz have very close
to congtant-gain as the center frequency is swept, resulting in a more
efficient control of the magnitude response than with traditional two-
pole resonators such as reson. resonr and resonz produce a sound
that is condgderably different from reson, especially for lower center
frequencies; trial and error is the best way of determining which
resonator isbest suited for a particular application.

asg - Input signal to befiltered.
kef - Cutoff or resonant frequency of thefilter, measured in cps.

kbw - Bandwidth of thefilter (the cps difference between the upper
and lower half-power points).

AUTHOR

Sean Cogtello
Seattle, Washington
1999

mac and maca

a mac
a maca

ksigl, asig2, ksig3, asig4, ...
asigl, asig2, asig3, asig4, ...

DESCRIPTION

Multipliesthe argumentsin pairs and accumulatestheir sum
ar = kdgl*asg2 + kig3*asigs + ...

ar = adgl*asg2 + asig3*asigs + ...

INITIALIZATION

none

PERFORMANCE

ksign - multipliers (scales) of signals

asign - Audio signalsto be summed/scaled

Release Notes for 3.56

These are therelease notesfor version 3.56

Bug Fixes

pset opcode wasignored.

The ~ operator within [] in a score waswrong and did not work

Language Changes

There are two new operators in scores, within arithmetic contexts|].

@ followed by a number yields the power of two equal or greater
than the number given. The operator @@ gives the power-of-two-
plusl equal or greater than the number given.

Opcode Fixes

follow had an off-by-one error which meant it increased but never
decreased

clockon
clockoff
readclock -- Performance timing opcodes

resony --
paralld.

A bank of second-order bandpass filters, connected in

fold -- Adds artificial foldover to an audio signal

viner -- incretment an audio variable
clear -- Clear audio variables [Note: these opcodes have results on
right so may lead to incorrect warnings|

fout
foutk

103

fouti
foutir -- Outout to audiofiles

fiopen

fin

fink

fini -- Input from audio files

Other Changes:

Someinternal reorganisation.

Windows GUI Changes

New button and dialog box to set SSDIR, SADIR and SFDIR. Also
csound.txt name cached.

Editors are spawned in NOWAIT mode so can exist while setting
options

Playback can beinterrupted after "Play at End"

==John ff
1999 July 20

resony

ar resony asig, kbf, kbw, inum, ksep [, iscl, istor]

DESCRIPTION
A bank of second-order bandpassfilters, connected in parallel.
INITIALIZATION

inum - number of filters. Defaultsto 4

iscl - coded scaling factor for resonators. A value of 1 dgnifies a
pesk regponse factor of 1, i.e. al frequencies other than kcf are
attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overal RMS value
equals 1. (This intended equalization of input and output power
assumes all frequencies are physically present; hence it is most
applicable to white noise) A zero value signifies no scaling of the
signal, leaving that to some later adjusment (e.g. see balance). The
default valueisO.

igor - initial dispodtion of internal data space. Since filtering
incorporates a feedback loop of previous output, the initial status of
the storage space used is dgnificant. A zero value will clear the
gpace; a non-zero value will alow previous information to remain.
The default valueisO.

PERFORMANCE

asig - audioinput signal

kbf - base frequency, i.e. center frequency of lowest filter in Hz
kbw - bandwidth in Hz

ksep - separation of the center frequency of filtersin octaves

resony is a bank of second-order bandpass filters, with k-rate variant
frequency separation, base frequency and bandwidth, connected in
paralld (i.e. the resulting signal is a mixing of the output of each
filter). The center frequency of each filter depends of kbf and ksep
variables.

EXAMPLE:
asig, kbf, kbw, inum, ksep [, iscl, istor]

In this example the global variable gk1 modifies kbf, gk2 modifies
kbw, gk3 inum, gk4 ksep and gk5 the main volume.

instr 1

al soundin "myfile.aif"

a2 resony al, gkl,gk2,i(gk3),0k4 ,2
out a2*gk5
endin

fold

ar fold asig, kincr

DESCRIPTION

Addsartificial foldover to an audio signal
PERFORMANCE

asig - input signal
kincr - amount of foldover expressed in multiple of sampling
rate. Must be>= 1

fold is an opcode which creates artificial foldover. For example,
when kincr is equal to 1 with s=44100, no foldover is added, when
kincr is set to 2 the foldover is equivalent to a downsampling to
22050, when it is set to 4 to 11025 etc. Fractional values of kincr are
possible, alowing a continuous variation of foldover amount. This
can be used for awide range of special effects.

EXAMPLE:
instr 1
kfreg line 1,p3,200
al oscili 10000, 100, 1
k1 init 85
al fold al, kfreq
out al
endin
vincr, clear

viner asig, aincr
clear avarl[avar2, avar3,....avarN]

DESCRIPTION

viner increments an audio variable of another signal, i.e. accumulates
output.
clear zeroesalist of audio signals.

PERFORMANCE

asig - audio variable to be incremented
aincr - incrementation signal
avarl [,avar2, avar3,...,avarN] - sgnalsto be zeroed

viner (variable increment) and clear are thinked to be used togheter.
vincr gtores the result of the sum of two audio variables into the first
variable itsdf (which is thinked to be used as accumulator in case of
polyphony). The accumulator-variable can be used for output signal
by means of fout opcode. After the disk writing operation, the
accumulator-variable should be set to zero by means of clear opcode
(or it will explode).

fout, foutk, fouti, foutir, fiopen

fout "ifilename”, iformat, aout1 [, aout2, aout3,.... ,a0utN]
foutk "ifilename”, iformat, kout1 [, kout2, kout3,....,koutN]
fouti ihandle, iformat, iflag, ioutl [, iout2, iout3,....,ioutN]
foutir ihandle, iformat, iflag, ioutl [, iout2, iout3,....,ioutN]

ihandle fiopen "ifilename",imode

DESCRIPTION

104

fout, foutk, fouti and foutir output N audio, k or i-rate sgnals to a
specified fileof N channels.
fiopen can be used to open afile in one of the specified modes.

INITIALIZATION

ifilename - a double-quote delimited string file name iformat - a flag
to choose output file format:

for fout and foutk only:

0 - 32-bit floating point samples without header (binary PCM
multichanne file)

1 - 16-bit integers without header (binary PCM multichanne file)

2 - 16-hit integers with type header from -W -A or -J (mono or stereo
file)

for fouti and foutir only:
0 - floating point in text format
1 - 32-bit floating point in binary format

iflag - choose the mode of writing to the ascii file (valid only in ascii
mode; in binary mode iflag has no meaning, but it must be present

anyway).

iflag can be a va ue choosen among the following:

0 - line of text without instrument prefix

1 - line of text with instrument prefix (see below)

2 - reset the time of instrument prefixes to zero (to beused only in
some particular cases. See below)

iout,... ioutN - valuesto bewritten to thefile.

imode - choose the mode of opening thefile.

imode can be a value choosen among the following:
0 - open atext file for writing

1 - open atext filefor reading

2 - open a hinary filefor writing

3 - openahbinary filefor reading

PERFORMANCE

aoutl,... aoutN - signalsto be written to thefile.
koutl,...koutN - signalsto bewritten to thefile.

fout (file output) writes samples of audio sgnals to a file with any
number of channels. Channe number depends by the number of
aoutN variables (i.e. @ mono signal with only an arate argument, a
stereo signal with two arate arguments etc.) Maximum number of
channelsisfixed to 64.

More fout opcodes can be present in the same instrument, referring to
different files.

Notice that, differently by out, outs and outq, fout does not zeroes the
audio variable, so you must provide a zeroing after calling fout if
poliphony isused. Y ou can useincr and clear opcodesfor thistask.

foutk operates in the same way of fout, but with k-rate signals.
iformat can be setonly toO or 1.

fouti and foutir write i-rate values to a file. The main use of these
opcodes is to generate a score file during a realtime session. For this
purpose the user should set iformat to O (text file output) and iflag to
1, which enable the output of a prefix consiging of the following
srings:

i num actiontime duration

before the values of ioutl...ioutN arguments. Prefix isreferring to
instrument number, action time and duration of current note.

The difference of fouti and foutir is that, in the case of fouti, when
iflag is st to 1, the duration of the first opcode is undefined (so it is
replaced by a dot) wheras in the case of foutir is defined at the end
of note, so the corresponding text line is written only at the end of the
current note (in order to recognize its duration). The corresponding
file is linked by the ihandle value generated by fiopen opcode (see
below). So fouti and foutir can be used to generate a Csound score
whileplaying arealtime session.

fiopen opens a file to be used by the foutX opcodes. It must be
defined externally by any instruments, in the header section. It
returnsa number ihandle, which isunivocally referring to the opened
file.

Notice that fout and foutk can use both a string containing a file
pathname or a handle-number generated by fiopen, wheras in the
case of fouti and foutir, the target file can be only specified by means
of a handle-number.

fin, fink, fini

fin "ifilename", iskipframes, iformat, ainl [, an2, an3,.... ,anN]
fink "ifilename", iskipframes, iformat, kinl [, kin2, kin3,.... ,kinN]
fini "ifilename", iskipframes, iformat, inl [, in2, in3,.... ,inN]

DESCRIPTION
read signalsfrom afile (at a, k, and i-rate)
INITIALIZATION

ifilename - input file name (can be astring or a handle number
generated by fiopen)

iskipframes - number of frames to skip at the start (every frame
contains a sample of each channel)

iformat - a number specifying theinput file format: for fin and fink:
0- 32 bit floating points without header

1 - 16 bit integers without header

for fini:

0 - floating points in text format (loop; see below)

1 - floating pointsin text format (no loop; see below)
2 - 32 hit floating points in binary format (no loop)

fin (file input) is the complement of fout: it reads a multi channd file
to generate audio rate sgnals. At present time no header is supported
for file format. The user must be sure that the number of channel of
theinput fileisthe same of the number of ainX arguments

fink isthe same asfin, but operatesat k-rate.

fini is the complement of fouti and foutir, it reads the values each
time the corresponding instrument note is activated. When iformat is
st to O, if the end of file is reached the file pointer is zeroed,
restarting the scanning from the beginning. When iformat is set to 1
or 2 no loop is enabled, so at the end of file the corresponding
variableswill befilled with zeroes.

clockon, clockoff, readclock

clockon inum

clockoff inum
ival readclock inum
DESCRIPTION

Starts and stops one of a number of internal clocks, and read value of
aclock.

INITIALIZATION

inum is the number of a clock. There are 32 clocks numbered O
through 31; all other values are mapped to clock number 32.

[Note: in 3.56 abug means that xloxk zero is alwaysused -- fixed in
sourcel]

PERFORMANCE
Between a clockon and a clockoff the CPU time used is accumulated

in the clock. The precison is machine dependent, but is milliseconds
on UNIX and Windows.

105

readclock readsthe current value of aclock at initialisation time.

Note thereisno way to zero a clock.

Release Notes for 3.57

These aretherelease notesfor version 3.57

Bug Fixes

clock opcodesall mapped to clock O -- fixed
divz was decoded incorrectly in parsing

The triple strike in marimba never happened due to programming
error.

The percentage of doubles and singles are variable as two optional
arguments, both defaulting to 20%.

Some error and warning strings were wrong. Extensively reviewed
and fixed

Language Changes

In GEN23 (read ASCII file of numbers it is now possible to have a
length of 0 and have the generator calculated from the number of
numbersin thefile.

Opcode Fixes

in buzz and gbuzz at least 1 harmonic is aways used, and the
absolute value of the number is used rather than giving a warning
bug in wgbrassfixed which could lead to crashes

active -- tell how many active instancesthere are of an instrument
cpuprc -- limit number of allocations of an instrument by load
maxalloc -- limit number of allocations of an instrument count
prealloc -- create a pool of unactiveingtances

expsega -- a-rate exponential segments

logbtwo
powoftwo -- fast versions of pow and log in both i and k position
ilen filden ifilcod ; returns length of “ifilcod" in
seconds
i filesr ifilcod ; returnsthe samplerate of "ifilcod"
inchnls filenchnisifilcod ; returns the number of chnls of
"ifilcod"
ipeak filepeak ifilcod, [ichnl] ; returns peak absolute value of
; "ifilcod"

; if ichnl=0, returns peak out of all
channels

; if ichnl>0, returns the pesk of
ichnl

; if ichnl isnot specified, returns

; peak of theentirefile.

; currently only supports AIFF_C
float files
Other Changes:

The pvtool utility has been included in utils2, and asa -U option

Windows GUI Changes

New dialog for pvlook utility

==John ff
1999 August 3

active

inum active ins

DESCRIPTION

Returns the number of active instances of instrument number ins

expsega
asigexpsegaia, idurl, ib[, idur2, ic[...]]
DESCRIPTION

An exponential segment generator operating at a-rate. This unit is
amogst identical to expseg, but very more precise when defining
segments with very short duration (i.e. in percussive attack phase) at
audio-rate.

Note that expseg opcode does not operate correctly at audio rate
when segments are shorter than a k-period.

INITIALISATION

ia- gtarting value. Zeroisillegal.

ib, ic, etc. - value after idurl seconds, etc. must be non-zero and
mugt agreein sign withia.

idurl - duration in seconds of first segment.

A zero or negative value will cause dl initialization to be skipped.

idur2, idur3, etc. - duration in seconds of subsequent segments.

A zero or negative value will terminate the initialization process with
the preceding point, permitting the last-defined line or curve to be
continued indefinitely in performance. The default is zero.

PERFORMANCE

These units generate control or audio sgnals whose values can pass
through 2 or more specified points. The sum of dur values may or
may not equal the instrument's performance time: a shorter
performance will truncate the specified pattern, while a longer one
will cause the lagt-defined segment to continue on in the same
direction.

powoftwo(x)
logbtwo(x)

powoftwo() function returns 2 x and allows positive and negetives
numbers as argument.

logbtwo() returns the logarithm base two of x.

If the argument is in the range [-5,+5] for powoftwo() or [0.25,4] for
logbatwo() then an internal table is used, allowing a precison more
fine than one cent in a range of ten octaves. Outsde those ranges the
valueiscalculated afresh and will be asslow asuse of pow or log.

logbtwo() returns the logarithm base two of x.

Also they are very useful when working with tuning ratios. They
work at i and k-rate.

cpuprc
maxalloc

cpuprc instrnum, ipercent

106

maxalloc instrnum, icount
prealloc instrnum, icount
DESCRIPTION

cpuprc sets the cpu processing-time percent usage of an insrument in
order to avoid buffer underrun in realtime performances maxalloc
limitsthe number of allocations of an instrument.

prealloc creates space for instruments but does not run them

INITIALIZATION

instrnum - instrument number
ipercent - percent of cpu processing-timeto assgn
icount -- number of instrumentsinstancesthat can be alocated

cpuprc is an opcode that enables a sort of polyphony theshold. The
user must set ipercent value for each instrument he want to activate
in regltime. It is assumed that the total theorical processing time of
the cpu of the computer is 100%, but note that this percent value can
only be defined empirically.

For example if ipercent is set to 5% for instrument 1, the maximum
number of voices that can be alocated at any time will be 20 (as 5%
X20 = 100%). If the user attempts to play a further note while the 20
previous notes are gtill playing, Csound inhibits the allocation of that
note and will display a warning message.

In order to avoid audio buffer underruns, it is suggested to set the
maximum number of voices a bit below the real processing power of
the computer, because sometimes an instrument can require more
processing time than normal (for example, if the instrument contains
an oscillator which reads a table that doesn't fit in cache memory, it
will be dower than normal; also, any concurrent program which run
in multitasking, can subtract more processing power in some Cases,
less power in other cases etc.)

Initially al instruments are set to a default value of ipercent = 0.0%
(i.e. zero processing time or rather infinite cpu processing-speed).
Note that this opcode can be used either at instrument O time or
dynamically, when it only affects later instruments. Any active
instuenmt whose load is changed may lead to incorrect or anomolous
results.

In maxalloc setting the number of maximum allocation to 0 means
unlimited allocations are alowed. A negative alocation disallows
any allocation.

example:

s = 44100
kr =441
ksmps= 100
nchnls=2

cpuprc 1, 2.5
cpuprc 2, 33.333

;¥* st instr 1 to 2.5% of cpu, max 40 voices
¥ st instr 2 to 33.333% of cpu, max 3 voices

ingtr 1

endin

ingtr 2

endin

Release Notes for 3.58

These are therelease notes for version 3.58

Bug Fixes

A filein .csd was|eft open which stopped some things working

107

Language Changes

Number of arguments to macros in both score and orchedtra is
unregtricted, and spaces are now allowed in argument lists

Blank linesand commentsin .cd filesallowed

Opcode Fixes

readk opcodes could not have worked as they were.
fof/fog only allocate spaceif phsispositive, to allow for legato
some improvement in streson (but not yet correct)

Avoid some crasheswhen using MIDI in non-midi context

adsynt -- Additive synthesis
hsboscil -- Oscilator with brightness and tonality control
pitchamdf -- Pitch following

Other Changes:

Windows GUI Changes:
The xyin opcode should now read the mouse at the requested rate.

Windows I mplementation Note

In this implementation, mouse input is read from the full screen
rather than clipped to the Winsound output window. If you use more
instances of xyin in an orchestra, they will only do different scaling
of the mouse cursor postion (this was also true in the earlier
version).

The bottom left screen position isminimum for x and y.

Note that the graphics display option must be set to Full for the xyin
operator to befunctional.

Example:

s = 22050
kr= 294
ksmps= 75
nchnls=2

ingtr 1 ; Simple xyin test
; Let oscillatorsrange 20 - 2000 Hz
kepsl, keps2 xyin .03, 20, 2000, 20, 2000, 500, 300
; Smooth input
kepsl port kepsl, .01
keps2 port keps2, .01

; Useinput

kamp linseg 0, .5, 20000, p3-1, 20000, .5, 0
kndx oscil 4, kepsl / 50, 1

kndx = kndx+5

arl foscil kamp, 1, kepsl, keps2, kndx, 1
ar2 foscil kamp, 1, keps2, kepsd, kndx, 1

outsarl, ar2
endin

; Score;

10409610 1 ;sine

i1010
e

; End score

ar adsynt kamp, keps, ifn, ifregtbl, iamptbl, icnt [, iphs]

DESCRIPTION

This opcode performs additive synthes swith an arbitrary number of
partials (not necessarily harmonic). Frequency and amplitude of each
partial is given in the two tables provided. The purpose of this
opcode is to have an insrument generate synthesis parameters at k-
time and write them to the global parameter tables with the tablew
opcode.

INITIALIZATION

ifn - afunction table, usualy asine. Table values are not
interpolated for performance reasons, so you better
provide alarger table for better quality.

ifregtbl - an arbitrary function table. Size hasto be at least icnt.
Table can contain frequency values for each partial at start,
but isusually used for generating parameters at runtime
with tablew. Frequencies must be relative to keps.

iamptbl - sameasifreqtbl for relative partial amplitudes.

icnt - number of partialsto be generated.

iphs - initial phaseif each oscillator, if -1 initialization is skipped.
If > 1 al phaseswill be initialized with arandom value.

PERFORMANCE

kamp - Amplitude of note.

keps - Basefrequency of note. Partia frequencies will berelative
to keps.

hsboscil

ar hsboscil kamp, ktona, kbrite, ibasef, ifn, imixtbl [, ioctent] [,

iphs]

DESCRIPTION

This oscillator takes tonality and brightness as arguments, relative to
a base frequency (ibasef). Tonality is a cyclic parameter in the
logarithmic octave, brightness is realized by mixing multiple
weighted octaves.

It is useful when tone space is understood in a concept of polar
coordinates.

If you run ktona as a line and keep kbrite constant, you get Risset's
glissando.

Ogcillator tableifn isalwaysread interpol ated.

Performance time requires about ioctent * oscili.

INITIALIZATION

ibasef - abasefrequency to which tonality and brighness are
relative.

ifn - afunction table, usualy asine.

imixtbl - afunction table used for weighting the octaves, usually
something like: fn0 1024 -19 1 0.5 270 0.5

joctent - number of octaves used for brightness blending,
default is 3, minimum 2, maximum 10.

iphs - initial phaseif the oscillator, if -1 initialisation is skipped.
PERFORMANCE
kamp - Amplitude of note.

ktona - Cyclictonality parameter relative to ibasef in logarithmic
octave, range 0 - 1, values > 1 can be used and are
internally reduced to frac(ktona).

kbrite - brightness parameter relative to ibasef achieved by

weighting ioctent octaves. It is scaled in a way that a value of 0

108

correponds to orignal ibasef, 1 one octave above, -2 two

octaves bel ow ibasef etc. and any fractional valuein between.

pitchamdf

keps, krms pitchamdf
idowng] [, iexcps]

asig, imincps, imaxcps [, icpg [, imedi] [,

DESCRIPTION

This opcode follows the pitch of signal asg based on the amdf
method (Average Magnitude Difference Function) and outputs it to
keps. Additionally it outputs the energy of the signal to krms. The
method is quite fast and should run in realtime. Techniques like that
usually only work for monophonic

signals.

INITIALIZATION

imincps - estimated minimum frequency (expressed in cps) present
inthesignal.

imaxcps - estimated maximum frequency present in the signal .

icps - estimated initial frequency of the signal.
If 0, (imincps+imaxcps) / 2 isassumed. (Default = 0)
imedi - sizeof medianfilter gpplied to keps output.
Infact, theresulting size of thefilter will be imedi*2+1.
If 0, no median filtering will be applied. (Default = 1)
idowns - downsampling factor for asg. A factor of idowns>1

resultsin faster performance but may result in worse pitch detection.
Useful rangeis 1...4 (integer values). (Default = 1)
iexcps - how frequently pitch analysis is executed, expressed in
cps.
If O, iexcpsisset to imincpswhich isusually reasonable,
but you can experiment with other values. (Default = 0)

PERFORMANCE

Pitch is detected quite reliably in monophonic signals if you sdlect
fitting init values. imincps and imaxcps should be as narrow as
possble to the range of the signal's pitch - this results in better
performance and better detection.

Setting icps close to the signal's real initia pitch prevents garbage at
gtart, as the process can only detect pitch after some periods. The
median filter prevents the pitch from jumping - experiment what size
isbest for the given signal.

The other init values can usually beleft at their default.

It can be useful to lowpassHilter asg before giving it to pitchamdf.

EXAMPLE

asig loscil 1,1,input,1 ;getinputsignal with origina freq

asig tone asig, 1000 ; lowpassfilter

keps, krms pitchamdf asig, 150, 500, 200 ; extract pitch and
envelope

asgl oscil krms, keps, iwave ; "resynthesize" with some
waveform

out asigl
==John ff
1999 August 30

Release Notes for 3.59

These are therelease notesfor version 3.59

Bug Fixes

Fixed a typing error in fgens
MIDI filesin .csd files now work

Language Changes

arate’p-rate expressions alowed

Opcode Fixes

pluck: Error check for kcps exceeding samplerate
posc family: allow negative frequencies
Phasor: use double sinternally for better precison

poweroftwo -- also works at a-rate
logbasetwo -- also works at a-rate

repluck, nreverb, grain, cross2, nifilt -- no longer change constants
linseg -- h-rate version rewritten to remove various bugs

tone, tonex, atone, atonex -- better intialisation

mxdsr, madsr -- new optional arguemnt to give releasetime.
linesegr, expsegr -- bugs corrected

vpvoc -- new optional argument to give a table for controd rather
than previous tableseg/tablexseg

dider* -- fixed so work

phasorbnk -- bank of phasors

schedkwhen -- k-rate adding of score events

Other Changes:

Better treatment of score events

Windows GUI Changes

Correctionin MIDI files selected

phasorbnk

kr phasorbnk kcps, kindx, icnt [, iphs]
ar phasorbnk xcps, kindx, icnt [, iphs]

DESCRIPTION

This opcode works like the phasor opcode, except that there is an
array of an arbitrary number of phasors that can be accessed by
index.

INITIALIZATION

icnt - maximum number of phasors to be used.

iphs - initial phaseif each phasor, if -1 initialization is skipped.
If > 1 al phaseswill be initialized with arandom value.

PERFORMANCE

For each independent phasor an internal phase is successvely
accumulated in accordance with the cps frequency to produce a
moving phase value, normalized to liein the range 0 <=phs < 1.

Each individual phasor isaccessed by index kindx.

This phasor bank can be used insde a k-time loop to generate
multiple independent voices, or together with the adsynt opcode to
change parametersin the tables used by adsynt.

EXAMPLE
Generate multiple voices with independent partials.
(Infact this example would better be done with adsynt.)

See also examplefor k-rate use of phasorbnk under adsynt.

giwaveftgen 1, 0, 1024, 10, 1 ; generate asinewave table

instr 1
icnt = 10 ; generate 10 voices
asum = 0 ; empty output buffer
kindex = 0 ; reset loop index
loop: ;loop executed every k-cycle
keps = (kindex+1)*100 + 30 ; nonharmonic partials

aphas phasorbnk keps, kindex, icnt ; get phase for each voice

adg table aphas, giwave, 1 ; and read wave from table
asum = asum + asig ; accumulate output
kindex = kindex + 1

if (kindex < icnt) kgoto loop ; do loop

out asum™* 3000
endin

==John ff
1999 August 30

Release Notes for 4.01

These are the release notes for version 4.01. This is a set of small
changes againgt verson 4.00, which was only dightly different from
the 3.59 (v4.0 beta) release. These notes incorporate al changes
sncev3.591

Bug Fixes

None

Language Changes

Csound no longer creates score.srt asafixed file unless the option
-t0 isgiven.

Opcode Fixes

wguidel and wguide2 -- fixed code so both arate and k-rate
variables can be used.

pvinterp and pvread -- now allow small frame sizes
space -- bug fixed which would lead to inconsistent results

schedule and schedwhen -- should now work if the event is in the
future

(opcode change)

reony -- now has a new optional argument (not at the end
***INCOMPATIBLE CHANGE**) which controls logarithmic or
linear spread.

See new documentation below.

Other Changes:

Version number now printed in x.xx format

109

Windows GUI Changes

Changes to how often the screen is repainted; should maintain the
graphs better.

New check box in Extrasdialog for keeping score.st

==John ff
1999 Thanksgiving Week (USA)

resony
ar resony asig, kbf, kbw, inum, ksep [, isepmode, iscl, istor]
DESCRIPTION

A bank of second-order bandpassfilters, connected in parallel.
INITIALIZATION

inum - number of filters.

isspmode - determines if the separation center frequencies of each
filter must be generated in logarithmically (using octave as unit of
measure) or linearly (using Hertz). Default value is O, corresponding
to logarithmic mode.

iscl - coded scaling factor for resonators. A value of 1 dgnifies a
pesk regponse factor of 1, i.e. all frequencies other than kcf are
attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overal RMS value
equals 1. (This intended equalization of input and output power
assumes all frequencies are physically present; hence it is most
applicable to white noise) A zero value signifies no scaling of the
signal, leaving that to some later adjusment (e.g. see balance). The
default valueisO.

igor - initial dispodtion of internal data space. Since filtering
incorporates a feedback loop of previous output, the initial status of
the storage space used is dgnificant. A zero value will clear the
gpace; a non-zero value will allow previous information to remain.
The default valueisO.

PERFORMANCE

asig - audioinput signal

kbf - basefrequency, i.e. center frequency of lowest filter in Hz
kbw - bandwidthin Hz

ksep - separation of the center frequency of filters (in octaves or in

Hertz, depending by isepmode flag)

resony is a bank of second-order bandpass filters, with k-rate variant
frequency separation, base frequency and bandwidth, connected in
paralld (i.e the resulting signal is a mixing of the output of each
filter). The center frequency of each filter depends of kbf and ksep
variables. The maximum number of filtersis set to 100.

EXAMPLE:

In this example the global variable gk1 modifies kbf, gk2 modifies
kbw, gk3 inum, gk4 ksep and gk5 the main volume.

instr 1

al soundin "myfile.aif"

a2 resony al, okl,gk2,i(gk3),gk4
out a2 * gk5
endin

Release Notes for 4.02

These aretherelease notesfor verson 4.02. Thisisa set of small
changes againg version 4.01.

Bug Fixes

On Windows, Macintoshes and BeOS any silent section of audio was
possibly too long by up to 127 k-cycles.

Coding error in tablew code fixed -- may have not given any errors.
Similar error in Windows interface fixed.

Temporary filesare removed (was OK on Unix)
N in scoresrefersto previous event always

Language Changes

Gen23 treats negative numbers correctly, and is more forgiving in
some cases

Opcode Fixes

NONE

Slightly improved performance on Windows.

Windows GUI Changes

Improved code for Fixes some

longstanding oddities

play_at end and smilar.

Stupid coding errorsin sound input fixed

==John ff
2000 Jan 29

Release Notes for 4.03

These are the release notes for verson 4.03. This is a st of small
changes againg version 4.01/4.02.

Bug Fixes

pvl_main.c had a small coding error

Removed stdout and stdin as values in top-level assgnment as some
C systemsdo not alow it.

Coding error in getstring fixed

Language Changes

110

In loscil and loscil3 the base frequency of a sample defaults to
middle C if it ismissing from the sample and the opcode

The opcodes rand, randh and randi all accept an additional optional
argument which is a base value added to the random result. This
valuecan vary at krate.

Opcode Fixes

follow2 -- a different envelope extractor with controllable response to
riseand fail

Other Changes:

The scale program can now take new arguments -M num or -P num
which give a maximum value to which to scale or a maximum
percentage of full range (32767 or 1.0 for floats). This uses two
passes over the sound file.

On Windows machines the temporary files are made in the temporary
directory, or SFDIR or HOME based on environment variables.

Experimentally | have arranged that an AlIFF sample read which has
no looping information is adjusted to be treated as a single loop the
length of the sample.

WAV and AIFF files generated by Csound now contain a PEAK
chunk.

Windows GUI Changes

==John ff
2000 Feb

follow2
ar follow2 asig, katt, krel
DESCRIPTION

A controllable envel ope extractor using the algorithm attributed to
Jean-Marc Jot.

PERFORMANCE

asg -- theinput signal whose envelope isfollowed

katt -- the attack rate (60dB attack timein seconds)

krel -- the decay rate (60dB decay timein seconds)

The output tracks the amplitude envelope of the input signal. The
rate at which the output grows to follow the signal is controlled by
the attack rate, and the rate at which is decreases in response to a
lower amplitude is controlled by the release rate. This gives a
smoother envelope that the follow opcode at a little more expense.
EXAMPLE

al follow2 ain, 0.01, .1

JPff

Release Notes for 4.05

These are the release notes for verson 4.05. There were no notes for
4.04 which was only released for Linux. This verson contains two
new families of opcodes, and some significant fixes.

Bug Fixes

Calculation of kr (if omitted) was wrong

On some systems (notable recent Linux) the double closing of the
file scfp let to crashes.

Temporary filesare cleaned up in more circumstances

Problemswith large numbers of |abelsfixed

Language Changes

Added a new option, -Z, which switches on dithering of audio
conversion from internal fpt to 32bit, 16bit and 8bit formats. Thisis
not properly tested

Opcode Fixes

atone and atonex failed if the input and output were the same variable

Simpler testsin midiops3 family

Added two opcodes for scanned synthesis (Interval's copyright):
scanu
scans

Added family of Sound Font opcodes:
Sfload, sfpreset, sfplay, sfplaym,
Spligt, Sfilig, sfpassign, sfinstrm, sfinstr

Other Changes:

Integration of BeOs makefiles and audio

Windows GUI Changes

==John ff
2000 March

SoundFont2-related opcodes

ifilhandle sfload "filename"

sfplist ifilhandle

sfilist ifilhandle

sfpassign igtartindex, ifilhandle

ipreindex sfpreset iprog, ibank, ifilhandle, ipreindex

al,a2 sfplay ivel, inotnum, xamp, xfreq, ipreindex [, iflag]
al sfplaym ivel, inotnum, xamp, xfreq, ipreindex [, iflag]

al,a2 sfinstr ivel, inotnum, xamp, xfreg, instrNum, ifilhandle [, iflag]
al sfinstrm ivel, inotnum, xamp, xfreg, insgtrNum, ifilhandl€], iflag]

DESCRIPTION

Csound now supports SoundFont2 format. These opcodes allow to
manage the sample-structure of SoundFont?2 files.

INITIALIZATION

filename - name of the SoundFont2 file (complete pathname). You
mugt use "/" to separate directories even under Windows. It must be
typed within double-quotes.

ifilhandle - unique number generated by sfload opcode to be used as
an identifier of a SoundFont2 file, since several SoundFont2 files can
be |oaded and activated at the same time.

igartindex - sarting preset index set by the user in bulk preset
ass gnments (see below).

ipreindex - preset index

iprog - program number of a bank of presets of a SoundFont2 file

ibank - number of a specific bank of a SoundFont2 file

ivel - velocity value

inotnum - note number value

iflag - flag regarding the behaviour of xfreq (see below).

instrNum - number of an instrument of a SoundFont2 file.

PERFORMANCE

xamp - amplitude correction factor
xfreq - frequency value or frequency correction factor (depending by
iflag, see below)

SoundFont2 is a widespread standard which allow to embed banks of
wavetable-based sounds into a binary file. In order to understand the
usage of these opcodes, the user must know some notion about SF2
format. So a brief description of thisformat follows.

The SoundFont2 format is made by generator and modulator objects.
All current Csound opcodes regarding SF2 support generator section
only, so we will only deal with the generator-related structure of SF2
format, omitting the modul ators.

There are several levels of generators having a hierarchical structure.
The most basic kind of generator object is a sample. Samples can or
can't be be looped and are associated to a MIDI note number, called
base-key. When a sample is associated with a range of MIDI note
numbers, with a range of velocities, with a transposition (coarse and
fine tuning), with a scale tuning, and with a level scaling factor, such
sample makes up a split. A set of splits, together with a name, makes
up an instrument. When an instrument is associated with a key range,
with a velocity range, with a level scaling factor, and with a
transposition, it makes up a layer. A set of layers, together with a
name, makes up a preset. Presets are normally the final sound-
generating structures ready for the user. They generate sound
according to the settings of their lower-level components.

Both sample data and structure data is embedded in the same
SoundFont2 binary filee A single SF2 file can contain up to a
maximum of 128 banks of 128 preset programs, for a total of 16384
presets each one. Maximum number of layers, instruments, splits and
samples is not defined, and probably is only limited by the computer
memory.

Sfload opcode loads an entire SF2 file in memory. It returns a file
handle to be used by other opcodes. Several instances of sfload can
placed in the header section of an orchestra, alowing to work with
more-than-one SF2 files at the same time.

Sfplist prints a list of all presets of a previoudy loaded SF2 file to the
console.

Sfilist prints a ligt of al instruments of a previoudy loaded SF2 file to
the console.

sfpassign assigns al presets of a previoudy loaded SF2 file to a
sequence of progressive index numbers, to be used later with the
opcodes Sfplay and sfplaym. The user can edtablish the first index
number by setting dtartindex argument. Any number of sfpassign
instances can be placed in the header section of an orchestra, each
one assigning presets belonging to different SF2 files. The user must

take care that preset index numbers of different SF2 files don't cross
themselves.

sfpreset assigns an existing preset of apreviously-loaded SF2 fileto

an index number, to be used later with the opcodes sfplay and
sfplaym. The user must previoudy know the program and the bank
numbers of the preset in order to fill the corresponding arguments.
Any number of sfpreset instances can be placed in the header section
of an orchestra, each one assigning a different preset belonging to the
same (or different) SF2 file to different index numbers.

sfplay plays apreset generating a stereo sound.

ivel argument does not directly affect the amplitude of the output, but
inform sfplay opcode about what sample has to be chosen in multi-
sample velocity-splitted presets. inothnum argument sets the
frequency of the output when iflag = 0. When iflag == 1, inotnum
doesn't directly affect the frequency of the output (see below).
Adjustment of amplitude can be done by varying the xamp argument,
that actualy is a multiplier factor. xfreq argument have a two
different behaviour depending by the val ue of iflag argument:

when iflag = 0 (or missing asthis vaue is the default)

xfreq argument is amultiplier of athe default frequency

assigned by SF2 preset to the inotenum value. This can correct
the default frequency (for example to obtain vibrato or some other
frequency -shift effect).

when iflag = 1 xfreq argument should contain the actua frequency
of the output sound in cps. This allow the user to use any kind of
micro-tuning based scales. However this flag is designed to work
correctly only with presets tuned to the default equal temperament.
Dont try to use this flag value with preset aready having non-
standard tunings or with drum-kit-based presets, since unexpected
results could occur.

Notice that both xamp and xfreq arguments can contain k-rate signals
as well as a-rate sgnals, but the user must be sure that both rguments
are filled with variables of the same rate, or sfplay will ot work
correctly. The user must be sure that ipreindex argument isilled with
a number containing a previoudy assgned preset, therwise Csound
will crash.

sfplaym opcode is a mono version of sfplay. It should be used with
ono preset, or with the stereo presets in which stereo output is not
equired, becauseisa bit faster than sfplay.

sfingtr playsan SF2 instrument instead of a preset (an SF2 instrument

is the base of a preset layer). instrnum argument contains the
nstrument number, and the user must be sure that such number
belongs o0 an exigent instrument of a determinate soundfont bank.
Notice that oth xamp and xfreq arguments can contain k-rate sgnals
as well as -rate sgnals, but, also in this case, the user must be sure
that oth arguments are filled with variables of the same rate, or sfinstr
will not work correctly.

sfinstrm plays is a mono version of sfingr. This is the fastest opcode
of the SF2 family.

These Csound opcodes only handle sampling structure of SF2 files,
because support of modulator objects (amplitude envelopes,
frequency modulation, filter envelopes and modulation) isvery basic
and trivial in SF2 standard; 0, adding any kind of modulation or
processing to the sample data is completely left to the Csound user,
bypassing al restrictions forced by the SF2 standard.

Gabriel Maldonado

scanu iinit, irate, ivel, im, if, ic, id, km, kf, kc, kd,

il, ir, kx, ky, ain, idisp, iid

iinit: the initial position of the masses. If this is a negative number,
then the absolute of iinit signifies the table to use as a hammer shape.
If iinit > 0, the length of it should be the same as the intended mass
number, otherwiseit can be anything.

irate: the amount of time between successve updates of the mass
sate. Kind of like the sample period of the system. If the number is
big the string will update at a dow rate showing little timbral

112

variability, otherwise it will change rapidly resulting in a more
dynamic sound.

ivel: The number of the ftable that contains the initial velocity for
each mass. It should have the same size as the indented mass
number.

im: The number of the ftable that contains the mass of each mass. It
should have the same size as the indented mass number.

if: The number of the ftable that contains the spring stiffness of each
connection. It should have the same sSze as the square of the
indented massnumber. The data ordering isa row after row dump of
the connection matrix of the system.

ic: The number of the ftable that contains the centering force of each
mass. It should have the same size as the indented mass number.

id: The number of the ftable that contains the damping factor of each
mass. It should have the same size as the indented mass number.

km: A parameter that scal esthe masses.

kf: a parameter that scalesthe spring stiffness.
kc; a parameter that scalesthe centering force.
kd: a parameter that scales damping.

il: If iinit < O, the pogdtion of the left hammer (il = 0 is hit at
leftmogt, il = 1 ishit at rightmost).

ir: If iinit < 0, the pogtion of the right hammer (ir = O is hit at
leftmogt, ir = 1 ishit at rightmost).

ix: This is the pogtion of an active hammer aong the string (0
leftmogt,1 rightmost). The shape of the hammer is determined by
iinit and the power it pusheswithisiy.

iy: The power that the active hammer uses.

ain: The audio input that adds to the velocity of the masses (don't
makeit too loud).

idisp: If O, no display of the masses is provided. Otherwise you get
to seethemwiggle.

iid: For scanu: the ID of the opcode. This will be used to point the
scanning opcode to the proper waveform maker. If this value is
negative it is minus the wavetable on which to write the waveshape.
That wavetable can be used later from an other opcode to generate
sound. The initial contents of this table will be destroyed, so do not
rely on them being there.

The syntax for scansis:

scans kamp, kfreg, itrj, iid

kamp: The output amplitude. Note that the resulting amplitude is also
dependent to the state of the wavetable. This number is effectively
the scaling factor of the wavetable.

kfreg: Thefrequency of the scan rate.

itraj: The number of the ftable that contains the scanning trajectory.
This is a series of numbers that contains addresses of masses. The
order of these addresses is used as the scan path. It shouldn't contain
values more that the number of masses, aswell as negative numbers.

iid: The ID number of the scanu opcode's waveform to use. To
produce the matrices, the file format is straightforward. For example
for 4 masses we have the following grid describing the connections:

[11213]4]

Whenever two masses are connected then the point they define is 1,
so for a unidirectional string we would have the following
connections, (1,2), (2,3), (3,4) (if it was bidirectional we would also
have (2,1), (3,2), (4,3)). So| fill these out with ones and the rest with
zerosand | get:

[112]3]4]

Similarly for the other shapes, | find the connections and fill them
out. This gets saved in an ASCII file column by column, so the string
up there would be saved as:

OCOO0OFrOO0O0OrPROO0O0ORrRO

Paris Smaragdis

Release Notes for 4.06

These are the release notes for version 4.06. A lot has changed, and
in places my notes are less than explicit. Major change isin multiple
channel audio. The maximum number of channels is increased to
256, and there are opcodes for reading and writing many channels.

Related there are the VBAP family of opcodes which allow for
positioning and moving of sound between members of an array of

speakers.

| have been playing with Tcl/Tk having had to teach it this last term,
and | have a set of on-screen diders which can control an instrument,
not through MIDI. As this is a first attempt there may be
opportunities for better versons. The interface is such that any
Python fans, or indeed any other system could be used ingtead. At
present it assumes the existence of wish and the TK sources are
hardwired. Thiswill changewhen i have thought about it.

Bug Fixes

In reading scores it was possible to get an overflow condition which
gavereally odd errors.

113

Language Changes

In scansys opcodes it is now possible to sdect the interpolation order
with a new optional i-rate argument. The default is 4 (as it was
previoudy) but there are reports that cubic (3) or quadratic (2)
sounds better, and iscertainly faster.

Maximum number of audio channelsin now 256

File names in FGENS 23 and 28 are now expanded relative to a

number of directories.
Opcode Fixes

Bugin ADSR fixed.
vpvoc now checks things more carefully

schedule now behaves with negative triggers

outx, out32 and outch, outz for multi-channel output

inx, in32 and inc, inz smilar for input

vbap family of opcodes added (vbap4, vbap8, vbapl6, vbapz,
vbaplsnit,

vbap4move, vbap8move, vbapl6move, vbapzmove)

control, setentrl now available for UNIX, and any operating system
with Tdl/Tk (perhaps)

pinkish to generate pink noise
segtime, trigseq - Handle timed-sequences of groups of values
stored into tables.

Other Changes:

OS2 code now incorporated into sources
Soundfont code reworked

There is a small Tcl/Tk program to build matrices for the scanned
synthesis opcodes -- matrix.tk

GUI Changes

In Windows, Heartbeat option 3 writesinformation to title bar

In Unix implementations there are now on-screen diders for real-
time control of Csound, using the control opcode.

==John ff
2000 June 10

ar pinkish xin[, imethod, inumbands, iseed, iskip]

Generates approximately pink noise (-3dB/oct response) by two
different methods: multirate noise generator due to Moore, coded by
Martin Gardner, or afilter bank designed by Paul Kellet.

PERFORMANCE

ar - pink noise.

xin - For Gardner method: k- or a-rate amplitude.
For Kellet filters: normally arate uniform random noise from
rand (31-hit) or unirand, but can be any aratesignal.
The output peak value varies widdly (15%) even over long runs,
and will usually bewell below the input amplitude. Peak

values may also occasionally overshoot input amp/noise.
imethod - (optional) selectsfilter method.
=0 Gardner method (default).
=1 Kellet filter bank.
=2 A somewhat faster filter bank by Kellet, with less accurate
response.
inumbands - (optional) only effective with Gardner method. The
number
of noise bands to generate. Maximum is 32, minimum is 4.
Higher levels give smoother spectrum, but above 20 bands
there will be almost DC-like dow fluctuations. Default value
is20.
iseed - (optional) only effective with Gardner method. If non-zero,
seeds the random generator. If zero, the generator will be seeded
from current time. Default is 0.
iskip - (optional) if non-zero, kip (re)initialisation of internal state
(useful for tied notes). DefaultisO.

pinkish attempts to generates pink noise (ie noise with equal energy
in each octave), by either of two different methods.

The first method, by Moore/Gardner, adds several (up to 32) sgnals
of white noise, generated at octave rates (3, /2, /4 etc). It gets
pseudo-random values from an internal 32-bit generator, which is
local to each opcode instance and seedable (smilarly to rand).

The second method is a lowpass filter with hardcoded response
approximating -3dB/oct. If input is uniform white noise, it outputs
pink noise. Any signal may be used as input for this method. The
high quality filter is dower, but has less ripple and dightly wider
operating frequency range than the "economy" verson. With the
Kellet filters, seeding isnot used.

The Gardner method output has some bumps and dips in the low-mid
and mid-high frequency ranges. It can be set to generate more low-
frequency energy by increasing the number of bands. It is aso a bit
faster. The Kdlet filter (refined) has very smooth spectrum, but a
more limited effective range, and the level increases dightly at the
high end of the spectrum.

EXAMPLE
Kellet-filtered noisefor atied note (iskip is non-zero).

awhite unirand 2.0
awhite = awhite- 1.0 ; Normalizeto ++1.0
apink pinkish awhite, 1, 0, 0, 1

out apink * 30000

outx al, a2, a3, a4, ab, ab, a7, a8, a9, aa, ab, ac, ad, ae, af

out32 al, a2, a3, a4, ab, ab, a7, a8, a9, aa, ab, ac, ad, ae, &,
ag, ah, a, aj, ak, a, am, an, ao, ap, ag, ar, as, at, au

outc alf, a2,....]

outch ki, a1, k2, a2,

outz k1

outx and out32 output 16 and 32 channels of audio.

outc outputs as many channels as provided. Any channels greater
than nchnls are ignores, and zeros are added as necessary outch
outputsal on channel k1, a2 on channel k2 and so on.

outz outputsfrom a ZAK array, for nchnlsof audio

al, a2, a3, a4, ab, ab, a7, a8, a9, aa, ab, ac, ad, ag, af inx al, a2, a3,
a4, ab, ab, a7, a8, a9, aa, ab, ac, ad, ae, &f, ag, ah, a, g, ak, a, am, an,
a0, ap, &g, ar, as, at, auin32
al inch k1

inz k1

inx and in32 read 16 and 32 channel inputs
inch reads from a numbered channel k1 into al
inz readsaudio samplesin nchnlsinto aZA array starting at k1

vbaplsinit, vbap4, vbap8, vbapl6
vbap4move, vbap8move, vbaplémove
vbaplsinit idim, ils_amount, idird, idir2,...

al, a2, a3, ad vbap4 adg, iazi,iele, ispread

al, a2, a3, a4, a5, ab, a7, a8 vbap8 adg, iazi,iele, ispread

al, a2, a3, a4, ab, a6, a7, a8, a9, al0, all, al2, al3, al4, al5, al6
vbap16 adg, iazi,ide, ispread

al, a2, a3, a4 vbapdmove asig, ispread, ifld_amount, ifldd, ifld2, ...

al, a2, a3, a4, a5, &b, a7, a8 vbap8move asig, ispread, ifld_amount,
ifldi, ifld2, ...

al, a2, a3, a4, ab, a6, a7, a8, a9, alo, all, al2, al3, al4, al5, al6
vbaplémove asig, ispread, ifld_amount, ifldl, ifld2, ...

Digtribute an audio signal amongst 2 to 16 channels with localization
control.

INITIALIZATION
idim - dimensionality, 2 or 3.

ils_amount - number of loudspesakers. In two dimensions the number
can vary between two to 16. In three dimensions the number can vary
between three and 16.

idirn - directions of loudspeakers, number of directions must be less
or equal than 16. In two-dimensonal loudspeaker postioning idirn is
the azimuth angle respective to nth channd. In three-dimensional
loudspeaker positioning fields are the azimuth and elevation angles
of each loudspeaker consequently (azil, elel, azi2, de2,...).

asg - audio signal to be panned.
iazi - azimuth angle of the virtual source.
iele - elevation angle of the virtual source

ipread - spreading of the virtual source (range O - 100). If value is
zero, conventional amplitude panning is used. When value is
increased, the amount of loudspeakers used in panning gets larger. If
valueis 100, the sound isapplied to all loudspeakers.

ifld_amount - number of fields (absolute value must be 2 or larger).

If ifld_amount is positive, the virtual source movement isa polyline
specified by given directions, each trangtion is performed in an equal
time interval. If ifld_amount is negative, specified angular velocities
are applied to the virtual source during specified relative time
intervals (see below).

ifldn - Azimuth angles or angular velocities, and relative durations of
movement phases (see below).

PERFORMANCE

vbap4, vbap8 and vbapl6 take an input sgnal asig and distribute it
amongst at two to 16 outputs according to the controls iazi and ide
and configured loudspeaker placement. If idim = 2, ide is st to
zero. The digtribution is performed using Vector Base Amplitude
Panning (VBAP) [1]. VBAP distributes thesigna using loudspeaker
data configured with vbaplsinit. The signal is applied at most to two
loudspeakers in 2-D loudspeaker configurations and to three
loudspeakers in 3-D loudspeaker configurations. If the virtual source
is panned outsde the region spanned by loudspeakers, nearmost
loudspeakers are used in panning.

vbapdmove, vbap8move and vbaplémove allow moving virtua
sources to be applied. If ifld_amount is postive, the fields represent
directions of virtual sources and equal times, iazil, [idel,] iazi2,
[ide2]....

The pogtion of the virtual source is interpolated between directions
garting from first direction and ending to last. Each interval is
interpolated in time that is fraction total_time / number_of_intervals
of the duration of the sound event.

If ifld_amount is negative, the fields represent angular velocities and
equal times. The firgt field is however the starting direction, iazil,
[idel,] iazi_vell, [ide vell)] iazi_vel2, [ide vel2)]....

Each veocity is applied to the note that is fraction total_time/
number_of_veocities of the duration of the sound event. If the
devation of the virtual source becomes greater than 90 degrees or
lessthan O degrees, the polarity of angular velocity ischanged. Thus
the elevational angular velocity produces a virtua source that moves
up and down between 0 and 90 degrees.

EXAMPLE
2-D panning example with stationary virtua sources

sr = 44100

kr =441

ksmps = 100

nchnls=4

vbaplsinit 2, 6, 0, 45, 90, 135, 200, 315,

instr 1 ;parameter

asig oscil 20000, 440, 1 ; p4 = azimuth

al, a2, a3, a4, a5, a6, a7, a8 vbap8 asig, p4, 0, 20

outq al,a2a3,ad
; outg &b,a6,a7,a8
endin
References
[1] Ville Pulkki: Virtual Sound Source Postioning Using Vector
Base Amplitude Panning. Journal of the Audio Engineering Society,
1997 June, Vol. 45/6, p. 456.

Implementation by Ville Pulkki

Sibdius Academy Computer Music Studio
Laboratory of Acoustics and Audio Signal Processing
Helsnki Univerdty of Technology

May 2000

The opcode vbapz and vbabzmove are the multiple channel analogs
of the above opcodes, working an nchnls and usng a ZAK array for
output.

Thelimit on the number of channelsis256.

(Coded by JPff from materid of Ville Pulkii)

Sequence-related opcodes (segtime and trigseq)

ktrig_out seqtime ktime_unit, kstart, kloop, initndx, kfn_times
trigseq ktrig_in, kstart, kloop, initndx, kfn_values, koutl [,
kout2, kout3,, koutN]

DESCRIPTION

Handl e timed-sequences of groups of values stored into tables.
INITIALIZATION

initndx - initial index

PERFORMANCE

ktrig_out - output trigger signal

ktime_unit - unit of measure of time, related to seconds.

kstart - start index of looped section

kloop - end index of looped section

kfn_times - number of table containing a sequence of times

kfn_values - numer of a table containing a sequence of groups of
values

ktrig_in - input tirgger signal

koutl [, kout2, kout3, ..., koutN] - output values

These opcodes handle timed-sequences of groups of values stored
into tables.

segtime generates a trigger sgnal (a sequence of impulses, see also
trigger opcode), according to the values stored in kfn_times table.

115

This table should contain a series of detatimes (i.e. times beetween
to adiacent events). The time units stored into table are expressed in
seconds, but can be rescaled by means of ktime_unit argument. The
table can be filled with GENO2 or by means of an external text-file
containing numbers, with GEN23. It is possible to start the sequence
from a value different than the first, by assigning to initndx an index
different than zero (which corresponds to the first value of the table).
Normally the sequence is looped, and the start and end of loop can be
adjusted by modifying kstart and kloop arguments. User must be sure
that values of these arguments (as well as initndx) correspond to
valid table numbers, otherwise Csound will crash (because no range-
checking is implementeted). It is possible to disable loop (one-shot
mode) by assgning the same value both to kstart and kloop
arguments. In this case, the last read element will be the one
corresponding to the value of such arguments. Table can be read
backward by assgning a negative kloop value. It is posshle to
trigger two events almogt at the same time (actually separated by a k-
cycle) by giving azero valueto the corresponding deltatime.

First element contained in the table should be zero, if the user intend
to send a trigger impulse it immediately after the orchestra
instrument containing segtime opcode

trigseq accepts a trigger signal (ktrig_in) as input and outputs group
of values (contained into kfn values table) each time ktrig_in
assumes a hon-zero value. Each time a group of values is triggered,
table pointer is advanced of a number of postions corresponding to
the number of group-elements, in order to point to the next group of
values. The number of elements of groups is determined by the
number of koutX arguments. It is possible to start the sequence from
a value different than the first, by assigning to inithdx an index
different than zero (which corresponds to the first value of the table).
Normally the sequence is looped, and the start and end of loop can be
adjusted by modifying kstart and kloop arguments. User must be sure
that values of these arguments (as well as initndx) correspond to
valid table numbers, otherwise Csound will crash (because no range-
checking is implementeted). It is possible to disable loop (one-shot
mode) by assgning the same value both to kstart and kloop
arguments. In this case, the last read element will be the one
corresponding to the value of such arguments. Table can be read
backward by assigning anegative kloop value.

trigseq is designed to be used together with segtime or trigger
opcodes.

Example:
instr 1
icps cpamidi
iamp ampmidi 5000
ktrig segtime 1, 1, 10, 0,1
trigseq ktrig, 0, 10, O, 2, kdur, kampratio, kfregratio
schedkwhen ktrig, -1, -1, 2, 0, kdur, kampratio*iamp, kfregratio*icps
endin
instr 2
% put here your intrument code ****
out al
endin

Release Notes for 4.07

These are the release notes for version 4.07. Note that there are four
new files in the sources, bowedbar.c, bowedbar.h, phisem.c and
phisem.h.

Bug Fixes

Error in messagein extract functionsfixed

Typing error in fileopen fixed

Fixed bad message in AIFF headers

Minor fix in WAV format files used for input

Initial valuein midi controllers changed in one case

Language Changes

New tags added to .csd files to alow for Base64 encoded MIDI files
<CaMidifileB filename=...>, and for Bas64 encoded samples
<CsSampleB filename=...>.

Macro names can now include _ as acharacter

Exponential format numbers in scores allowed (finishes earlier
attempt)
Opcode Fixes

Minor bug in bowed fixed related to length of delay line

The physical model opcodes have been revised in linewith P.Cook's
STK3.1. This effects filter values in marimba, gogobel in particular.
Strike position on vibraphone now used, and in gogobell.

The reverb and nreverb opcodes could have a zero delay time, which
gives rise to an infinite gain. Attempts to set non-postive delay has
the value changed to 0.01s

clip -- apply soft clipping to a signal using a variety of algorithms.
Current version has two working agorithms

wgbowedbar -- physical model of a bowed bar
PhiSem family of opcodes cabasa, crunch, sekere, sandpaper, tix,

guiro, tambourine, bamboo, dripwater, deighbells. These are all
percussion sounds.

Other Changes:

Some support for OS2 in sources
Some support for rpm format distribution

Invbap alarge array has been moved off stack, which should help
platformswith stack limitations,

Windows GUI Changes

Phase VVocoder dialog had its check for illegal hopsize all wrong

PVLook dialog extended to allow alog file

==John ff
2000 August

ar clip ain, imethod, ilimit[, iarg]

Clips an input audio signal to a limit in a 'soft' fashion rather than a
sraight cutoff. There are three methods at present, and the argument
isused in each case to control the abruptness of the clip.

PERFORMANCE

ar - clipped audio

ain - aninput a-rate signal

imethod - selects clipping method.
=0 Bram de Jong method (default).
=1sneclipping
=2 tanh clipping

116

iarg (optional)-- Method O in the range O to 1 indicating the fraction
at which the clipping starts. Default value is 0.5. This argument is
not used in methods 1 or 2

The first method, by Bram de Jong, applies the algorithm (assuming
a

signal normalised to 1).

| >a f(x) =sign(x) * (a+ (xa)/(1+((x-a)/(1-8))"2))

X > 1: f(x) =sign(x)* (a+1)/2

The second method isa sineclip:
XI<limit f(x) = limit * sSin(pi x/(2*limit)
f(x) = limit * sign(x)

Thethird method isa tanh clip:
XI<limit f(x) = limit * tanh(x/limit)/tanh(1)
f(x) = limit * sign(x)

Note: Method 1 seemsto be non-functional
EXAMPLE

al in

a2 oscil 25000, 1

asig clip al+a2, 0, 30000, 0.75
out asig

ar wgbowedbar kamp, kfreqg, kpos, kbowpres, kgain[, kconst,
ktVe, ibowpos, ilow]

A physca modd of a bowed bar, belonging to the Perry Cook
family of waveguide instruments.

kamp -- amplitude of signal
kfreq -- frequency of signal
kpos -- where on bar the bow isused in the range 0 to 1

kbowpres -- pressure of the bow 9as in wgbowed)
kgain -- gain of filter; suggested to have values about 0.809.

kconst -- an integration congtant, defaulting to zero.

ktVe -- either O or 1; with zero the bow velocity followsan ADSR
styletrajectory; when 1 the value of the bow velocity decaysin an
exponential way.

kbowpos -- the position on the bow, which affects the bow velocity
trajectory.

ilow -- lowest frequency required

Example
instr 1
o pos=10, 1]
o bowpress=[1, 10]
o GAIN =[0.8, 1]
o intr =[0,1]
o trackvel = {0, 1}
o bowpos = [0, 1]
;; amp,freg, pos,bowPr, GAIN, int,trackVe ,bowpos,lowest
Freq;
kb line 0.5, p3, 0.1
kp line 0.6, p3, 0.7
ke line 1,p3,1
al wgbowedbar p4, cpspeh(p5), kb, kp, 0.995, p6, 0, ke,
50
out al

endin

i10 3320007.000

PhiSem::

ar cabasa iamp, idettack[, knum, kdamp, kmaxshake]

ar crunch iamp, idettack[, knum, kdamp, kmaxshake]
ar sekere iamp, idettack[, knum, kdamp, kmaxshake]
ar sandpaper iamp, idettack[, knum, kdamp, kmaxshake]
ar stix iamp, idettack[, knum, kdamp, kmaxshake]
ar guiro iamp, idettack[, knum, kdamp, kmaxshake,
kfreq, kfreql]
ar tambour ine iamp, idettack], knum, kdamp, kmaxshake,
kfreg, kfreql, kfreg2]
ar bamboo iamp, idettack[, knum, kdamp, kmaxshake,
kfreg, kfreql, kfreg2]
ar dripwater iamp, idettack[, knum, kdamp, kmaxshake,
kfreg, kfreql, kfreg2]
ar sleighbells iamp, idettack[, knum, kdamp, kmaxshake,

kfreg, kfreql, kfreg2]

Semi-physical models of various percussion sounds.

iamp -- Amplitude of output.

Note that as these ingtruments are

stochagtic, thisisonly a rough guide.

idettack -- period of time over which al sound is stopped

knum -- The number of beads, teeth, bells, timbrelsetc. If zerothe

default valueisused

cabasa 512
crunch 7
sekere 64
sandpaper 128
stix 30
guiro 128
tambourine 32
bamboo 125
dripwater 10
deighbells 32

kdamp -- the damping factor of theinstrument. Thevalueisused as
an adjustment close to the defaults below, with 1 being no damping.

If zero the default valuesare:

cabasa 0.997
crunch 0.99806
skere 0.999
sandpaper 0.999
stix 0.998
guiro 1.0
tambourine 0.9985
bamboo 0.9999
dripwater 0.995
deighbells 0.9994
kmaxshake -- amount of energy to add back into the system, in range
Otol.
kfreq -- Setting the main resonant frequency; default valuesare:
guiro 2500
tambourine 2300
bamboo 2800
dripwater 450
deighbells 2500
kfregl -- setting the first resonant frequency; defaultsare
guiro
tambourine 5600
bamboo 2240
dripwater 600
deighbells 5300
kfreg2 -- setting the second resonant frequency; defaultsare
tambourine 8100
bamboo 3360
dripwater 750
deighbells 6500
Examples

asgcabasa p4,0.01,0,0,0
asgskere p4,0.01,0,0,0
asg sandpaper p4, 0.01,0,0,0
asg tix p4,0.01,0,0,0

asig tambourine p4, 0.01

asig bamboo p4, 0.01

asg dripwater p4, 0.01

117

asgg deighbellsp4, 0.01

Release Notes for 4.08

These are the release notes for version 4.08. Note that there are new
files in the sources, odif.c, «dif.h, sdif-mem.c, sdif-memh and
sdif2adsyn.c

This release is mainly a number of bug fixes, but there are a couple
of new opcodes, and a major internal reorganisation to allow creation
of a double-based Csound.

Bug Fixes

Bug in score macros fixed

Dithering message was overlaid with a Scansys message

Language Changes

hetro can generate SDIF files, and a new utility can trandate SDIF to
adsyn

Opcode Fixes

guiro had an argument missing which was dangerous

The damp parameter of guiro was documented as being the damping,
but it was not in the code. It is now, and should have a value less
than 1.

mpulse -- generate a stream of impulses
button -- buttonpush control
checkbox -- checkbox control

Other Changes:

Internal changesto make FreeBSD build easier

There has been a major source change so it is now possible to build
Csound using doubles rather than floats internally (*). This is (in
general) dower and bigger, but more accurate. We have only tested
on Windows and Linux so far. Could be other on other platforms.
Note that this changed nearly every file as the previous attempt fell
over a Windows/Micro$oft special.

(*) Infact | will distribute 32 and 64 bit builds

Windows GUI Changes

On screen controlsfor buttons and checks may work.

==John ff
2000 August

SDIF support in Csound.

For detailed information on the Sound Description Interchange
Format, refer to the CNMAT website:

http://cnmat. CNMAT .Berkeley.EDU/SDIF

If the filename passed to HETRO has the extension .<dif, data will be
written in SDIF format as 1TRC frames of additive synthess data.
The accompanying utility program "sdif2ads' can be used to convert
any SDIF file containing a stream of 1TRC data to the Csound
‘adsyn' format. 'sdif2ads alows the user to limit the number of
partials retained, and to apply an amplitude scaling factor. This is
often necessary, as the SDIF specification does not, to date, require
amplitudes to be within a particular range. 'sdif2ads reports
information about the file to the console, including the frequency
range.

The main advantages of SDIF over the adsyn format, for Csound
users, is that SDIF files are fully portable across platforms (data is
'big-endian’), and do not have the duration limit of 32.76 seconds
imposed by the 16bit adsyn format.This limit is necessarily imposed
by 'sdif2ads. It is planned to incorporate sdif reading directly into
adsyn, thus enabling files of any length (currently memory-
permitting) to be analysed and processed.

It is important to note that the SDIF formats are ill under
development, and that while the 1TRC format is now fairly well
established, it can till change.

Some other SDIF resources (including a viewer) are available via the
NC_DREAM website:

http://www.bath.ac.uk/~mag pf/NCD/dreamhome.html

Richard Dobson 5th August 2000
rwd@cableinet.co.uk

aout mpulse kamp, kfreq[, ioffset]

Generate a set of impulses of amplitude kamp at frequency kfreg.
The first impulse is after a delay of ioffset seconds (defaulting to
zero). The value of kfreq is read only after an impulse, 0 it is the
interval to the next impulse at the time of an impulse.

INITIALISATION

ioffset -- defaultsto zero, isthe delay before thefirst impulse.
If it is negative the value is taken as the negation of the number of
samples; otherwiseit isin seconds.

PERFORMANCE
kamp -- amplitude of the impulses generated
kfreq -- frequency of the impulse train

After the initial delay an impulse of kamp amplitude is generated as a
sngle sample. Immediately after generating the impulse the time of
the next one is calculated. If kfreq is zero there is an infinite wait to
the next impulse. If kfreq is negative the frequency is counted in
samplesrather than seconds.

Example:

Generate a st of impulsesat 10 a second, after a delay of 0.05s
instr 1
al mpulse 32000, 0.1, 0.05
out al
endin

JPff: 2000 Sept 16

kans button inum
kans checkbox inum

Sense on-screen controls (cf control opcode) [Needs Windows or
TCL/TK]

INITIALISATION

118

inum -- the number of the button or checkbox. If it does not exit it is
made on-screen at initialisation time.

PERFORMANCE

If the button has been pushed since the last k-period then return 1;
otherwise return O

If the checkbox is set (pushed) then return 1; if it is not pushed return
0

Example:
increase pitch while a checkbox is set, and extend duration for each
push of abutton

ingtr 1
keps = cpsoct(p5)
k1 check 1

if (k1==1) keps=kcps* 1.1
al oscil p4,keps, 1
out al
k2 button 1
if (k2==1)p3=p3+0.1
endin

JPff: 2000 Sept 16

Release Notes for 4.09

Bug Fixes

Some internal strings had been changed by mistake, confusing some
operating systems.

On Windowsthere was a bug in sfont stuff, now fixed

Language Changes

Itismore likely that // and /* */ comments will work in .csd files
Peak chunks can be switched off with a-K option

There is a new form in a .csd file which allows version checking.
One can police whether the version of Csound can run a particular
piece.

Format is
<CsVerson>
Before#.#
</CsVerson>
Thelast two forms are equivalent

or After ## or ##

Therewas a smple but devastating bug in reading AIFF files

Opcode Fixes

The 31-bit pseudo random number generators are now bipolar as they
should have been.

The diders can now have text labels, which can be set with setctrl
opcode, which isextended to allow case 4 (labdl)

In sfont opcode there is a filter to stop teh printing of unprintable
characters which was upsetting xterms on some unixes.

There was a bug in expseg which | had never seen but could occur if
a dructure wasreused internally.

Therewas a fence-post problem in looping oscilators.

The whole of wgpluck has been reworked. The bug whereby teh first
use was quiet has been fixed, and the excitation of the string moved
to the correct place (it used to be added to outout of string not
theinput). The loop filter has been reworked, for smpler and shorter

119

code, but i am till not convinced that it is correct. It is at least no

Wworse.

babo -- Ball in a Box resonator (note copyright on this)

sense -- Check is a (computer) key has been pressed [Unix only at
present]

transeg -- a mixed linear and exponential envelope opcode, rather
likeincmusic.

GEN16 -- new gen to do the same as transeg

Other Changes:

vreverb revised sgnificantly to allow a more flexible structure

The entry table has been split into two to make it more manageable,
and in particular to allow aM 68K system to be created.
Incorporation of BeOS patches

Windows GUI Changes

==John ff
2000 October

en a nreverb adg, krvt, khdif [, iskip] [,inumCombs,

ifnCombg] [,inumAlpas, ifnAlpas]
INITIALIZATION

inumCombs - number of filter constants in comb filter. If omitted,
the values default to the nreverb constants.

ifnCombs - function table with inumCombs comb filter time values
directly followed the same number of comb gain values. The ftable
should not be rescaled (use negative fgen number).

Pogtive time values are in seconds. The given time is converted
internally into number of samples, and then set to the nearest greater
prime number.

If time is negative, it is interpreted directly as time in sample frames,
and no processing is done (except negetion).

inumAlpas, ifnAlpas - same as inumCombg/ifnCombs, for allpass
filter.
PERFORMANCE

This is a revison of nreverb which adds the possibility of reading
any number of comb and alpassfilter constantsfrom a ftable.

EXAMPLES
Orchestra:
al soundin "neopren.wav"
a2 nreverb al, 1.5,.75,0,8,71,4,72
out al+a2* .4
Score:
; freeverb time congtants, as direct (negative) sample, with arbitrary ;
; gains

f71016 -2 -1116-1188 -1277 -1356 -1422 -1491 -1557 -1617 0.8
0.79 0.78 0.77 0.76 0.75 0.74 0.73
f72016 -2 -556 -441-341-225 0.7 0.72 0.74 0.76

i1 0 7
e

BABO(Csound)
Babo
ar,a babo asg,ksrex,ksrey ksrez,irx,iry,irz idiff[,ifno]]

DESCRIPTION

Babo gands for BAll-withinthe-BOx. It is a physca model
reverberator based on the paper by Davide Rocchesso "The Ball
within the Box: a sound-processng metaphor”, Computer Music
Journal, Vol 19, N.4, pp.45-47, Winter 1995.

A short description of the opcode should mention that it alows to
define the resonator geometry along with some of its response
characterigtics, the position of the listener within the resonator, and
the position of the source of sound. Babo then calculates early and
later reflections by means of a tapped delay line and a circulant
feedback delay network.

INITIALIZATION

irx, iry, irz — the coordinates of the geometry of the resonator (length
of the edges in meters)

idiff - is the coefficient of diffusion at the walls, which regulates the
amount of diffuson (0-1, where 0 = no diffuson, 1 = maximum
diffusion - default: 1)

ifno - expert values function: a function number that holds all the
additional parameters of the resonator

INITIALIZATION (Expert Values)
These values are contained in a function, typicaly a GEN2--type
function used in non-rescaling mode.

decay- maindecay of the resonator (default: 0.99)

hydecay- high frequency decay of the resonator
(default: 0.1)

ICVX,revy,revz -
the coordinates of the position of the
receiver (=thelistener) (in meters; 0,00
is the resonator center)

rdistance- is the distance in meters between the two
pickups (i.e. your ears, for example... -
default: 0.3)

direct- is the attenuation of the direct signal

(01, default: 0.5)

early_diff - isthe attenuation coefficient of the early
reflections (01, default: 0.8)

PERFORMANCE

ar,a - the stereo output signal

asg - theinput signal

ksrex,ksrey,ksrez - the virtual coordinates of the source of
sound (i.e. the input signal); these are alowed to move at k-rate
and provide all the necessary variations in terms of response of the
resonator

EXAMPLES

Orchestra File- Simple usage
; minimal babo instrument

instr 1

ix =p5 ; X position of source
iy =pb6 ; ¥ position of source
iz =p7 ; Z position of source
ixsize =p8 ; width of the resonator
iysize =p9 ; depth of the resonator
izsize =pl0 ; height of the resonator

ainput soundin p4

a,ar babo ainput*0.9,ix,ly, iz, ixsize, iysize, izsize

outs a,ar
endin

Score File - Simple Usage
; Ssmple babo usage:

,p4 : soundin number
;p5 1 x postion of source
;p6 @y position of source
;p7 : zposition of source
;p1 @ width of the resonator
;p12 : depth of the resonator

;p13 : height of the resonator

i10101 643 14.39 11.86 10

; FAYAYAYAYAAY NANANNNNANNNNNNNNN

; ++++++++++++: optimal room dims
; according to

; Milner and Bernard JASA 85(2), 1989
; +++++++: source position

e

OrchestraFile - Expert usage
; full blown babo instrument with movement

instr 2

ixstart =p5 ; start x postion of source (leftright)
ixend =p8 ;end xposition of sarce

iystat =p6 ; starty postion of source (frontback)
iyend =p9 ;end y position of source

izstart =p7 ; start z podtion of source (up-down)
izend =pl0 ;end zposition of source

ixsize =pll ; width of theresonator

iysize =pl2 ; depth of the resonator

izsize = pl13 ; height of the resonator

idiff = pl4 ; diffusion coefficient

iexpert = pl5;power user values stored in thisfunction

anput soundin p4
ksource x line ixdart, p3, ixend
ksource y line iydart, p3, iyend
ksource z line izstart, p3, izend
da babo anput*0.9, ksource x,
ixdze, iydze, izdze, idiff, iexpert
outs al,ar

ksource y,

endin

Score File - Expert Usage
; full blown instrument
;p5 : start x position of source (leftright)

;p6 send x position of source

p7 : gtart y position of source (frontback)

;P8 send y position of source

;P9 : start z positionof source (up-down)

;p10 send z position of source

;p1l :width of the resonator

;p12 : depth of the resonator

;p13 : height of the resonator

;pld : diffusion coefficient

;p15 : power user values stored in this function

; decay hidecay rx ry rz rdistance direct early_diff

f108-2095 095000 03 0.5 0.8 ;brighter
f208-2095 05 000 03 05 0.8 ;defaul (tobeset as)
f308-2095 001 000 03 05 08 ;darker

f4 08-2 0.95 0.7 0 0 0 0.3 0.1 0.4 ; to hear the effect of

;diffuson
f508-209 05 000 03 20 0.98;tohear the movement
f6 08-2099 01 000 03 05 08 ;defaltvas
; ----- gen. number: negativeto avmdre;callng

i2 1010164 3 6 4 31439 1186 10 1 6; defaults

ksource z,

120

i2 + 42643 6 431439 11.86 10 1 1; hear brightness1
i2 + 426 43-6-43143911.86 10 1 2; hear brightness 2
i2 + 426 43-6-43143911.86 10 1 3; hear brightness 3
i2 + 32.6.4.3-6-4.3 1439 1.186 1.00.04 ; hear diffusion 1
i2 + 32.6.4.3-6-4.3 1439 1.186 1.01.04; hear diffusion 2
i2 + 4212 4 3-12 -4-3 24.39 21.86 20 1 5; hear movement
i2 + 41643 6 4314391186 10 1 1; hear brightness 1
i2 + 41643-6-43143911.86 10 1 2; hear brightness 2
i2 + 41643-6-43143911.86 101 3; hear brightness 3
i2 + 31.6.4.3-6-4.3 1439 1.186 1.00.04 ; hear diffusion 1
i2 + 31.6.4.3-6-4.3 1439 1.186 1.01.04; hear diffusion 2
i2 + 4112 4 3-12 -4-324.39 21.86 20 1 5; hear movement
; NANANNNNANNNNNNNNN FAVAVAVAVAVAVAVAV VAV, VA NN WA
; (IR A |- - expert val ues
; function
; (NN A +-- - diffusion
; e : optimal room dims
; (NI according to Milner and Bernard JASA
; 85(2), 1989
T e : source position start and end

e
AUTHORS

Davide Rocchesso (rocchesso@sci.univr.it) invented Babo, Padova
1994,
coded the

Paolo Filippi (padlfili@tiscalinet.it) csound

implementation, Padova 1999

Nicola Bernardini (nicb@axnet.it) wrote the manual page and
cleaned up the code, Rome 2000.

ksg sense

Returnsthe ascii code of one of the keysthat has been pressed, or -1
if nokey.

Note that this is not properly verified, and seems not to work at al on
Windows.

(JPFf)
ar transeg istart, idur, itype, ivalue, [idur, itype, ivalue]*
kr transeg istart, idur, itype, ivalue, [idur, itype, ivaue]*

Congtructs an envel ope between istart and ivalue for a duration of
idur seconds. If itypeisO then a gtraight line is produced;
otherwiseis createsthe curve

igtart + (ivalue- igtart) * (1 - exp(i*itype/(n-1))) / (1 - exp(itype))
for n steps

Thus if itype > 0 there is a dowly rising, fast decaying (convex)
curve, while is itype < 0 the curve is fast risng, dowly decaying
(concave).

(JPff -- with assistance from a number of people)

GEN16
f # time size 16 start dur type end [dur typeend]

Creates a table from start to end of dur steps. It typoe is O thisis a
sraight line. Otherwiseitis

start + (end - start)* (1 - exp(i*type/(N-1)))/(1 - exp(type))

(JPff -- with assistance from a number of people)

